首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylinositol 3-kinase pathways play key regulatory roles in cell cycle progression into S phase. In this study, we demonstrated that Akt1/PKBα isoform plays an essential role in G1/S transition and proliferation. Cells lacking Akt1/PKBα showed an attenuated proliferation as well as G1/S transition, whereas cells lacking Akt2/PKBβ showed normal proliferation and G1/S transition. The effect of Akt1/PKBα on cell proliferation and G1/S transition was completely abolished by swapping pleckstrin homology (PH) domain with that of Akt2/PKBβ. Finally, full activation of Akt/PKB and cyclin D expression was achieved by the Akt1/PKBα or chimeric proteins containing the PH domain of Akt1/PKBα indicating that the PH domain of Akt1/PKBα provides full kinase activity and is necessary for the G1/S transition.  相似文献   

2.
Yang J  Reth M 《FEBS letters》2010,584(24):4872-4877
To detect its cognate antigen, each B lymphocyte contains up to 120 000 B cell antigen receptor (BCR) complexes on its cell surface. How these abundant receptors remain silent on resting B cells and how they can be activated by a molecularly diverse set of ligands is poorly understood. The antigen-specific activation of the BCR is currently explained by the cross-linking model (CLM). This model predicts that the many BCR complexes on the surface of a B cell are dispersed signalling-inert monomers and that it is BCR dimerization that initiates signalling from the receptor. The finding that the BCR forms auto-inhibited oligomers on the surface of resting B cells falsifies these predictions of the CLM. We propose the dissociation activation model (DAM), which fits better with the existing body of experimental data.  相似文献   

3.
4.
Autophagy is a major pathway for degradation of cytoplasmic components, and is induced by some apoptotic stimuli mostly in cancer cells under the condition in which apoptosis is blocked. Ligation of the B cell antigen receptor (BCR) induces apoptosis and plays a crucial role in self-tolerance. However, whether BCR ligation induces autophagy is not clear. Here, we demonstrate that autophagosomes are extensively formed in normal mouse B cells as well as the WEHI-231 B cell line upon induction of BCR ligation-induced apoptosis regardless of whether apoptosis is blocked by overexpression of Bcl-2. In contrast, autophagosomes were not formed during apoptosis of spleen B cells cultured with medium alone or in BCR-ligated BAL17 cells which do not undergo apoptosis. Moreover, autophagy is not induced when apoptotic BCR signaling is abrogated by CD40 signaling. These results indicate that autophagy is induced specifically by apoptotic BCR signaling even in unmanipulated normal B cells.  相似文献   

5.
Protein kinase B (PKB/Akt) is a serine-threonine kinase functioning downstream of phosphatidylinositol 3-kinase (PI-3 kinase) in response to mitogen or growth factor stimulation. In several cell types, it plays an important anti-apoptotic role. TPA is a potent regulator of the growth of many different cell types. Here, we detected that TPA could induce cell apoptosis in the gastric cancer cell line, BGC-823. We also found that TPA inhibited the expression of PKB/Akt in a TPA concentration- and time-dependent manner. Furthermore, TPA inhibited the phosphorylation of PKB at Ser473, but did not affect the phosphorylation of Thr308. It only attenuated the expression of PKB/Akt and the phosphorylation of Ser473 in the cell nucleus, whereas it did not change the PKB/Akt distribution in BGC-823 cells. These results suggest that PKB/Akt inhibition by TPA may be the important factor in the mechanism of effect of TPA on gastric cell lines.  相似文献   

6.
Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation.  相似文献   

7.
Chimeric antigen receptor T (CART) cell therapy has emerged as a potentially curative “drug” for cancer treatment. Cryopreservation of CART cells is necessary for their clinical application. Systematic studies on the effects of cryopreservation on the antitumor function of CART cells are lacking. Therefore, we compared the phenotypes and functions of CART cells that were cryopreserved during ex vivo expansion with those of freshly isolated populations. T cells expressing an anti-B-cell-maturation-antigen (BCMA) chimeric antigen receptor (CAR) were expanded in vitro for 10 days and then cryopreserved. After one month, the cells were resuscitated, and their transduction rates, apoptosis rates and cell subsets were examined via flow cytometry. The results indicated no significant changes in transduction rates or cell subsets, and the survival rate of the resuscitated cells was approximately 90% Furthermore, similar tumoricidal effects and degranulation functions of the resuscitated cells compared with normally cultured cells were verified by calcein release and CD107a assays. A NOD/SCID mouse model was used to estimate the differences in the in vivo antitumor effects of the cryopreserved and normally cultured T cells, but no significant differences were observed. Following co-culture with several target cell types, the cytokines released by the cryopreserved and normally cultured T cells were measured via enzyme-linked immunosorbent assays (ELISAs). The results revealed that the release of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) was significantly decreased. These data demonstrated that with the exception of a decrease in cytokine release, the cryopreserved CART cells retained their antitumor functions.  相似文献   

8.
Unravelling the activation mechanisms of protein kinase B/Akt   总被引:17,自引:0,他引:17  
Scheid MP  Woodgett JR 《FEBS letters》2003,546(1):108-112
Over the past decade, protein kinase B (PKB, also termed Akt) has emerged as an important signaling mediator between extracellular cues and modulation of gene expression, metabolism, and cell survival. The enzyme is tightly controlled and consequences of its deregulation include loss of growth control and oncogenesis. Recent work has better characterized the mechanism of PKB activation, including upstream regulators and secondary binding partners. This minireview refreshes some old concepts with new twists and highlights current outstanding questions.  相似文献   

9.
Cross-linking of surface receptors in hematopoietic cells results in the enrichment of these receptors in the rafts along with other downstream signaling molecules. A possible explanation how signal is transduced through the plasma membrane has arisen from the concept of raft. From the study of cellular responses in the plasma membrane which enrich members of the Src-family tyrosine kinase, rafts can function as centers of signal transduction by forming patches. Under physiological conditions, these elements synergize to transduce successfully a signal at the plasma membrane. Rafts are suggested to be important in controlling appropriate protein interactions in hematopoietic cells, and aggregation of rafts following receptor ligation may be a general mechanism for promoting immune cell signaling.  相似文献   

10.
Apoptosis of B cells upon ligation of the B cell antigen receptor (BCR) plays a role in elimination of self-reactive B cells. Previously, BCR ligation was shown to induce expression of the molecules involved in the unfolded protein response (UPR). However, the role of the UPR in BCR-mediated apoptosis is poorly understood. Here, we demonstrate that activation of various UPR molecules are induced when BCR ligation induces apoptosis in the B cell line WEHI-231 and mouse spleen B cells. BCR ligation-induced UPR is attenuated by survival signaling through CD40 in these cells. When overexpression of BiP suppresses the UPR in WEHI-231 cells, activation of p38 MAPK is blocked and apoptosis is reduced. Moreover, the p38 MAPK inhibitor SB203580 reduces BCR ligation-induced apoptosis. These results suggest that the UPR is involved in BCR ligation-induced apoptosis and that p38 MAPK is crucial for apoptosis during the UPR in B cells.  相似文献   

11.
How the B‐cell antigen receptor (BCR) is activated upon interaction with its cognate antigen or with anti‐BCR antibodies is not fully understood. We have recently shown that B‐cell activation is accompanied by the opening of the pre‐organized BCR oligomers, an observation that strengthens the role of receptor reorganization in signalling. We have now analysed the BCR oligomer opening and signalling upon treatment with different monovalent stimuli. Our results indicate that monovalent antigens are able to disturb and open the BCR oligomer, but that this requires the presence and activity of the Src family kinase (SFK) Lyn. We have also shown that monovalent Fab fragments of anti‐BCR antibodies can open the BCR oligomers as long as they directly interact with the antigen‐binding site. We found that monovalent antigen binding opens both the IgM‐BCR and IgD‐BCR, but calcium signalling is only seen in cells expressing IgM‐BCR; this provides a molecular basis for IgM‐ and IgD‐BCR functional segregation.  相似文献   

12.
We previously showed that lovastatin, an HMG-CoA reductase inhibitor, suppresses cell growth by inducing apoptosis in rat brain neuroblasts. Our aim was to study intracellular signalling induced by lovastatin in neuroblasts. Lovastatin significantly decreases the phosphoinositide 3-kinase (PI3-K) activity in a concentration-dependent manner. Expression of p85 subunit and its association with phosphotyrosine-containing proteins are unaffected by lovastatin. Lovastatin decreases protein kinase B (PKB)/Akt phosphorylation, and its downstream effectors, p70S6K and the eukaryotic initiation factor 4E (eIF4E) regulatory protein 1, 4E-BP1, in a concentration-dependent manner, and reduces p70S6K expression. Lovastatin effects are fully prevented with mevalonate. Only the highest dose of PI3-K inhibitors that significantly reduce PI3-K kinase activity induces apoptosis in neuroblasts but to a lower degree than lovastatin. In summary, this work shows that treatment of brain neuroblasts with lovastatin leads to an inhibition of the main pathway that controls cell growth and survival, PI3-K/PKB and the subsequent blockade of downstream proteins implicated in the regulation of protein synthesis. This work suggests that inactivation of the antiapoptotic PI3-K appears insufficient to induce the degree of neuroblasts apoptosis provoked by lovastatin, which must necessarily involve other intracellular pathways. These findings might contribute to elucidate the molecular mechanisms of some statins effects in the central nervous system.  相似文献   

13.
Protein tyrosine phosphatase 1B (PTP1B) inhibition increases insulin sensitivity and normalizes blood glucose levels in animals. The molecular events associated with PTP1B inhibition that increase insulin sensitivity remain controversial. Insulin resistant, diabetic ob/ob mice, dosed with PTP1B antisense for 3 weeks exhibited a decrease in PTP1B protein levels and a change in the expression level of p85alpha isoforms in liver, characterized by a reduction in p85alpha and an upregulation of the p50alpha and p55alpha isoforms. Transfection of mouse hepatocytes with PTP1B antisense caused a downregulation PTP1B and p85alpha protein levels. Furthermore, transfection of mouse hepatocytes with PTP1B siRNA downregulated p85alpha protein expression and enhanced insulin-induced PKB phosphorylation. Treatment of mouse hepatocytes with p85alpha antisense oligonucleotide caused a reduction of p85alpha and an increase in p50alpha and p55alpha isoforms and enhanced insulin-stimulated PKB activation. These results demonstrate that PTP1B inhibition causes a direct differential regulation of p85alpha isoforms of PI3-kinase in liver and that reduction of p85alpha may be one mechanism by which PTP1B inhibition improves insulin sensitivity and glucose metabolism in insulin-resistant states.  相似文献   

14.
15.
Obesity is frequently associated with systemic insulin resistance, glucose intolerance, and hyperlipidemia. Impaired insulin action in muscle and paradoxical diet/insulin-dependent overproduction of hepatic lipids are important components of obesity, but their pathogenesis and inter-relationships between muscle and liver are uncertain. We studied two murine obesity models, moderate high-fat-feeding and heterozygous muscle-specific PKC-λ knockout, in both of which insulin activation of atypical protein kinase C (aPKC) is impaired in muscle, but conserved in liver. In both models, activation of hepatic sterol receptor element binding protein-1c (SREBP-1c) and NFκB (nuclear factor-kappa B), major regulators of hepatic lipid synthesis and systemic insulin resistance, was chronically increased in the fed state. In support of a critical mediatory role of aPKC, in both models, inhibition of hepatic aPKC by adenovirally mediated expression of kinase-inactive aPKC markedly diminished diet/insulin-dependent activation of hepatic SREBP-1c and NFκB, and concomitantly improved hepatosteatosis, hypertriglyceridemia, hyperinsulinemia, and hyperglycemia. Moreover, in high-fat–fed mice, impaired insulin signaling to IRS-1–dependent phosphatidylinositol 3-kinase, PKB/Akt and aPKC in muscle and hyperinsulinemia were largely reversed. In obesity, conserved hepatic aPKC-dependent activation of SREBP-1c and NFκB contributes importantly to the development of hepatic lipogenesis, hyperlipidemia, and systemic insulin resistance. Accordingly, hepatic aPKC is a potential target for treating obesity-associated abnormalities.  相似文献   

16.
Phagocytosis is a highly localized and rapid event, requiring the generation of spatially and temporally restricted signals. Because phosphatidylinositol 3-kinase (PI3K) plays an important role in the innate immune response, we studied the generation and distribution of 3' phosphoinositides (3'PIs) in macrophages during the course of phagocytosis. The presence of 3'PI was monitored noninvasively in cells transfected with chimeras of green fluorescent protein and the pleckstrin homology domain of either Akt, Btk, or Gab1. Although virtually undetectable in unstimulated cells, 3'PI rapidly accumulated at sites of phagocytosis. This accumulation was sharply restricted to the phagosomal cup, with little 3'PI detectable in the immediately adjacent areas of the plasmalemma. Measurements of fluorescence recovery after photobleaching were made to estimate the mobility of lipids in the cytosolic monolayer of the phagosomal membrane. Stimulation of phagocytic receptors induced a marked reduction of lipid mobility that likely contributes to the restricted distribution of 3'PI at the cup. 3'PI accumulation during phagocytosis was transient, terminating shortly after sealing of the phagosomal vacuole. Two factors contribute to the rapid disappearance of 3'PI: the dissociation of the type I PI3K from the phagosomal membrane and the persistent accumulation of phosphoinositide phosphatases.  相似文献   

17.
The expression and activation of serine/threonine protein kinase, Akt, in leiomyoma and in adjacent myometrium of human uteri was studied parallel with the changes of Bcl-2, Bax proteins, estrogen and progesterone receptors during menstrual cycle and early stage of the menopause. Abundant expression of Akt protein was detected in the studied tissues during menstrual cycle, the rate of increase was higher in leiomyoma than in corresponding myometrium. The expression of estrogen receptor alpha, progesterone receptor and of Bcl-2 protein changed parallel with that of Akt protein. The level of phosphorylated Akt (pAkt473) was seen only in leiomyoma samples from the growing period of tumors. At early stage of menopause levels of all studied proteins were lower than that in the menstrual cycle with the exception of Bax protein expression, which was high in leiomyoma. Our data suggest the involvement of phosphatidylinositol 3-kinase/Akt signaling in the pathomechanism of leiomyoma.  相似文献   

18.
B lymphocytes recognize bacterial or viral antigens via different classes of the B cell antigen receptor (BCR). Protrusive structures termed microvilli cover lymphocyte surfaces, and are thought to perform sensory functions in screening antigen‐bearing surfaces. Here, we have used lattice light‐sheet microscopy in combination with tailored custom‐built 4D image analysis to study the cell‐surface topography of B cells of the Ramos Burkitt''s Lymphoma line and the spatiotemporal organization of the IgM‐BCR. Ramos B‐cell surfaces were found to form dynamic networks of elevated ridges bridging individual microvilli. A fraction of membrane‐localized IgM‐BCR was found in clusters, which were mainly associated with the ridges and the microvilli. The dynamic ridge‐network organization and the IgM‐BCR cluster mobility were linked, and both were controlled by Arp2/3 complex activity. Our results suggest that dynamic topographical features of the cell surface govern the localization and transport of IgM‐BCR clusters to facilitate antigen screening by B cells.  相似文献   

19.
Cell death and survival play a key role in the immune system as well as during development. The control mechanisms that balance cell survival against cell death are not well understood. Here we report a novel strategy used by a single protein to regulate chronologically cell survival and death. The interferon-induced protein kinase PKR acts as a molecular clock by using catalysis-dependent and -independent activities to temporally induce cell survival prior to cell death. We show that the proapoptotic protein PKR surprisingly activates a survival pathway, which is mediated by NF-kappaB to delay apoptosis. Cell death is then induced by PKR through the phosphorylation of eIF-2alpha. This unique temporal control might serve as a paradigm for other kinases whose catalytic activity is not required for all of their functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号