首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
K Shimizu  H Handa  S Nakada    K Nagata 《Nucleic acids research》1994,22(23):5047-5053
An in vitro RNA synthesis system mimicking replication of genomic influenza virus RNA was developed with nuclear extracts prepared from influenza virus-infected HeLa cells using exogenously added RNA templates. The RNA synthesizing activity was divided into two complementing fractions, i.e. the ribonucleoprotein (RNP) complexes and the fraction free of RNP, which could be replaced with RNP cores isolated from virions and nuclear extracts from uninfected cells, respectively. When nuclear extracts from uninfected cells were fractionated by phosphocellulose column chromatography, the stimulatory activity for RNA synthesis was further separated into two distinct fractions. One of them, tentatively designated RAF (RNA polymerase activating factor), stimulated RNA synthesis with either RNP cores or RNA polymerase and nucleocapsid protein purified from RNP cores as the enzyme source. In contrast, the other, designated PRF (polymerase regulating factor), functioned as an activator only when RNP cores were used as the enzyme source. Biochemical analyses revealed that PRF facilitates dissociation of RNA polymerase from RNP cores. Of interest is that virus-coded non-structural protein 1 (NS1), which has been thought to be involved in regulation of replication, counteracted PRF function. Roles of cellular factors and viral proteins, NS1 in particular, are discussed in terms of regulation of influenza virus RNA genome replication.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Host signaling pathways play important roles in the replication of influenza virus, but their functional effects remain to be characterized at the molecular level. Here we identify two receptor tyrosine kinase inhibitors (RTKIs) of the tyrphostin class that exhibit robust antiviral activity against influenza A virus replication in cultured cells. One of these (AG879) is a selective inhibitor of the nerve growth factor receptor and human epidermal growth factor receptor 2 (TrkA/HER2) signaling; the other, tyrphostin A9 (A9), inhibits the platelet-derived growth factor receptor (PDGFR) pathway. We find that each inhibits at least three postentry steps of the influenza virus life cycle: AG879 and A9 both strongly inhibit the synthesis of all three influenza virus RNA species, block Crm1-dependent nuclear export, and also prevent the release of viral particles through a pathway that is modulated by the lipid biosynthesis enzyme farnesyl diphosphate synthase (FPPS). Tests of short hairpin RNA (shRNA) knockdown and additional small-molecule inhibitors confirmed that interventions targeting TrkA can suppress influenza virus replication. Our study suggests that host cell receptor tyrosine kinase signaling is required for maximal influenza virus RNA synthesis, viral ribonucleoprotein (vRNP) nuclear export, and virus release and that specific RTKIs hold promise as novel anti-influenza virus therapeutics.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号