首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca(2+) increases and ABA- activation of plasma membrane Ca(2+)-permeable channels in guard cells. Exogenous H(2)O(2) rescues both Ca(2+) channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction.  相似文献   

2.
Hu X  Jiang M  Zhang J  Zhang A  Lin F  Tan M 《The New phytologist》2007,173(1):27-38
* Using pharmacological and biochemical approaches, the role of calmodulin (CaM) and the relationship between CaM and hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays) plants were investigated. * Treatment with ABA or H(2)O(2) led to significant increases in the concentration of cytosolic Ca(2+) in the protoplasts of mesophyll cells and in the expression of the calmodulin 1 (CaM1) gene and the content of CaM in leaves of maize plants, and enhanced the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes. The up-regulation of the antioxidant enzymes was almost completely blocked by pretreatments with two CaM antagonists. * Pretreatments with CaM antagonists almost completely inhibited ABA-induced H(2)O(2) production throughout ABA treatment, but pretreatment with an inhibitor or scavenger of reactive oxygen species (ROS) did not affect the initial increase in the contents of CaM induced by ABA. * Our results suggest that Ca(2+)-CaM is involved in ABA-induced antioxidant defense, and that cross-talk between Ca(2+)-CaM and H(2)O(2) plays a pivotal role in ABA signaling.  相似文献   

3.
The biphasic oxidative burst induced by Phaeomoniella chlamydospora extract (Pce) in Vitis vinifera (Vv) cell suspensions was investigated. Treatment of cell suspensions with diphenyleneiodonium chloride, an inhibitor of NADPH oxidase, prevented the Pce‐induced biphasic reactive oxygen species (ROS) accumulation, suggesting that NADPH oxidase is the primary ROS source in the oxidative burst induced by Pce elicitation of Vv cells. The role of Ca2+ in the oxidative burst was also investigated using a Ca2+ chelator and several Ca2+ channel blockers. The treatment of Vv cell suspensions with the Ca2+ chelator ethylene glycol‐bis(2‐aminoethylether)‐N, N, N’; N’‐tetraacetic acid (EGTA) completely inhibited Pce‐induced ROS accumulation, suggesting that Ca2+ availability is necessary for occurrence of the induced oxidative burst. However, only the Ca2+ channel blocker ruthenium red strongly inhibited the Pce‐induced ROS accumulation, suggesting that the specific Ca2+ channel types from which Ca2+ influx is originated also play an important role in the Pce‐induced oxidative burst. Furthermore, Ca2+ availability seems to be necessary for the Pce‐induced activity of NADPH oxidase.  相似文献   

4.
Jiang M  Zhang J 《Planta》2002,215(6):1022-1030
The roles of the plasma-membrane (PM) NADPH oxidase in abscisic acid (ABA)- and water stress-induced antioxidant defense were investigated in leaves of maize ( Zea mays L.) seedlings. Treatment by exogenous ABA (100 micro M ABA) or osmotic stress (-0.7 MPa induced by polyethylene glycol) significantly increased the activity of the PM NADPH oxidase, the production of leaf O(2)(-), the activities of several antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase), and the contents of antioxidant metabolites (ascorbate and reduced glutathione). Pretreatment with three different inhibitors of NADPH oxidase (diphenylene iodonium, imidazole and pyridine) or an inhibitor of ABA biosynthesis (tungstate) reduced the increase in the activity of the PM NADPH oxidase and the production of leaf O(2)(-), and the capacity of antioxidant defense systems mediated by ABA. The inhibitory effects above caused by tungstate were reversed by exogenous ABA. These data indicate that NADPH oxidase is involved in the ABA-induced production of active oxygen species (AOS), and our results depict a minimal chain of events initiated by water stress-induced ABA accumulation, which then triggers the production of AOS by membrane-bound NADPH oxidase, resulting in the induction of antioxidant defense systems against oxidative damage in plants.  相似文献   

5.
The sources of nitric oxide (NO) production in response to abscisic acid (ABA) and the role of NO in ABA-induced hydrogen peroxide (H(2)O(2)) accumulation and subcellular antioxidant defense in leaves of maize (Zea mays L.) plants were investigated. ABA induced increases in generation of NO and activity of nitric oxide synthase (NOS) in maize leaves. Such increases were blocked by pretreatment with each of the two NOS inhibitors. Pretreatments with a NO scavenger or NR inhibitors inhibited ABA-induced increase in production of NO, but did not affect the ABA-induced increases in activity of NOS, indicating that ABA-induced NO production originated from sources of NOS and NR. ABA- and H(2)O(2)-induced increases in expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by pretreatments with the NO scavenger, inhibitors of NOS and NR, indicating that NO is involved in the ABA- and H(2)O(2)-induced subcellular antioxidant defense reactions. On the other hand, NO donor sodium nitroprusside (SNP) reduced accumulation of H(2)O(2) induced by ABA, and c-PTIO reversed the effect of SNP in decreasing the accumulation of H(2)O(2). SNP induced increases in activities of subcellular antioxidant enzymes, and the increases were substantially prevented from occurring by the pretreatment with c-PTIO. These results suggest that ABA induces production of H(2)O(2) and NO, which can up-regulate activities of the subcellular antioxidant enzymes, to prevent overproduction of H(2)O(2) in maize plants. There is a negative feedback loop between NO and H(2)O(2) in ABA signal transduction in maize plants.  相似文献   

6.
The interrelationship among water-stress-induced abscisic acid (ABA) accumulation, the generation of reactive oxygen species (ROS), and the activities of several antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) was investigated in leaves of detached maize (Zea mays L.) plants exposed to -0.7 MPa water stress induced by polyethylene glycol (PEG 6000). Time-course analyses of ABA content, the production of ROS, and the activities of antioxidant enzymes in water-stressed leaves showed that a significant increase in the content of ABA preceded that of ROS, which was followed by a marked increase in the activities of these antioxidant enzymes. Pretreatment with an ABA biosynthesis inhibitor, tungstate, significantly suppressed the accumulation of ABA, and also reduced the increased generation of ROS and the up-regulation of these antioxidant enzymes in water-stressed leaves. A mild oxidative stress induced by paraquat, which generates O(2)(-) and then H(2)O(2), resulted in a significant enhancement in the activities of antioxidant enzymes in non-water-stressed leaves. Pretreatment with some ROS scavengers, such as Tiron and dimethylthiourea (DMTU), and an inhibitor of NAD(P)H oxidase, diphenyleneiodonium (DPI), almost completely arrested the increase in ROS and the activities of these antioxidant enzymes induced by water stress or ABA treatment. These data suggest that water stress-induced ABA accumulation triggers the increased generation of ROS, which, in turn, leads to the up-regulation of the antioxidant defence system.  相似文献   

7.
Apoptosis linked to oxidative stress has been implicated in pancreatitis. We investigated whether NADPH oxidase mediates apoptosis in cerulein-stimulated pancreatic acinar AR42J cells. We report here that cerulein treatment resulted in the activation of NADPH oxidase, as determined by ROS production, translocation of cytosolic subunits p 47(phox) and p 67(phox) to the membrane, and interaction between NADPH oxidase subunits. Cerulein induced Ca(2+) oscillation, the expression of apoptotic genes p53 and bax, and apoptotic indices (DNA fragmentation, TUNEL staining, caspase 3 activity, decrease in cell viability) in AR42J cells. Treatment with a Ca(2+) chelator, BAPTA-AM, or transfection with antisense oligonucleotides for NADPH oxidase subunits p22(phox) and p 47(phox) inhibited cerulein-induced ROS production, translocation of NADPH oxidase cytosolic subunits p 47(phox) and p 67(phox) to the membrane, and the expression of apoptotic genes and apoptotic indices, as compared to the cells without treatment and those transfected with the corresponding sense oligonucleotides. These results indicate that NADPH oxidase may mediate ROS-induced apoptosis in pancreatic acinar cells in a Ca(2+)-dependent manner.  相似文献   

8.
Calmodulin (CaM), the predominant Ca(2+) receptors, is one of the best-characterized Ca(2+) sensors in all eukaryotes. In this study the role of CaM and the possible interrelationship between CaM and hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA) induced antioxidant defense were investigated in the seedling of Panax ginseng. Treatment of ABA (100 μM) and H(2)O(2) (10 mM) increased the expression of Panax ginseng calmodulin gene (PgCaM) and significantly enhanced the expression of the antioxidant marker genes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase and the activities of chloroplastic and cytosolic antioxidant enzymes. Pretreatments with two CaM antagonists, trifluoperazine (TFP), N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide hydrochloride (W7) and inhibitor or scavenger, diphenyleneiodonium chloride, and dimethylthiourea of reactive oxygen species almost completely suppressed the up-regulation of antioxidant and PgCaM gene. Moreover, H(2)O(2) production and CaM content was almost completely inhibited by pretreatments with two CaM antagonists. In addition, the expressions of PgCaM gene under different biotic stress were analyzed at different time intervals. Thus it may suggests that CaM are involved in ABA-induced increased expression of PgCaM which triggers H(2)O(2) production through activating trans-plasma membrane NADPH oxidase, resulting in up-regulation of defense related antioxidant gene and also plays a pivotal role in defense response against pathogens.  相似文献   

9.
The effect of hydrogen sulfide (H2S) donor sodium hydrosulfide (NaHS) on the heat resistance of wheat (Triticum aestivum L.) coleoptile cells, the formation of reactive oxygen species (ROS), and the activity of the antioxidant enzymes in them was investigated. The treatment of coleoptiles with 100 µM NaHS caused transient enhancement of the generation of the superoxide anion radical (O2 ?) and an increased hydrogen peroxide content. The activities of antioxidant enzymes—superoxide dismutase, catalase, and guaiacol peroxidase— and coleoptile resistance to damaging heat was later found to have increased. The biochemical and physiological effects of the hydrogen sulfide donor described above were inhibited by the treatment of wheat coleoptiles with the hydrogen peroxide scavenger dimethylthiourea, the NADPH oxidase inhibitor imidazole, the extracellular calcium chelator EGTA, and the phosphatidylinositol-specific phospholipase C inhibitor neomycin. A conclusion was made on the role of ROS generation, which is dependent on the activity of NADPH oxidase and calcium homeostasis, in the transduction of the H2S signal, which induces antioxidant enzymes and the development of plant cell heat resistance.  相似文献   

10.
Proline-rich tyrosine kinase 2 (PYK2), structurally related to focal adhesion kinase, has been shown to play a role in signaling cascades. Endothelial cells (ECs) under hemodynamic forces increase reactive oxygen species (ROS) that modulate signaling pathways and gene expression. In the present study, we found that bovine ECs subjected to cyclic strain rapidly induced phosphorylation of PYK2 and Src kinase. This strain-induced PYK2 and Src phosphorylation was inhibited by pretreating ECs with an antioxidant N-acetylcysteine. Similarly, ECs exposed to H(2)O(2) increased both PYK2 and Src phosphorylation. An increased association of Src to PYK2 was observed in ECs after cyclic strain or H(2)O(2) exposure. ECs treated with an inhibitor to Src (PPI) greatly reduced Src and PYK2 phosphorylation, indicating that Src mediated PYK2 activation. Whereas the protein kinase C (PKC) inhibitor (calphostin C) pretreatment was shown to inhibit strain-induced NADPH oxidase activity, ECs treated with either calphostin C or the inhibitor to NADPH oxidase (DPI) reduced strain-induced ROS levels and then greatly inhibited the Src and PYK2 activation. In contrast to the activation of PYK2 and Src with calcium ionophore (ionomycin), ECs treated with a Ca(2+) chelator inhibited both phosphorylation, indicating that PYK2 and Src activation requires Ca(2+). ECs transfected with antisense to PKCalpha, but not antisense to PKCepsilon(,) reduced cyclic strain-induced PYK2 activation. These data suggest that cyclic strain-induced PYK2 activity is mediated via Ca(2+)-dependent PKCalpha that increases NADPH oxidase activity to produce ROS crucial for Src and PYK2 activation. ECs under cyclic strain thus activate redox-sensitive PYK2 via Src and PKC, and this PYK2 activation may play a key role in the signaling responses in ECs under hemodynamic influence.  相似文献   

11.
Membrane potential in oxygen-sensitive type I cells in carotid body is controlled by diverse sets of voltage-dependent and -independent K(+) channels. Coupling of Po(2) to the open-closed state of channels may involve production of reactive oxygen species (ROS) by NADPH oxidase. One hypothesis suggests that ROS are produced in proportion to the prevailing Po(2) and a subset of K(+) channels closes as ROS levels decrease. We evaluated ROS levels in normal and p47(phox) gene-deleted [NADPH oxidase knockout (KO)] type I cells using the ROS-sensitive dye dihydroethidium (DHE). In normal cells, hypoxia elicited an increase in ROS, which was blocked by the specific NADPH oxidase inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF, 3 mM). KO type I cells did not respond to hypoxia, but the mitochondrial uncoupler azide (5 microM) elicited increased fluorescence in both normal and KO cells. Hypoxia had no effect on ROS production in sensory and sympathetic neurons. Methodological control experiments showed that stimulation of neutrophils with a cocktail containing the chemotactic peptide N-formyl-Met-Leu-Phe (1 microM), arachidonic acid (10 microM), and cytochalasin B (5 microg/ml) elicited a rapid increase in DHE fluorescence. This response was blocked by the NADPH oxidase inhibitor diphenyleneiodonium (10 microM). KO neutrophils did not respond; however, azide (5 microM) elicited a rapid increase in fluorescence. Physiological studies in type I cells demonstrated that hypoxia evoked an enhanced depression of K+ current and increased intracellular Ca2+ levels in KO vs. normal cells. Moreover, AEBSF potentiated hypoxia-induced increases in intracellular Ca2+ and enhanced the depression of K+ current in low O(2). Our findings suggest that local compartmental increases in oxidase activity and ROS production inhibit the activity of type I cells by facilitating K+ channel activity in hypoxia.  相似文献   

12.
水分胁迫是一种影响植物生长发育、限制植物产量的重要胁迫因子.植物能够通过感知刺激、产生和传导信号、启动各种防护机制来响应与适应水分胁迫.植物激素脱落酸(ABA)作为一种胁迫信号,在调节植物对水分胁迫的反应中起着重要的作用.ABA不仅能诱导气孔关闭,而且能诱导编码耐脱水蛋白的基因表达.正在增加的证据显示,ABA增强水分胁迫的耐性与其诱导抗氧化防护系统有关.本文综述了ABA在诱导活性氧(ROS)产生、调节抗氧化酶基因表达以及增强抗氧化防护系统方面的作用,着重讨论了在ABA诱导的抗氧化防护过程中Ca2 、NADPH氧化酶与ROS之间的交谈机制.  相似文献   

13.
We investigated the interaction among abscisic acid (ABA), reactive oxygen species (ROS) and antioxidant defence system in the transduction of osmotic stress signalling using Arabidopsis thaliana WT (Columbia ecotype, WT) and an ABA-deficient mutant (aba2-1). For this, 50 μm ABA and osmotic stress, induced with 40% (w/v) polyethylene glycol (PEG8000; -0.7 MPa), were applied to WT and aba2-1 for 6, 12 or 24 h. Time course analysis was undertaken for determination of total/isoenzyme activity of the antioxidant enzymes, superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), NADPH oxidase (NOX; EC 1.6.3.1) activity; scavenging activity of the hydroxyl radical (OH˙), hydrogen peroxide (H(2) O(2) ); endogenous ABA and malondialdehyde (MDA). The highest H(2) O(2) and MDA content was found in PEG-treated groups of both genotypes, but with more in aba2-1. ABA treatment under stress reduced the accumulation of H(2) O(2) and MDA, while it promoted activity of SOD, CAT and APX. APX activity was higher than CAT activity in ABA-treated WT and aba2-1, indicating a protective role of APX rather than CAT during osmotic stress-induced oxidative damage. Treatment with ABA also significantly induced increased NOX activity. Oxidative damage was lower in ABA-treated seedlings of both genotypes, which was associated with greater activity of SOD (Mn-SOD1 and 2 and Fe-SOD isoenzymes), CAT and APX in these seedlings after 24 h of stress. These results suggest that osmotic stress effects were overcome by ABA treatment because of increased SOD, CAT, APX and NOX.  相似文献   

14.
脱落酸与植物细胞的抗氧化防护   总被引:29,自引:0,他引:29  
水分胁迫是一种影响植物生长发育、限制植物产量的重要胁迫因子。植物能够通过感知刺激、产生和传导信号、启动各种防护机制来响应与适应水分胁迫。植物激素脱落酸(ABA)作为一种胁迫信号,在调节植物对水分胁迫的反应中起着重要的作用。ABA不仅能诱导气孔关闭,而且能诱导编码耐脱水蛋白的基因表达。正在增加的证据显示,ABA增强水分胁迫的耐性与其诱导抗氧化防护系统有关。本文综述了ABA在诱导活性氧(ROS)产生、调节抗氧化酶基因表达以及增强抗氧化防护系统方面的作用,着重讨论了在ABA诱导的抗氧化防护过程中Ca2 、NADPH氧化酶与ROS之间的交谈机制。  相似文献   

15.
通过组织化学染色、电镜观察、酶活性分析对水分胁迫诱导玉米叶片质外体产生H2O2进行了研究。结果表明:水分胁迫能够诱导玉米叶片内源ABA的积累,ABA参与了水分胁迫诱导的玉米叶片H2O2的产生,质膜NADPH氧化酶、细胞壁过氧化物酶(POD)以及质外体多胺氧化酶(PAO)是水分胁迫诱导玉米细胞在质外体产生H2O2的来源,其中质膜NADPH氧化酶是主要来源;内源ABA的积累参与了水分胁迫激活的质膜NADPH氧化酶、细胞壁POD和质外体PAO活性的提高。研究认为,水分胁迫诱导玉米细胞在质外体产生H2O2可能是由于水分胁迫下内源ABA的积累通过激活质膜NADPH氧化酶、细胞壁POD以及质外体PAO的活性而实现的。  相似文献   

16.
Protein Phosphatase 2C (PP2C) is an important phosphatase-like protein in eukaryotic organisms that can negatively regulate protein kinase cascade abscisic acid (ABA) signal system through phosphorylation and carry out vital roles in various cell processes. The previous study indicated that the accumulation of reactive oxygen species (ROS) is a part of mechanism of glucohexaose-induced resistance in cucumber cotyledons, and CsPP2C80s might play a crucial role in processes related to ROS produce and signal transduction. To identify the mechanism of CsPP2C80s involved in glucohexaose and ABA signaling regulating cell redox status, the effects of glucohexaose and ROS inhibitor pretreatment on endogenous ABA content and ABA signaling genes expression levels of cucumber seedlings were analysed. These results suggest that cucumber CsPP2C80s are involved in ROS accumulation and ABA signal transduction pathway induced by glucohexaose, CsPP2C80s play a positive regulatory role in process of ABA combined with ABA receptors (PYLs) to activate SNF1-related protein kinases 2 (SnRK2s) and regulate NADPH oxidase to produce extracellular hydrogen peroxide (H2O2), providing unequivocal molecular evidence of PP2C-mediated ABA response mechanisms functioning in cell redox status induced by glucohexaose.  相似文献   

17.
Ion fluxes and the production of reactive oxygen species (ROS) are early events that follow elicitor treatment or microbial infection. However, molecular mechanisms for these responses as well as their relationship have been controversial and still largely unknown. We here simultaneously monitored the temporal sequence of initial events at the plasma membrane in suspension-cultured tobacco cells (cell line BY-2) in response to a purified proteinaceous elicitor, cryptogein, which induced hypersensitive cell death. The elicitor induced transient rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) showing two distinct peaks, followed by biphasic (rapid/transient and slow/prolonged) Cl(-) efflux and H(+) influx. Pharmacological analyses suggested that the two phases of the [Ca(2+)](cyt) response correspond to Ca(2+) influx through the plasma membrane and an inositol 1,4,5-trisphophate-mediated release of Ca(2+) from intracellular Ca(2+) stores, respectively, and the [Ca(2+)](cyt) transients and the Cl(-) efflux were mutually dependent events regulated by protein phosphorylation. The elicitor also induced production of ROS including (*)O(2)(-) and H(2)O(2), which initiated after the [Ca(2+)](cyt) rise and required Ca(2+) influx, Cl(-) efflux and protein phosphorylation. An inhibitor of NADPH oxidase, diphenylene iodonium, completely inhibited the elicitor-induced production of (*)O(2)(-) and H(2)O(2), but did not affect the [Ca(2+)](cyt) transients. These results suggest that cryptogein-induced plasma membrane Ca(2+) influx is independent of ROS, and NADPH oxidase dependent ROS production is regulated by these series of ion fluxes.  相似文献   

18.
Cytosolic calcium concentrations (Cai) of barley aleurone protoplasts after stimulation with the plant hormone abscisic acid (ABA) were measured by using the calcium-sensitive fluorescent dye Indo-1. The measured basal Cai is about 200 nM. Stimulation with ABA induces a strong dose-dependent decrease in Cai to a minimal value of about 50 nM. This decrease occurs within 5 s. The Ca2+ antagonists La3+ and Cd2+ inhibit the ABA-induced Cai decrease in a dose-dependent manner, while the Ca2+ channel blockers verapamil and nifedipine give no inhibition. The induction of Cai decrease by ABA is consistent with activation of the plasma membrane Ca2(+)-ATPase by ABA. The possible role of this ABA-induced Cai decrease in ABA signal transduction and in counteracting the effects of gibberellic acid are discussed.  相似文献   

19.
20.
A pot experiment was conducted to investigate the effect of the non-protein amino acid, β-aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100 μM BABA increased drought-induced ABA production, leading to a decrease in the lethal leaf water potential (Ψ) used to measure desiccation tolerance, decreased water use, and increased water use efficiency for grain (WUE(G)) under moderate water stress. In addition, at severe water stress levels, drenching the soil with BABA reduced ROS production, increased antioxidant enzyme activity, and reduced the oxidative damage to lipid membranes. The data suggest that the addition of BABA triggers ABA accumulation that acts as a non-hydraulic root signal, thereby closing stomata, and reducing water use at moderate stress levels, and also reduces the production of ROS and increases the antioxidant defence enzymes at severe stress levels, thus increasing the desiccation tolerance. However, BABA treatment had no effect on grain yield of wheat when water availability was limited. The results suggest that there are ways of effectively priming the pre-existing defence pathways, in addition to genetic means, to improve the desiccation tolerance and WUE(G) of wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号