首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recent studies on the glucagon antagonist des-His1-[Glu9]glucagon amide have resulted in pure inhibitors of the hormone, suggesting that the inhibitory properties may be centered around position 9. The present study was designed to investigate the chemical characteristics of substitutions in position 9 of glucagon that determine binding affinity and biological activity. Twenty replacement analogs of position 9 of glucagon were synthesized and assessed for their ability to bind to the glucagon receptor in rat hepatocyte membranes and to activate adenylate cyclase. Any substitution of aspartic acid 9 was accompanied by a severely diminished capacity to transmit the biological signal, while retaining receptor binding affinity. These results are an indication of an uncoupling of receptor binding and biological activity at this locus and define a central role of aspartic acid 9 in glucagon activity. Single replacement or deletion of either His1 or Asp9 in glucagon caused a 20- to 50-fold decrease in cyclase activity, whereas these same changes made in tandem caused virtually complete loss of activity, with decreases of 10(4)-to 10(6)-fold. These observations have led us to speculate that, at the molecular level, the region of glucagon required for transduction of the biological response may be distinct from the binding region and is mediated by a coupled interaction between His1 and Asp9 of the hormone and a complementary functional site of the glucagon receptor.  相似文献   

2.
A fragment of glucagon encompassing its first six NH2-terminal residues (His-Ser-Gln-Gly-Thr-Phe) binds to the glucagon receptor and stimulates adenylate cyclase activity in rat liver plasma membranes. Glucagon1-6 is a partial agonist since it stimulates, at saturating concentrations, to the extent of 75% of the maximal activity given by the native hormone. The binding affinity and potency of glucagon1-6 are 0.001% the native hormone. Discussed are the implications of these findings on the structure-function relationships required for the action of glucagon and for preparing clinically useful analogs of the hormone.  相似文献   

3.
Summary Examination of glucagon structure-activity relationships and their use for the development of glucagon antagonists (inhibitors) have been hampered until recently by the lack of high purity of semisynthetic glucagon analogs and inadequate study of full dose-response curves for these analogs in sensitive bioassay systems. Recently a number of highly purified glucagon fragments and semi-synthetic analogs have been prepared and their full dose-response activities examined over a wide concentration range using the hepatic membrane adenylate cyclase assay, the hepatic membrane receptor binding assay, and glycogenolytic activity in isolated rat hepatocytes. The results of these studies have enabled us to identify and dissociate the structural (and in some cases conformational) features of glucagon important for binding from those most responsible for biological activity (transduction). Key findings in these studies were the observation that: (1) the C-terminal region of glucagon is primarily of importance for hormone binding to receptors; (2) glucagon1–21 and glucagon1–6 have low potency, but are essentially fully active glucagon derivatives; and (3) highly purified glucagon2–29 ([1-des-histidine]-glucagon), [1-N-carbamoylhistidine]-glucagon and [1-N-carbamoylhistidine, 12-N-carbamoyllysine]-glucagon are all partial agonists.These and other findings led us to synthesize several semisynthetic analogs of glucagon which were found to possess no intrinsic biological activity in the hepatic adenylate cyclase assay system, but which could block the effect of glucagon (competitive inhibitors) in activating adenylate cyclase in this system. Two of these highly purified analogs [1-des-histidine] [2-N-trinitrophenylserine, 12-homoarginine]-glucagon and [1-N-trinitrophenylhistidine, 12-homoarginine]-glucagon were quite potent glucagon antagonists (inhibitors) with pA2 values of 7.41 and 8.16 respectively. The latter compound has also been demonstrated to decrease dramatically blood glucose levels of diabetic animals in vivo. These results demonstrate that glucagon is a major contributor to the hyperglycemia of diabetic animals.Examination of the known and calculated conformational properties of glucagon provide insight into the structural and conformational properties of glucagon and its analogs most responsible for its biological activity. Consideration of these features and the mechanism of glucagon action at the membrane receptor level provide a framework for further developing glucagon analogs for theoretical and therapeutic applications.  相似文献   

4.
Glucagon1-21 has been prepared by treating native glucagon with carboxypeptidase A. Purified glucagon1-21 did not contain detectable methionine (less than 0.001 residue/mol) and the activity of the compound did not change after treatment with cyanogen bromide as has been shown with native glucagon. Glucagon1-21 stimulates hepatic adenylate cyclase activity to the same extent as native glucagon but with 0.1% the potency. Glucagon1-21 also displayed 0.1% the binding affinity of native glucagon to the glucagon receptor in hepatic membranes. Glucagon22-29 alone or in combination with glucagon1-21 did not activate adenylate cyclase or displase 125I-glucagon from its receptor. The finding that glucagon1-21 is a full agonist on adenylate cyclase is discussed in relation to the structure-function relationships required for the biological action of glucagon.  相似文献   

5.
A series of glucagon analogues, des-(1-4)-glucagon, des-(5-9)-glucagon, des-(10-15)-glucagon, des-(16-21)-glucagon, des-(22-26)-glucagon and des-(27-29)-glucagon, were prepared by condensation of synthetic fragments and characterized biologically and immunologically. Fully synthetic glucagon was also characterized. The potencies with regard to glucagon receptor binding in purified rat liver plasma membranes were, in decreasing order: synthetic glucagon 108%, des-(1-4)-glucagon 5.7%, des-(27-29)-glucagon 0.92%, des-(5-9)-glucagon 0.47%, des-(10-15)-glucagon 0.0028%, des-(16-21)-glucagon 0.0017% and des-(22-26)-glucagon 0.00060% relative to that of natural porcine glucagon. Des-(27-29)-glucagon was the only analogue that activated the adenylate cyclase in rat liver plasma membranes or stimulated the lipolysis in isolated free fat cells from rat epididymal fat pad. The potencies were 0.16% and 0.20% of that of glucagon, respectively. Des-(1-4)-glucagon was a glucagon antagonist in the adenylate cyclase assay. The immunoreactivities of the glucagon analogues were determined with two commonly used anti-glucagon sera, K 5563 and K 4023, directed towards the C-terminus and some segment in the sequence 2-23, respectively. In the K 5563 assay, des-(27-29)-glucagon and des-(22-26)-glucagon had potencies of 0.0009% and less than 0.09% of that of glucagon, respectively. The remaining analogues had potencies varying from 45% to 141% of that of glucagon. In the K 4023 assay, the analogues showed a non-linear dilution effect. The combined results indicate a partition within the glucagon molecule with regard to receptor binding and adenylate cyclase activation. The region 10-26 appears to be the most important for receptor binding, whereas 1-4 is essential for adenylate cyclase activation. The C-terminal segment 27-29 is important for the maintenance of full receptor binding but non-essential for adenylate cyclase activation.  相似文献   

6.
We have compared the ability of glucagon and three highly purified derivatives of the hormone to activate hepatic adenylate cyclase (an expression of biological activity of the hormone) and to compete with [125]glucagon for binding to sites specific for glucagon in hepatic plasma membranes. Relative to that of glucagon, biological activity and affinity of [des-Asn-28,Thr-29](homoserine lactone-27)-glucagon, prepared by CNBr treatment of glucagon, were reduced equally by 40- to 50-fold. By contrast, des-His-1-glucagon, prepared by an insoluble Edman reagent and highly purified (less than 0.5% contamination with native glucagon), displayed a 15-fold decrease in affinity but a 50-fold decrease in biological activity relative to that of the native hormone. At maximal stimulating concentrations, des-His-1-glucagon yielded 70% of the activity given by saturating concentrations of glucagon. Thus, des-His-1-glucagon can be classified as a partial weak agonist. Highly purified monoiodoglucagon and native glucagon displayed identical biological activity and affinity for the binding sites. Our findings suggest that the hydrophilic residues at the terminus of the carboxy region of glucagon are involved in the process of recognition at the glucagon receptor but do not participate in the sequence of events leading to activation of adenylate cyclase. The amino-terminal histidyl residue in glucagon plays an important but not obligatory role in the expression of hormone action and contributes to a significant extent in the recognition process.  相似文献   

7.
This paper reports the synthesis and the biological activities of six new glucagon analogues. In these compounds N-terminal modifications of the glucagon sequence were made, in most cases combined with changes in the C-terminal region which had been shown previously to enhance receptor affinity. The design of these analogues was based on [Lys17,18,Glu21]glucagon,1 a superagonist, which binds five times better than glucagon to the glucagon receptor, and on the potent glucagon antagonist [D-Phe4,Tyr5,Arg12]glucagon, which does not stimulate adenylate cyclase system even at very high concentrations. The N-terminal modifications involved substitution of His1 by the unnatural conformationally constrained residue, 4,5,6,7-tetrahydro-1H-imidazo[c]pyridine-6-carboxylic acid (Tip) and by desaminohistidine (dHis). In addition we prepared two analogues (6 and 7), in which we deleted the Phe6 residue, which was suggested to be part of a hydrophobic patch and involved in receptor binding. The following compounds were synthesized: [Tip1, Lys17,18,Glu21]glucagon (2); [Tip1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (3); [dHis1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (4); [dHis1,Asp3,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21+ ++]glucagon (5); des-Phe6-[Tip1,D-Phe4,Tyr5,Arg12,Glu21]glucagon (6); des-Phe6-[Asp3,D-Phe4,Tyr5,Arg12,Glu21]glucagon (7). The binding potencies of these new analogues relative to glucagon (= 100) are 3.2 (2), 2.9 (3), 10.0 (4), 1.0 (5), 8.5 (6), and 1.7 (7). Analogue 2 is a partial agonist (maximum stimulation of adenylate cyclase (AC) approximately 15% and a potency 8.9% that of glucagon, while the remaining compounds 3-7 are antagonists unable to activate the AC system even at concentrations as high as 10(-5) M. In addition, in competition experiments, analogues 3-7 caused a right-shift of the glucagon stimulated adenylate cyclase dose-response curve.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In an effort to find analogs of glucagon that would bind to the glucagon receptor of the rat liver membrane but would not activate membrane-bound adenyl cyclase, several hybrid molecules were synthesized which contained sequences from both glucagon and secretin. [Asp3, Glu9]Glucagon and [Asp3, Glu9, Arg12]glucagon were inactive in the adenyl cyclase assay even at high concentrations but retained some binding affinity for the receptor. They were able to displace 125I-glucagon completely from its receptor and could completely inhibit the activation of adenyl cyclase by natural or synthetic glucagon. The inhibition index [I/A]50 was approximately 110 for both analogs. [Asp3]Glucagon, [Glu3]glucagon and [Asp3, Lys17, 18, Glu21]glucagon were weak partial agonists, while [Asp3, Glu21]glucagon was inactive and a poor inhibitor. The peptides were synthesized by solid-phase methods and purified to homogeneity by reverse-phase high-performance liquid chromatography on C18 silica columns. These are the first fully synthetic competitive glucagon antagonists to be reported.  相似文献   

9.
Iodohydroxybenzylpindolol (I-HYP) is a chemically defined, high affinity, high specific activity beta-adrenergic antagonist that interacts with a single site on the turkey erythrocyte membrane. Study of the interaction of agonists, antagonists, and congeners with this site and concomitant alterations in adenylate cyclase activity have been carried out in the presence of high or low concentrations of guanine nucleotide. The results help clarify the relationship between binding and activation or inhibition of adenylate cyclase and the role of guanine nucleotides in modulating this interaction. There is a close correlation between binding constants (KD) for inhibitors determined by analysis of competitive displacement of 125I-HYP from receptor, and apparent affinities (Ki) for inhibition of adenylate cyclase. For activators, however, there is up to a 10-fold difference between KD and apparent affinity (KDapp) for adenylate cyclase activation at low guanine nucleotide concentration (10(-6) M guanylylimidodiphosphate). This difference is virtually abolished by employing higher nucleotide concentrations (10(-5) M guanylylimidodiphosphate) without significantly altering receptor affinity. This suggests that guanine nucleotides act by modulating receptor-enzyme interactions rather than hormone-receptor interactions. Moreover, several beta-adrenergic analogs previously shown to have no effect on adenylate cyclase in the absence of nucleotide, are partial agonists in the presence of 10(-5) M guanylylimidodiphosphate. Parallel analyses for a series of agonists and antagonists for adenylate cyclase activation and receptor interaction show affinities for levorotatory isomers generally 100-fold greater than for dextrorotatory isomers. Thus stereoconfiguration at the beta carbon clearly influences affinity of agonists or antagonists. Affinity is also importantly influenced by the nature of the aromatic ring as well as the N-alkyl group. The complexity of structure-function relationships for these compounds requires a redefinition of structural requirements for beta-adrenergic activity.  相似文献   

10.
Rat liver and heart membranes were tested for adenylate cyclase activation by glucagon and 10 glucagon analogs mono- or polysubstituted in positions 2-4, 25, 27 and/or 29. The first membranes were, in addition, examined for the capacity of glucagon analogs to inhibit the binding of [125I]iodoglucagon. The monophasic slope of dose-effect curves suggested interaction with one class of glucagon receptors in both tissues, receptors in liver being more sensitive to the ligands and more efficiently coupled to adenylate cyclase than heart receptors. Structure-activity studies on liver membranes revealed that modifications of the beta-turn potential in the 2-4 region by single residue substitutions could lead to partial agonists (with D-Gln3 or Phe4) or to a superagonist (with D-Phe4). The importance of a proper alpha-helix conformation in the C-terminal part of glucagon for binding affinity was also obvious: replacing Trp25, Met27 and Thr29 in combination by Phe25, Leu27 and Thr29-NH2 increased the affinity while single or combined substitutions with Gly25 and/or Nle27 sharply decreased the affinity. Similar trends were less evident but still obvious on heart membranes.  相似文献   

11.
B Gysin  D Trivedi  D G Johnson  V J Hruby 《Biochemistry》1986,25(25):8278-8284
The hyperglycemia and ketosis of diabetes mellitus are generally associated with elevated levels of glucagon in the blood. This suggests that glucagon is a contributing factor in the metabolic abnormalities of diabetes mellitus. A glucagon-receptor antagonist might provide important evidence for glucagons's role in this disease. In this work we describe how we combined structural modifications that led to glucagon analogues with partial agonist activity to give glucagon analogues that can act as competitive antagonists of glucagon-stimulated adenylate cyclase activity. Using solid-phase synthesis methodology and preparative reverse-phase high-performance liquid chromatography, we synthesized the following seven glucagon analogues and obtained them in high purity: [D-Phe4,Tyr5,Arg12]glucagon (2); [D-Phe4,Tyr5,Lys17,18]glucagon (3); [Phe1,Glu3,Lys17,18]glucagon (4); [Glu3,Val5,Lys17,18]glucagon (5); [Asp3,D-Phe4,Ser5,Lys17,18]glucagon (6); I4-[Asp3,D-Phe4,Ser5,Lys17,18]glucagon (7); [Pro3]glucagon (8). Purity was assessed by enzymatic total hydrolysis, by chymotryptic peptide mapping, and by reverse-phase high-performance liquid chromatography. The new analogues were tested for specific binding, for their effect on the adenylate cyclase activity in rat liver membranes, and for their effect on the blood glucose levels in normal rats relative to glucagon. Analogues showing no adenylate cyclase activity were examined for their ability to act as antagonists by displacing glucagon-stimulated adenylate cyclase dose-response curves to the right (higher concentrations). The binding potencies of the new analogues relative to glucagon (= 100) were respectively 1.0 (2), 1.3 (3), 3.8 (4), 0.4 (5), 1.3 (6), 5.3 (7), and 3 (8). Glucagon analogues 3-5 and 8 were all weak partial agonists with EC50 values of 500 (3), 250 (4), 1600 (5), and 395 nM (8), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
BACKGROUND: Glucagon is a 29-residue peptide produced in the alpha cells of the pancreas that interacts with hepatic receptors to stimulate glucose production and release, via a cAMP-mediated pathway. Type 2 diabetes patients may have an excess of glucagon and, as such, glucagon antagonists might serve as diabetes drugs. The antagonists that bind to the glucagon receptor but do not exhibit activity could be analogs of glucagon. The presence of salt bridges between some residues of glucagons (such as aspartic acid) and others (such as lysine) might influence both the binding to the receptor and the activity. MATERIALS AND METHODS: Experimental-The solid phase method with 4-methylbenzilhydrilamine resin (p-MBHA resin) was used for the synthesis of glucagon analogs. Rat liver membranes were prepared from male Sprague-Dawley rats by the Neville procedure. The receptor binding essay was performed in 1% BSA, 1 mM dithiothreitol, 25 mM Tris-HCl buffer, pH 7.2. Adenyl cyclase activity was measured in an assay medium containing 1% serum albumin, 25 mM MgCl2, 2 mM dithiothreitol, 0.025 mM GTP, 5 mM ATP, 0.9 mM theophylline, 17.2 mM creatine phosphate, and 1 mg/ml creatine phosphokinase. Theoretical-Quantum chemical calculations using the Titan program with the 6-31G* basis set were performed to calculate the binding energies of salt bridges between aspartic or glutamic acids and lysine. The relative stability of cyclic conformations of glucagon segments versus the extended segments was determined. RESULTS: It was found that the cyclic Glu9-Lys12 amide compound displayed a 20-fold decrease in binding affinity. DesHis1 cyclic compounds Glu20-Lys24 amide and DesHis1Glu9 Glu20-Lys24 amide behave as glucagon antagonists. The calculations show that cyclic conformations of tetrapeptidic and pentapeptidic segments of glucagon are more stable than the extended species. CONCLUSIONS: The biological data and the theoretical calculations show that an intramolecular salt bridge might impart stability to some glucagon antagonists and, when situated at the C-terminus of glucagon, might facilitate induction of an alpha-helix upon initial hormone association with the membrane bilayer. These findings might be a useful tool for the design of new glucagon antagonists.  相似文献   

13.
The initial goal of this study was to analyze, using photolabeling, the interactions between Substance P and its tachykinin NK-1 receptor. Therefore, the photoreactive amino acid para-benzoyl-phenylalanine (pBzl)Phe was incorporated into the Substance P sequence from position 4 to 11 leading to Bapa0[(pBzl)Phex]SP analogs. Biotinyl sulfone-5-aminopentanoic acid (Bapa) was introduced in order to purify the covalent complex. These photoreactive SP analogs were first assayed for their affinity for the two binding sites associated with the NK-1 receptor, as well as for their potency in activating the phospholipase C and adenylate cyclase pathways. All analogs photoreactive from position 4 to 11 have moderate to high affinity for the two NK-1 receptor-binding sites, except for the analog modified at position 7. This affinity could be correlated to their potency to activate the phospholipase C and adenylate cyclase pathways, except for the analog photoreactive at position 11. Bapa0[(pBzl)Phe11]SP was found to be an agonist in the phospholipase C pathway and an antagonist in the adenylate cyclase pathway, other analogs modified at position 11 were therefore analyzed. Among these, Bapa0[Pro9, (pBzl)Hcy(O2)11]SP is a partial agonist, whereas Bapa0[Hcy(ethylaminodansyl)11]SP is a full agonist in the phospholipase C pathway, the two analogs being antagonist in the adenylate cyclase pathway. These results show that analogs of SP can be simultaneously agonist at one binding site and antagonist at the other binding site associated with the NK-1 receptor.  相似文献   

14.
Six new analogs of glucagon have been synthesized containing replacements at positions 19, 22, and 23. They were designed to study the correlation between predicted conformation in the 19-27 segment of the hormone and the conformation calculated from circular dichroism measurements and the observed activation of adenylate cyclase in the liver membrane. The analogs were [Val19]glucagon, [Val22]glucagon, [Glu23]glucagon, [Val19,Glu23]glucagon, [Glu22,Glu23]glucagon, and [Ala22,Ala23]glucagon. The structures predicted for the 19-27 segment ranged from strongly alpha helical to weakly beta sheet. The observed conformations varied as functions of amino acid composition, solvent, concentration, pH, and temperature but did not correlate well with prediction. There was, however, a correlation between predicted structure and activation of adenylate cyclase in rat liver membranes.  相似文献   

15.
We examined the functional role of glycine at position 4 in the potent glucagon antagonist [desHis(1), Glu(9)]glucagon amide, by substituting the L- and D-enantiomers of alanine and leucine for Gly(4) in this antagonist. The methyl and isobutyl side-chain substituents were introduced to evaluate the preference shown by the glucagon receptor, if any, for the orientation of the N-terminal residues. The L-amino acids demonstrated only slightly better receptor recognition than the D-enantiomers. These results suggest that the Gly(4) residue in glucagon antagonists may be exposed to the outside of the receptor. The enhanced binding affinities of analogs 1 and 3 compared with the parent antagonist, [desHis(1), Glu(9)]glucagon amide, may have resulted from the strengthened hydrophobic patch in the N-terminal region and/or the increased propensity for a helical conformation due to the replacement of alanine and leucine for glycine. Thus, as a result of the increased receptor binding affinities, antagonist activities of analogs 1-4 were increased 10-fold compared with the parent antagonist, [desHis(1), Glu(9)]glucagon amide. These potent glucagon antagonists have among the highest pA(2) values of any glucagon analogs reported to date.  相似文献   

16.
The synthetic glucagon analogues [Glu21]glucagon, 2, and [Lys17,18,Glu21]glucagon, 3, were designed using Chou-Fasman calculations for the purpose of enhancing the probability for the formation of a C-terminal amphipathic alpha-helical conformation. Circular dichroism indicates increased alpha-helical content for these analogues in solution relative to glucagon. Analogues 2 and 3 also exhibit a 3-fold and 5-fold increase in receptor binding potency, respectively. The adenylate cyclase stimulating potencies of 2 and 3 relative to glucagon are 2.1 and 7 times greater, respectively. Attempts were made at further alpha-helical enhancement by further substitutions in the 10-13 region of glucagon, as represented by the glucagon analogues [Phe13,Lys17,18 Glu21]glucagon, 4, and [Phe10,13,Lys17,18,Glu21]glucagon, 5. These latter substitutions resulted in lowered receptor binding and adenylate cyclase potencies for 4 and 5 relative to 3 despite increased alpha-helical content in solution as observed by circular dichroism spectroscopy.  相似文献   

17.
Glucagon and 11 glucagon derivatives were characterized and compared with respect to the cooperativity of their receptor interactions and their ability to elicit a biphasic (activation-inhibition) response from the adenylate cyclase system of rat liver plasma membranes. Slope factors were evaluated from two sets of experimental data, binding to hepatocyte receptors and activation of adenylate cyclase. The results are consistent with noncooperative binding to a single affinity state of the glucagon receptor for all derivatives, irrespective of the modification and the agonist properties of the derivatives. High-dose inhibition of adenylate cyclase activity was observed for native glucagon and all of the derivatives which were examined at high concentrations (greater than 10(-5) M). Partial agonism of some low-affinity glucagon derivatives is not caused by high-dose inhibition. Several mechanisms which might give rise to high-dose inhibition such as receptor cross-linking or multivalent receptor binding are discussed in relationship to the glucagon-receptor interaction. These phenomena indicate that significant differences exist between the glucagon system and the beta-adrenergic system.  相似文献   

18.
In this study, we determined the ability of four N-terminally modified derivatives of glucagon, [3-Me-His1,Arg12]-, [Phe1,Arg12]-, [D-Ala4,Arg12]-, and [D-Phe4]glucagon, to compete with 125I-glucagon for binding sites specific for glucagon in hepatic plasma membranes and to activate the hepatic adenylate cyclase system, the second step involved in producing many of the physiological effects of glucagon. Relative to the native hormone, [3-Me-His1,Arg12]glucagon binds approximately twofold greater to hepatic plasma membranes but is fivefold less potent in the adenylate cyclase assay. [Phe1,Arg12]glucagon binds threefold weaker and is also approximately fivefold less potent in adenylate cyclase activity. In addition, both analogues are partial agonists with respect to adenylate cyclase. These results support the critical role of the N-terminal histidine residue in eliciting maximal transduction of the hormonal message. [D-Ala4,Arg12]glucagon and [D-Phe4]glucagon, analogues designed to examine the possible importance of a beta-bend conformation in the N-terminal region of glucagon for binding and biological activities, have binding potencies relative to glucagon of 31% and 69%, respectively. [D-Ala4,Arg12]glucagon is a partial agonist in the adenylate cyclase assay system having a fourfold reduction in potency, while the [D-Phe4] derivative is a full agonist essentially equipotent with the native hormone. These results do not necessarily support the role of an N-terminal beta-bend in glucagon receptor recognition. With respect to in vivo glycogenolysis activities, all of the analogues have previously been reported to be full agonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Vasoactive intestinal polypeptide (VIP), a peptide hormone that is chemically and biologically related to glucagon and secretin, stimulates the activity of adenylate cyclase in liver and fat cell membranes. Effects of combinations of VIP with glucagon and secretin at concentrations that maximally activate adenylate cyclase suggest that in adipose tissue, the three hormones act on the same enzyme, whereas in liver, VIP and secretin activate a common enzyme that is distinct from that responding to glucagon. Studies with radioiodinated derivatives of VIP and glucagon indicate that these hormones interact with separate receptors. Secretin, which gives a maximal stimulation of adenylate cyclase activity virtually identical to that elicited by VIP, inhibits the binding of the latter to its receptor. However, the apparent affinity of secretin for adenylate cyclase and for the VIP receptor is about two order of magnitude lower than that of VIP. It is suggested that VIP and secretin may activate adenylate cyclase via a common receptor.  相似文献   

20.
Several analogs of caffeine have been investigated as antagonists at A2 adenosine receptors stimulatory to adenylate cyclase in membranes from rat pheochromocytoma PC12 cells and human platelets and at A1 adenosine receptors inhibitory to adenylate cyclase from rat fat cells. Among these analogs, 1-propargyl-3,7-dimethylxanthine was about 4- to 7-fold and 7-propyl-1,3-dimethylxanthine about 3- to 4-fold more potent than caffeine at A2 receptors of PC12 cells and platelets. At A1 receptors of fat cells, both compounds were about 2-fold less potent than caffeine. These caffeine analogs have an A1/A2 selectivity ratio of about 10-20 and are the first selective A2 receptor antagonists yet reported. The results may provide the basis for the further development of highly potent and highly selective A2 adenosine receptor antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号