首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
高等植物花器官的特异性基因   总被引:3,自引:0,他引:3  
顾红雅  陈章良 《植物生理学通讯》1993,29(5):393-400,F004
生殖过程是高等植物生活史中最重要的阶段,它不能仅被看作是一个精子与卵细胞结合的简单过程。实际上它包括雌雄配子体的发育、雄配子体与雌配子体的识别及相互作用、精子与卵细胞的识别及相互作用等一系列复杂的生理生化变化。对于被子植物来说,还存在着双受精这样一个更为复杂的过程。因此,作为这一生理过程的主要执行器官,花器官的生长发育就格外受到生物学家们的重视。早期对于花器官的研究主要集中  相似文献   

2.
蕨类植物性别分化对环境的响应   总被引:3,自引:1,他引:2  
宋莹莹  高晶  戴绍军 《生态学报》2009,29(9):5030-5038
蕨类植物是维管植物中唯一的孢子体和配子体都能独立生活的类群.同型孢子蕨类配子体的性别分化受到激素和环境因子的影响.生理学研究表明,成精子囊素与赤霉素能诱导雄配子体发育,抑制雌配子体发育;脱落酸阻止成精子囊素诱导的精子器形成;乙烯合成前体ACC促进赤霉素诱导的精子器形成,而乙烯合成抑制因子AOA通过抑制细胞分化来抑制精子器形成.光照对不同种类蕨类配子体分化的影响存在差异.糖类能够促进雄配子体形成,并可加速成熟雌配子体向两性分化.钙离子、钴离子和甲硫氨酸等分别参与了蓝光和赤霉素对配子体性别分化的调控过程.培养密度影响配子体生长及性别表达,高密度下雄性和无性配子体居多,而低密度下两性和雌性配子体居多.近年来的突变体表型分析与分子生物学研究表明,成精子囊素通过影响ANI1、HER、TRA、FEM和MAN等基因的表达调控配子体性别分化.综述了蕨类植物性别分化对环境响应的研究进展.  相似文献   

3.
《遗传》2011,(11):1257
植物从水生向陆生进化过程中,精细胞丧失了运动能力,需要依靠花粉管把它递送到雌配子体--胚囊中与卵子融合,完成受精。花粉管导向是一个精确调控的雌-雄配子体细胞相互识别的过程。胚囊释放吸引信号,花粉管接收信号  相似文献   

4.
以‘拉宾斯’、‘艳阳’、‘马哈利CDR-1’为材料,对其自花授粉坐果率进行统计分析。用石蜡切片技术对拉宾斯雌雄配子体发育过程进行解剖观察。结果表明:(1)‘拉宾斯’自花授粉坐果率明显低于‘艳阳’和‘马哈利CDR-1’。(2) 拉宾斯从小孢子母细胞形成至成熟花粉的各发育阶段均观察到小孢子退化、花粉囊中的花粉干瘪、出现空腔。花粉成熟阶段部分花药绒毡层细胞不发生退化,花粉难以散出,造成雄性败育。(3)雌配子体在大孢子母细胞发育阶段出现大孢子发育不良或不能形成等异常发育雌配子体败育类型。(4)雄配子体在3月1日左右开始发育,3月14日左右趋近成熟;雌配子体则发育相对较晚,3月12日左右开始发育,3月25日左右趋近成熟。研究表明,‘拉宾斯’雌、雄配子体在其形成发育过程中的各种异常使其不能正常受精并且雌雄配子体发育不同步,最终导致坐果量低下。  相似文献   

5.
该研究运用常规石蜡切片技术,对大花君子兰(Clivia miniata Regel)大、小孢子发生及雌、雄配子体发育进程进行解剖学观察分析,以探讨君子兰生殖生物学解剖特征,为君子兰种子发育和育种提供理论依据。结果表明:(1)大花君子兰花药4室,具分泌型绒毡层。(2)小孢子母细胞减数分裂的胞质分裂为连续型,小孢子四分体为左右对称型,成熟花粉为二细胞型。(3)倒生胚珠,双珠被,厚珠心和雌配子体发育为蓼型。(4)记录了雌雄配子体发育的对应关系,发现雄配子体发育趋于同步,雌配子体发育不同步。(5)开花散粉时,雌配子体尚有处于四核、八核胚囊的时期;成熟胚囊阶段,中央细胞的2个极核位于反足细胞端,反足细胞呈退化状态。具承珠盘结构。  相似文献   

6.
从广义上讲,被子植物的受精过程是指花粉粒落到柱头上萌发形成花粉管,花粉管穿过柱头沿着引导组织生长进入子房内,最终在胚囊中实现精细胞与卵细胞以及中央细胞分别融合从而起始胚胎和胚乳的发育.被子植物的精细胞由于不具有鞭毛而无法自由移动,因此在受精过程中需要借助于花粉管来将精细胞运送到胚囊中.花粉管通过与雌性的孢子体组织之间的相互作用和识别将精细胞准确地运送到胚珠附近,而最终将精细胞准确地运送到胚囊内的过程则是受到了雌配子体细胞的控制.可以说,受精的成功实现有赖于雌性和雄性细胞之间的持续的识别和相互作用,这种互作具有多样性和阶段特异性.本文将主要综述被子植物受精过程中花粉粒以及花粉管与多种雌性孢子体组织以及雌配子体之间的信号互作研究.  相似文献   

7.
银杏雌配子体的发育和受精作用的研究现状   总被引:3,自引:3,他引:0  
银杏的生殖过程,自发现银杏的游动精子以来,已有大量报道。但由于银杏雌配子体发育周期长(4月-9月),受精过程又非常短暂,有关雌配子体发育及受精过程的研究报道较少。本文参考已有文献资料,并结合自己的研究,对银杏大孢子发生、雌配子体形成、颈卵器发育及受精作用的研究现状进行了综述,对尚存在的问题特别是精细胞中液泡状结构的特点及细胞核中DNA的存在状况、受精时精子如何进入雌配子体的颈卵器与卵核结合等进行了初步探讨,以期为今后此方面的研究提供参考。  相似文献   

8.
花是有花植物(被子植物)的有性生殖器官。在雄蕊的花药中产生雄配子体,通常称花粉;在雌蕊子房内的胚珠中发育雌配子体,通常称胚囊。在花粉或花粉管中形成的一对精细胞分别与胚囊中的卵和中央细胞受精,由此产生胚和胚乳。随着胚和胚乳的发育,整个胚珠发育为种子。这是被子植物有性生殖的一般过程。  相似文献   

9.
花是有花植物(被子植物)的有性生殖器官。在雄蕊的花药中产生雄配子体,通常称花粉;在雌蕊子房内的胚珠中发育雌配子体,通常称胚囊。在花粉或花粉管中形成的一对精细胞分别与胚囊中的卵和中央细胞受精,由此产生胚和胚乳。随着胚和胚乳的发育,整个胚珠发育为种子。这是被子植物有性生殖的一般过程。  相似文献   

10.
彭雄波  孙蒙祥 《植物学报》2016,51(2):145-147
阐明植物雄配子体与雌配子体互作的分子机理一直是植物有性生殖研究的前沿和热点。但限于研究难度较大, 很多重要科学问题仍有待回答。关于花粉管如何感知雌配子体信号从而定向生长进入胚囊以投送精细胞就是悬疑多年的问题之一。最近, 中国科学家在解析雄配子体感知雌配子体引导信号的分子机制方面取得了突破性进展。  相似文献   

11.
Sexual reproduction in plants, unlike that of animals, requires the action of multicellular haploid gametophytes. The male gametophyte (pollen tube) is guided to a female gametophyte through diploid sporophytic cells in the pistil. While interactions between the pollen tube and diploid cells have been described, little is known about the intercellular recognition systems between the pollen tube and the female gametophyte. In particular, the mechanisms that enable only one pollen tube to interact with each female gametophyte, thereby preventing polysperm, are not understood. We isolated female gametophyte mutants named magatama (maa) from Arabidopsis thaliana by screening for siliques containing half the normal number of mature seeds. In maa1 and maa3 mutants, in which the development of the female gametophyte was delayed, pollen tube guidance was affected. Pollen tubes were directed to mutant female gametophytes, but they lost their way just before entering the micropyle and elongated in random directions. Moreover, the mutant female gametophytes attracted two pollen tubes at a high frequency. To explain the interaction between gametophytes, we propose a monogamy model in which a female gametophyte emits two attractants and prevents polyspermy. This prevention process by the female gametophyte could increase a plant's inclusive fitness by facilitating the fertilization of sibling female gametophytes. In addition, repulsion between pollen tubes might help prevent polyspermy. The reproductive isolations observed in interspecific crosses in Brassicaceae are also consistent with the monogamy model.  相似文献   

12.
In eukaryotes, fertilization relies on complex and specialized mechanisms that achieve the precise delivery of the male gamete to the female gamete and their subsequent union [1-4]. In flowering plants, the haploid male gametophyte or pollen tube (PT) [5] carries two nonmotile sperm cells to the female gametophyte (FG) or embryo sac [6] during a long assisted journey through the maternal tissues [7-10]. In Arabidopsis, typically one PT reaches one of the two synergids of the FG (Figure 1A), where it terminates its growth and delivers the sperm cells, a poorly understood process called pollen-tube reception. Here, we report the isolation and characterization of the Arabidopsis mutant abstinence by mutual consent (amc). Interestingly, pollen-tube reception is impaired only when an amc pollen tube reaches an amc female gametophyte, resulting in pollen-tube overgrowth and completely preventing sperm discharge and the development of homozygous mutants. Moreover, we show that AMC is strongly and transiently expressed in both male and female gametophytes during fertilization and that AMC functions in gametophytes as a peroxin essential for protein import into peroxisomes. These findings show that peroxisomes play an unexpected key role in gametophyte recognition and implicate a diffusible signal emanating from either gametophyte that is required for pollen-tube discharge.  相似文献   

13.
本试验结果表明,雌雄配子体形成过程和程序与前人结论相一致,但发现:1)尽管雌雄蕊同时形成,但在雌雄配子形成不同步的情况下,花粉和胚囊中的大量淀粉却能同时充实,并且同时成熟等待受精。2)大孢子母细胞形成比小孢子母细胞迟0.7~0.8片展叶;雌配子体形成比雄配子体迟0.5~0.6片展叶。3)雌雄两性细胞发育特点不同,雄性是小孢子形成快而花粉粒发育慢,雌性是大孢子形成慢而胚囊发育快,为此在所用时间上,花粉粒发育约是小孢子形成的1.6倍,是胚囊发育的2.3倍,而大孢子形成约是胚囊发育的2.2倍,约是小孢子形成的1.4倍。  相似文献   

14.
The differentiation and development of ovules in orchid flowers are pollination dependent. To define the developmental signals and timing of critical events associated with ovule differentiation, we have examined factors that regulate the initial events in megasporogenesis and female gametophyte development and characterized its progression toward maturity and fertilization. Two days after pollination, ovary wall epidermal cells begin to elongate and form hair cells; this is the earliest visible morphological change, and it occurs at least 3 days prior to pollen germination, indicating that signals associated with pollination itself trigger these early events. The effects of inhibitors of ethylene biosynthesis on early morphological changes indicated that ethylene, in the presence of auxin, is required to initiate ovary development and, indirectly, subsequent ovule differentiation. Surprisingly, pollen germination and growth were also strongly inhibited by inhibitors of ethylene biosynthesis, indicating that male gametophyte development is also regulated by ethylene. Detailed characterization of the development of both the female and male gametophyte in pollinated orchid flowers indicated that pollen tubes entered the ovary and grew along the ovary wall for 10 to 35 days, at which time growth was arrested. Approximately 40 days after pollination, coincident with ovule differentiation as indicated by the presence of a single archesporial cell, the direction of pollen tube growth became redirected toward the ovule, suggesting a chemical signaling between the developing ovule and male gametophyte. Taken together, these results indicate that both auxin and ethylene contribute to the regulation of both ovary and ovule development and to the coordination of development of male and female gametophytes.  相似文献   

15.
16.
The mature male gametophyte of Ginkgo biloba can be divided into two regions: a large saccate structure that is suspended within the fertilization chamber above the archegonia, and a pervasive, highly branched haustorial system that ramifies through the intercellular air spaces of the apex of the nucellus. This morphology appears to differ in many ways from the simpler more typical male gametophytes of most other groups of seed plants. Growth and development of the male gametophyte of Ginkgo biloba were studied using computer reconstruction techniques to generate images of the gametophyte from data derived from serial sections through the ovule. These investigations reveal that morphological development of the male gametophyte of Ginkgo biloba is divided into three distinct phases: 1) Germination, characterized by an initial brief period of diffuse growth. This phenomenon has not been described for any other seed plant male gametophyte; 2) Initiation of tip growth and the formation of a tubular body, as typifies all seed plant male gametophytes. In Ginkgo, this is accompanied by a high degree of branching, giving rise to an extensively branched haustorial system; 3) Late swelling of the proximal unbranched portion of the gametophyte resulting in formation of the saccate structure that is characteristic of the mature gametophyte. This process appears to be very similar to late development in cycad male gametophytes. Thus, despite the seemingly anomalous morphology of the mature male gametophyte of Ginkgo biloba, specific patterns of growth and development are in many ways similar to growth processes expressed by the male gametophytes of some or all major groups of seed plants.  相似文献   

17.
Ingouff M  Jullien PE  Berger F 《The Plant cell》2006,18(12):3491-3501
Double fertilization of the female gametophyte produces the endosperm and the embryo enclosed in the maternal seed coat. Proper seed communication necessitates exchanges of signals between the zygotic and maternal components of the seed. However, the nature of these interactions remains largely unknown. We show that double fertilization of the Arabidopsis thaliana female gametophyte rapidly triggers sustained cell proliferation in the seed coat. Cell proliferation and differentiation of the seed coat occur in autonomous seeds produced in the absence of fertilization of the multicopy suppressor of ira1 (msi1) mutant. As msi1 autonomous seeds mostly contain autonomous endosperm, our results indicate that the developing endosperm is sufficient to enhance cell proliferation and differentiation in the seed coat. We analyze the effect of autonomous proliferation in the retinoblastoma-related1 (rbr1) female gametophyte on seed coat development. In contrast with msi1, supernumerary nuclei in rbr1 female gametophytes originate mainly from the endosperm precursor lineage but do not express an endosperm fate marker. In addition, defects of the rbr1 female gametophyte also reduce cell proliferation in the ovule integuments before fertilization and prevent further differentiation of the seed coat. Our data suggest that coordinated development of the seed components relies on interactions before fertilization between the female gametophyte and the surrounding maternal ovule integuments and after fertilization between the endosperm and the seed coat.  相似文献   

18.
The monosporic seven-celled/eight-nucleate Polygonum-type female gametophyte has long served as a focal point for discussion of the origin and subsequent evolution of the angiosperm female gametophyte. In Polygonum-type female gametophytes, two haploid female nuclei are incorporated into the central cell, and fusion of a sperm cell with the binucleate central cell produces a triploid endosperm with a complement of two maternal and one paternal genomes, characteristic of most angiosperms. We document the development of a four-celled/four-nucleate female gametophyte in Nuphar polysepala (Engelm.) and infer its presence in many other ancient lineages of angiosperms. The central cell of the female gametophyte in these taxa contains only one haploid nucleus; thus endosperm is diploid and has a ratio of one maternal to one paternal genome. Based on comparisons among flowering plants, we conclude that the angiosperm female gametophyte is constructed of modular developmental subunits. Each module is characterized by a common developmental pattern: (1) positioning of a single nucleus within a cytoplasmic domain (pole) of the female gametophyte; (2) two free-nuclear mitoses to yield four nuclei within that domain; and (3) partitioning of three uninucleate cells adjacent to the pole such that the fourth nucleus is confined to the central region of the female gametophyte (central cell). Within the basal angiosperm lineages Nymphaeales and Illiciales, female gametophytes are characterized by a single developmental module that produces a four-celled/four-nucleate structure with a haploid uninucleate central cell. A second pattern, typical of Amborella and the overwhelming majority of eumagnoliids, monocots, and eudicots, involves the early establishment of two developmental modules that produce a seven-celled/eight-nucleate female gametophyte with two haploid nuclei in the central cell. Comparative analysis of ontogenetic sequences suggests that the seven-celled female gametophyte (two modules) evolved by duplication and ectopic expression of an ancestral Nuphar-like developmental module within the chalazal domain of the female gametophyte. These analyses indicate that the first angiosperm female gametophytes were composed of a single developmental module, which upon double fertilization yielded a diploid endosperm. Early in angiosperm history this basic module was duplicated, and resulted in a seven-celled/eight-nucleate female gametophyte, which yielded a triploid endosperm with the characteristic 2:1 maternal to paternal genome ratio.  相似文献   

19.
Double fertilization in flowering seed plants requires intercellular signaling events between many interacting partners. The four cell types of the seven-celled female gametophyte communicate with each other to establish and maintain their identity. They secrete signaling molecules to guide the male gametophyte and to mediate sperm cell discharge and transport towards the two female gametes (the egg and central cell). After fusion of the gametes, guidance signals have to be removed to prevent polyspermy, embryo and endosperm development is induced generating daughter cells or nuclear regions of a different fate, and cell death is induced in the surrounding ovular cells. Until recently, little was known about the molecular nature of the signaling molecules that are involved in these processes. Now, small secreted proteins and peptides have been identified as prime candidates mediating several of these communication events.  相似文献   

20.
In angiosperms, the sperm cells are carried within the pollen tubes (male gametophytes) to the female gametophyte so that double fertilization can occur. The female gametophyte exerts control over the male, with specialized cells known as synergids guiding the pollen tubes and controlling their behavior when they enter the female gametophyte so that the sperm cells can be delivered to the egg and central cell. Upon pollen tube arrival at the ovule, signal transduction cascades mediated by receptor-like kinases are initiated in both the synergid and the tip of the pollen tube, leading to synergid cell death and pollen tube rupture. In this review, we discuss the role of these receptors and of newly discovered members of the pollen tube reception pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号