首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
阿拉伯半乳糖蛋白(arabinogalactan proteins,AGPs)是一类富含羟脯氨酸/脯氨酸的高度糖基化的蛋白分子,在高等植物的细胞壁、质膜和胞外基质中广泛存在。AGPs是一类重要的糖蛋白,它在被子植物营养生长和生殖发育的各个环节都可能发挥作用,涉及体细胞胚胎发生、细胞增殖、细胞膨大、细胞程序性死亡、损伤防御、根形态建成、花粉管生长以及植物激素信号传导等。植物结构基因组学及功能基因组学的快速发展,使得人们对AGPs的表达模式和功能特点有了更深入的认识。本文首先就AGPs的分子结构和分类,然后重点就利用基因组序列信息分析以及正、反向遗传学等手段进行的AGPs在植物营养生长、生殖发育、细胞程序性死亡,以及分子互作和信号传导等方面的作用的研究进行了综述。  相似文献   

2.
目的:从绿茶中分离纯化阿拉伯半乳糖蛋白(AGPs),对其肝脏靶向性进行初步研究.方法:将脱色后的绿茶粉末在80 7℃加水(1:20,w/v)浸提1.5 h,获得的上清浓缩后用乙醇沉淀,收集重新溶解后在离子交换色谱Q Sepharose Fast Flow柱(20 mm×60cm)和Sephadex G100柱(16mm×60cm)纯化,收集主要含糖组分,冷冻干燥后获得绿茶AGPs,对其进行单糖组成、氨基酸组成、蛋白含量、糖醛酸含量分析.分别以200、400和800 mg/kg.d 3种剂量的绿茶AGPs灌胃昆明小鼠,2周后处死.取肝脏测定湿重和肝糖元含量.结果:分离纯化获得的绿茶AGPs分子量约为100kDa,是一种主要单糖组成为阿拉伯糖和半乳糖、舍有一定量糖醛酸、蛋白含量低于10%的水溶性糖蛋白.初步研究发现绿茶AGPs与其它来源的AGPs一样具有肝脏靶向性.结论:绿茶AGPs的安全性和肝脏靶向性使其在药品输送上具有良好的应用前景.  相似文献   

3.
阿拉伯半乳糖蛋白在被子植物有性生殖中的作用   总被引:3,自引:0,他引:3  
阿拉伯半乳糖蛋白(arabinogalactan-proteins,AGPs)是一类主要分布在细胞表面和胞外基质中的糖蛋白.它们在植物的雄性器官(花粉、花粉管、精细胞)、雌性器官(柱头、花柱、子房)和胚胎(合子胚和体细胞胚)等组织和细胞中均有大量的表达.大量研究表明AGPs在被子植物有性生殖过程中起着非常重要的作用,既可能参与花粉管粘附、营养、传导或提供信号的作用,也可能参与受精过程中配子识别和受精后胚胎的发育与分化等过程.该文就其分子结构、特性以及在植物有性生殖过程中各种器官和组织内的表达和功能研究进展做了较为全面的概述.  相似文献   

4.
烟草柱头和花柱中阿拉伯半乳糖蛋白的定位   总被引:2,自引:0,他引:2  
通过Western印迹法、免疫组织化学和超微细胞化学等技术,研究了烟草柱头和花柱中阿拉伯半乳糖蛋白(arabinogalactan-proteins,AGPs)的分布。结果表明烟草柱头和花柱组织中含有大量的AGPs,主要分布于柱头表皮细胞的细胞质和分泌层细胞的胞外基质中,且授粉前后AGPs的分布情况差异不明显;而花柱中的AGPs主要分布于表皮细胞的外层细胞壁、维管组织周围细胞的细胞质及引导组织的胞外基质中;花粉管通过后,引导组织胞外基质中AGPs减少,而花粉管细胞质和花粉管壁中检测到大量AGPs。  相似文献   

5.
植物抗早基因工程研究进展   总被引:23,自引:1,他引:22  
从植物抗虫基因工程的研究历史出发,论述了第一代抗虫基因、第二代抗虫基因,重点介绍了B.t.杀虫晶体蛋白基因、胆固醇氧化酶基因和营养杀虫蛋白基因,并对植物抗虫基因工程中所遇到的问题和解决办法进行了探讨。  相似文献   

6.
综述菌根真菌、植物内生菌和植物病原真菌等植物寄生真菌转荧光蛋白基因研究现状.介绍转化载体的构建、转化方法及特基因的检测方法,以及转荧光蛋白基因技术在植物寄生真菌侵染过程研究中的应用,指出真菌转荧光蛋白基因存在的问题和展望.  相似文献   

7.
大麦HVA1基因和LEA蛋白与植物抗旱性的研究   总被引:1,自引:1,他引:0  
干旱胁迫下,植物体内会积累多种蛋白以保护细胞免受脱水伤害,其中包括Lea蛋白。LEA蛋白在植物耐寒、耐盐碱、耐干旱性方面起重要作用。大麦HVA1基因编码的蛋白即属于第三组LEA蛋白,国内外学者对该基因的结构与功能进行了深入的研究。根据近年研究结果,本文对LEA蛋白的结构与功能,大麦HVA1基因的表达与调控,大麦HVA1基因高同源性序列的克隆以及转基因植物对HVA1基因抗旱性功能验证等方面进行综述。  相似文献   

8.
采用花粉离体培养技术研究了阿拉伯半乳糖蛋白(arab inogalactan prote ins,AGPs)在烟草和蓝猪耳花粉萌发及花粉管生长中的作用。结果表明:βG lcY(-βG lucosyl Yariv reagent,一种能与AGPs特异结合的试剂)处理导致蓝猪耳花粉萌发率和花粉管生长速度下降;βG lcY对烟草花粉管的生长也有一定的抑制作用。另外,采用免疫荧光技术,发现在烟草和蓝猪耳未萌发的花粉粒中,AGPs主要分布在萌发孔上;在烟草离体生长的花粉管中AGPs呈均匀分布,但是在蓝猪耳离体生长的花粉管中未观察到AGPs的分布。  相似文献   

9.
盐胁迫是限制植物生长发育的主要因素之一,植物Na+/H+反向转运蛋白可通过将Na+逆向转运出细胞外或将Na+区隔化于液泡中来抵制环境中过高的Na+浓度.植物中Na+/H+反向转运蛋白存在于细胞质膜和液泡膜上,现在已得到多种编码这些Na+/H+反向转运蛋白的基因,对其结构功能特性进行了大量研究,并发现将这些基因转入非抗盐植物中过量表达可提高转基因植物的抗盐性.概述了Na+/H+反向转运蛋白及其编码基因的最新研究进展.  相似文献   

10.
植物抗旱和耐重金属基因工程研究进展   总被引:3,自引:0,他引:3  
干旱和重金属污染严重影响植物的生长发育.植物耐逆相关基因的克隆和功能鉴定研究,为通过基因工程途径提高植物的抗逆性奠定了理论基础.水分亏缺、高盐、低温和重金属胁迫都能诱导LEA(late embryogenesis abundant protein)基因的表达.转基因研究表明,LEA蛋白具有抗旱保护作用、离子结合特性以及抗氧化活性;水孔蛋白存在于细胞膜和液泡膜上,在细胞乃至整个植物体水分吸收和运输过程中发挥重要作用.干旱和盐胁迫促进水孔蛋白基因转录物的积累.过量表达水孔蛋白可增强水分吸收和运输,提高植物的抗旱能力.金属转运蛋白参与重金属离子的吸收、运输和累积等过程.这些蛋白基因在改良草坪草植物的抗旱节水和耐重金属能力等方面具有潜在的应用价值.  相似文献   

11.
BACKGROUND: Arabinogalactan proteins (AGPs) are complex proteoglycans of the cell wall found in the entire plant kingdom and in almost all plant organs. AGPs encompass a large group of heavily glycosylated cell-wall proteins which share common features, including the presence of glycan chains especially enriched in arabinose and galactose and a protein backbone particularly rich in hydroxyproline residues. However, AGPs also exhibit strong heterogeneities among their members in various plant species. AGP ubiquity in plants suggests these proteoglycans are fundamental players for plant survival and development. SCOPE: In this review, we first present an overview of current knowledge and specific features of AGPs. A section devoted to major tools used to study AGPs is also presented. We then discuss the distribution of AGPs as well as various aspects of their functional properties in root tissues and pollen tubes. This review also suggests novel directions of research on the role of AGPs in the biology of roots and pollen tubes.  相似文献   

12.
Arabinogalactan-protein (AGP) epitopes are known to display developmentally regulated patterns of expression in several plant tissues. Therefore, AGPs have been suggested to play a role in plant development. Somatic embryogenesis is regulated by AGPs as well as by EP3 endochitinases. Using four different methods we have analysed the composition of AGPs in immature carrot seeds. The results obtained show that: (1) the native electrophoretic mobility of such AGPs changes during development; (2) AGP epitopes in immature seeds are developmentally regulated; (3) enzymatically released fragments of AGPs show that the composition of these molecules changes as a function of development; and (4) the biological activity of AGPs on the formation of somatic embryos changes depending on the age of the seeds. Our results suggest that degradation of maternally derived AGPs occurs after fertilization, while cellularization of the endosperm leads to synthesis of a new set of AGPs. The presence of an endochitinase cleavage site as well as the capacity to increase somatic embryogenesis only occurred in AGPs that were isolated from seeds in which the endosperm had been cellularized. Apparently, both EP3 endochitinases and somatic embryogenesis-promoting AGPs are developmentally regulated in immature carrot seeds.  相似文献   

13.
Arabinogalactan proteins (AGPs) are extracellular proteoglycans implicated in plant growth and development. We searched for classical AGPs in Arabidopsis by identifying expressed sequence tags based on the conserved domain structure of the predicted protein backbone. To confirm that these genes encoded bona fide AGPs, we purified native AGPs and then deglycosylated and deblocked them for N-terminal protein sequencing. In total, we identified 15 genes encoding the protein backbones of classical AGPs, including genes for AG peptides-AGPs with very short backbones (10 to 13 amino acid residues). Seven of the AGPs were verified as AGPs by protein sequencing. A gene encoding a putative cell adhesion molecule with AGP-like domains was also identified. This work provides a firm foundation for beginning functional analysis by using a genetic approach.  相似文献   

14.
Arabinogalactan proteins (AGPs) are extracellular hydroxyproline-rich proteoglycans implicated in plant growth and development. The protein backbones of AGPs are rich in proline/hydroxyproline, serine, alanine, and threonine. Most family members have less than 40% similarity; therefore, finding family members using Basic Local Alignment Search Tool searches is difficult. As part of our systematic analysis of AGP function in Arabidopsis, we wanted to make sure that we had identified most of the members of the gene family. We used the biased amino acid composition of AGPs to identify AGPs and arabinogalactan (AG) peptides in the Arabidopsis genome. Different criteria were used to identify the fasciclin-like AGPs. In total, we have identified 13 classical AGPs, 10 AG-peptides, three basic AGPs that include a short lysine-rich region, and 21 fasciclin-like AGPs. To streamline the analysis of genomic resources to assist in the planning of targeted experimental approaches, we have adopted a flow chart to maximize the information that can be obtained about each gene. One of the key steps is the reformatting of the Arabidopsis Functional Genomics Consortium microarray data. This customized software program makes it possible to view the ratio data for all Arabidopsis Functional Genomics Consortium experiments and as many genes as desired in a single spreadsheet. The results for reciprocal experiments are grouped to simplify analysis and candidate AGPs involved in development or biotic and abiotic stress responses are readily identified. The microarray data support the suggestion that different AGPs have different functions.  相似文献   

15.
Androgenesis-based methods of doubled haploid (DH) production show considerable variation in efficiency in different barley genotypes. Arabinogalactan proteins (AGPs) have been shown to play a key role in several developmental processes, including embryogenesis, in different plant species. In this study we investigated the effect of exogenous AGPs from gum arabic on androgenesis and the regeneration efficiency in barley anther culture. Supplementation of the induction medium with 10 mg l?1 gum arabic increased the total plant regeneration rate up to 2.8 times; when exposure to GA was extended to also include the pretreatment step, the regeneration rate was up to 6.6-times higher than in control. The effect of gum arabic was reversed by the Yariv reagent, an AGPs antagonist. This suggests a direct involvement of AGPs in androgenic development from barely microspores. Addition of gum arabic reduced cell mortality, increased the frequency of mitotic divisions of microspores and the number of multicellular structures (MCSs) when compared to control. The positive effect of gum arabic also included reduction in time required for the androgenic induction and substantially improved the quality of formed embryos. Observations made in this study imply a complex role of AGPs during androgenic development and confirmed the usefulness of gum arabic in production of barley androgenic plants.  相似文献   

16.
Daucus carota L. cell lines secrete a characteristic set of arabinogalactan proteins (AGPs) into the medium. The composition of this set of AGPs changes with the age of the culture, as can be determined by crossed electrophoresis with the specific AGP-binding agent, β-glucosyl Yariv reagent. Addition of AGPs isolated from the medium of a non-embryogenic cell line to an expiant culture initiated the development of the culture to a non-embryogenic cell line. Without addition of AGPs or with addition of carrot-seed AGPs an embryogenic cell line was established. Three-month-old embryogenic cell lines usually contain less than 30% of dense, highly cytoplasmic cells, i.e. the embryogenic cells, but when carrot-seed AGPs were added this percentage increased to 80%. Addition of carrot-seed AGPs to a two-year-old, non-embryogenic cell line resulted in the re-induction of embryogenic potential. These results show that specific AGPs are essential in somatic embryogenesis and are able to direct development of cells.  相似文献   

17.
Arabinogalactan proteins (AGPs) are a family of hydroxyproline-rich glycoproteins (HRGP) ubiquitous in the plant kingdom. They are probably one of the most heterogeneous and complex families of macromolecules, making them able to perform different and multiple functions. Located at the plasma membrane–cell wall interface, AGPs are involved in several processes, from plant growth and development to reproduction. An additional function of AGPs in response to biotic and abiotic stress has been suggested by several studies. The purpose of this review is to summarize critically and analytically the available knowledge on the effects of abiotic stress (low and high temperatures, drought, flooding, anoxia and metal deficiency/toxicity) and biotic stress (bacteria, fungi, nematodes and viruses) on AGPs. A deeper understanding of the role of AGPs during these conditions can be an important tool for understanding AGP biology and for the possible development of efficient breeding strategies.  相似文献   

18.
Arabinogalactan proteins (AGPs) have been implicated in a variety of plant development processes including sexual plant reproduction. As a crucial developmental event, plant sexual reproduction generally occurs inside an ovule embedded in an ovary. The inaccessibility of the egg cells, zygotes, and embryos has hindered our understanding of the importance of AGPs in the early events involving fertilization, zygotic division, and early embryogenesis. In this study, the well-established in vitro zygote and ovary culture systems, together with immunofluorescence and immunogold labelling techniques, were employed to investigate the role of AGPs in the early events of sexual reproduction in Nicotiana tabacum. Dramatic changes in AGP content during ovule development were evidenced by western blotting. Subcellular localization revealed that AGPs are localized in the plasma membrane, cell wall, and cytoplasm of pre- and post-fertilized egg cells, and cytoplasm and vacuoles of two-celled proembryos. Abundant AGPs were detected in unfertilized egg cells; however, the level of AGPs substantially decreased in fertilized egg cells. Polar distribution of AGPs in elongated zygotes was observed. The early two-celled proembryos just from zygote division displayed accumulation of AGPs at a low level, while in the elongated two-celled proembryos at the late stage, the AGP content clearly increased. Provision of betaGlcY, a synthetic phenylglycoside that specifically binds AGPs, to the in vitro cultures of isolated zygote and fertilized ovaries increased abnormal symmetrical division of zygotes. In the culture of pollinated but unfertilized ovaries, addition of betaGlcY resulted in arrest of fertilization of the egg cells, but had no effect on fertilization of the central cells. The possible roles of AGPs in fertilization, zygotic division, and proembryo development are discussed.  相似文献   

19.
Arabinogalactanproteins (AGPs) are proteoglycans of the extracellular matrix o f most plants. Since the late 1980s, AGPs have attracted widespread attention from plant biologists following reports of their involvement in plant development. In particular, the use of monoclonal antibodies to carbohydrate epitopes of AGPs has demonstrated stage- and tissue-specificity and has led to suggestions that they are involved in tissue morphogenesis. The recent cloning of the genes for several AGP protein backbones allows us to consider new strategies to address their function. Here, we summarize our knowledge of AGPs and consider parallels with animal proteoglycans as a possible framework for future work.  相似文献   

20.
Arabinogalactan proteins (AGPs) have been implicated in plant development including sexual plant reproduction. In this paper, the expression of AGPs and the effects of β-glucosyl Yariv reagent (βGlcY, which binds arabinogalactan proteins) in embryo development and cotyledon formation were investigated. Immunofluorescence assay displayed that the expression of AGPs labeled with antibody JIM13 was developmentally regulated. In early stages, AGPs were evenly distributed in the whole embryo, except for a short polar expression in the basal suspensor cell. In the globular stage of embryo, AGPs were condensed in the embryo proper (EP), apex of the EP, and at the juncture of the EP and suspensor. In heart-shaped embryo, APGs were only present at the juncture of the EP and suspensor. Immunogold labeling assay showed that the strong expression of AGPs at the juncture of the EP and suspensor was localized in the cell wall. Provision of βGlcY to the in vitro ovule culture medium caused delayed growth of embryos, cotyledon defect and abnormal venation pattern. Consequently, βGlcY induced the death of defective seedlings with the characteristics of deformed or irregular single cotyledon. Our results suggested that AGPs play functional roles in embryo development, cotyledon formation and seedling morphology establishment in Nicotiana tabacum L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号