首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The salinity tolerance of two commercial rootstocks used for loquat plants (Eribotrya japonica Lindl.), loquat and anger, was studied in a pot experiment. The plants were irrigated using solutions containing 5 and 50mM NaCl and 5 and 25mM calcium acetate for 4 months. The growth, tissue mineral content, water status, and leaf gas exchange responses to salt treatment with and without additional calcium were examined. Plant growth was not modified by salinity in anger (50mM), but was reduced in loquat; leaf biomass and stem diameter were particularly affected. However, Cl(-) levels leaf increased with salinity to a greater extent in anger, while the Na(+) content increased to the same extent in both species, indicating that ion transport from root to leaves was not inhibited in either species. Additional calcium (25mM) reduced Na(+) and Cl(-) concentrations in both species, but did not minimise the effects of salinity on the growth of salt-treated loquat plants. The decrease in K(+) concentrations had no effect on growth, as anger was the most tolerant rootstock and had lowest leaf K(+) content. Salinity reduced the Ca(2+) concentration in the roots of both species. However, when calcium was added, the concentration of Ca(2+) increased in the roots of salinised plants. Leaf water potential at pre-dawn decreased significantly in both species under saline conditions. Leaf gas exchange, stomatal conductance and, in particular, net CO(2) assimilation, decreased with salinity only in loquat, indicating that photosynthesis could be the growth-limiting factor in this species.  相似文献   

2.
BACKGROUND AND AIMS: Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. METHODS: Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. KEY RESULTS: Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. CONCLUSIONS: Plants preconditioned by salinity stress maintained a better leaf water status during drought stress due to osmotic adjustment and the accumulation of Cl(-) and Na(+). However, high levels of salt ions impeded recovery of leaf water status and photosynthesis after re-irrigation with non-saline water.  相似文献   

3.
Hibiscus tiliaceus (Hau) is a pantropical mangrove associate that usually occurs in coastal ecosystems where substrate salinity is relatively high, but it also inhabits upland habitats in Hawaii. Cuttings from three populations on the island of Oahu, Hawaii, were collected and grown in the glasshouse under two levels of substrate salinity (0 and 335 mOsm kg-1) and three light treatments (0%, 50%, and 90% shade). Photosynthetic gas exchange, biomass allocation, and accumulation were studied in relation to salinity and light. Salinity reduced net CO2 assimilation in the upland population but had no effect or stimulated photosynthesis in the coastal populations, whereas increasing salinity decreased stomatal conductance in all populations and therefore increased water-use efficiency. The degree to which photosynthesis was inhibited by salinity was inversely proportional to the salinity of the source population, indicating a loss of salinity tolerance in upland plants. Light had a stronger effect on leaf area ratio (LAR) and leaf mass per area (LMA), whereas salinity had a stronger effect on leaf water content, internode length, and plant biomass. Salinity reduced total new biomass by 58%, 50%, and 34% in full sun, 50% shade, and 90% shade, respectively, but this response did not differ between populations. Salinity reduced the photosynthesis, but not growth, of upland plants because increased allocation to photosynthetic tissue increased LAR to compensate for inhibition of photosynthesis by salinity.  相似文献   

4.
The effect of NaCl salinity at concentrations of 43–173 mM in nutrient solution on net gas exchange of attached cowpea [Vigna unguiculata (L.) Walp cv. California Black-eye No. 5 (CB5)] leaves was investigated under both greenhouse and growth chamber conditions.
There was a marked decrease in leaf conductance to water vapor after exposure to low salinity levels and a slighter decrease when salinity levels were higher. The decrease in net assimilation was much more gradual throughout the entire salinity range. The altered responses of net assimilation and leaf conductance to salinity were more evident at a high light intensity. A decrease in intercellular partial CO2 pressure [p(CO2)] was found at the low and intermediate salinity levels but not at the high level. These findings suggest that CO, assimilation was mainly controlled by stomatal conductance and the fixation of CO, might have been increased due to stimulated biochemical activity or to higher chlorophyll concentration per unit leaf area. A decrease in assimilation was already found one day after salinization and pro-ceeded up to 4 days when it was inhibited by 50% at 43 mM NaCl and up to 85% at 173 mM. The decrease in transpiration was larger than the decrease in net assimila-tion, and both were attributed to osmotic stress. Partial recovery was found thereaf-ter and new steady-state rates, in the range of 55 to 100% of the control, were then obtained for salinity levels between 43 and 130 mM. Inhibition of net CO, assimila-tion at this stage was attributed partly to a specific sodium effect and partly to plant water status. A linear relationship between leaf sodium content and net photosynthe-sis was also evident at this stage. Net CO, assimilation recovered more completely than transpiration when salt stress was removed, but at 173 mM NaCl recovery was neglible.  相似文献   

5.
Rawat  J.S.  Banerjee  S.P. 《Plant and Soil》1998,205(2):163-169
The influence of NaCl salinity on growth, dry-matter production and leaf photosynthesis of seedlings of Eucalyptus camaldulensis Dehnh. and Dalbergia sissoo Roxb. was studied by imposing 4 levels (40, 80, 120 and 160 mM) of NaCl in pot culture. Salinity up to 160 mM did not affect plant survival, but did affect plant growth and dry-matter production depending upon the species and salt concentration. NaCl reduced leaf number and dry-weight of all the plant components, but increased stem dry-weight, especially in E. camaldulensis. Salinization also stimulated total dry-matter production at all the salinity levels in E. camaldulensis but only at 40 mM in D. sissoo. The two species varied in protein and chlorophyll concentration and in leaf photosynthetic rate. Protein and chlorophyll concentration of the plants fell at all the levels of NaCl, except at 40 mM, where stimulation in the photosynthetic carbon assimilation of the plants occurred. However, no distinct relationship between leaf photosynthetic rate and dry-matter production was found. The study indicated that low salt concentrations generally stimulated growth, biomass production and rate of photosynthesis in both the species, and E. camaldulensis appeared more NaCl salt-tolerant than D. sissoo.  相似文献   

6.
BACKGROUND AND AIMS: Atriplex (Halimione) portulacoides is a halophytic, C(3) shrub. It is virtually confined to coastal salt marshes, where it often dominates the vegetation. The aim of this study was to investigate its growth responses to salinity and the extent to which these could be explained by photosynthetic physiology. METHODS: The responses of young plants to salinity in the range 0-700 mol m(-3) NaCl were investigated in a glasshouse experiment. The performance of plants was examined using classical growth analysis, measurements of gas exchange (infrared gas analysis), determination of chlorophyll fluorescence characteristics (modulated fluorimeter) and photosynthetic pigment concentrations; total ash, sodium, potassium and nitrogen concentrations, and relative water content were also determined. KEY RESULTS: Plants accumulated Na(+) approximately in proportion to external salinity. Salt stimulated growth up to an external concentration of 200 mol m(-3) NaCl and some growth was maintained at higher salinities. The main determinant of growth response to salinity was unit leaf rate. This was itself reflected in rates of CO(2) assimilation, which were not affected by 200 mol m(-3) but were reduced at higher salinities. Reductions in net photosynthetic rate could be accounted for largely by lower stomatal conductance and intercellular CO(2) concentration. Apart from possible effects of osmotic shock at the beginning of the experiment, salinity did not have any adverse effect on photosystem II (PSII). Neither the quantum efficiency of PSII (Phi(PSII)) nor the chlorophyll fluorescence ratio (F(v)/F(m)) were reduced by salinity, and lower mid-day values recovered by dawn. Mid-day F(v)/F(m) was in fact depressed more at low external sodium concentration, by the end of the experiment. CONCLUSIONS: The growth responses of the hygro-halophyte A. portulacoides to salinity appear largely to depend on changes in its rate of photosynthetic gas exchange. Photosynthesis appears to be limited mainly through stomatal conductance and hence intercellular CO(2) concentration, rather than by effects on PSII; moderate salinity might stimulate carboxylation capacity. This is in contrast to more extreme halophytes, for which an ability to maintain leaf area can partially offset declining rates of carbon assimilation at high salinity.  相似文献   

7.
Olive ( Olea europaea L. cv. Frantoio) plants grown hydroponically in a glasshouse were supplied with half-strength Hoagland solutions containing 0, 50, 100, and 200 m M NaCl for 4 weeks and subsequently supplied with the standard solution without NaCl to relieve salinity stress. Two complete stress-relief cycles were repeated on the same plant material during one growing season. Growth was inhibited at all salt levels, but most growth parameters of plants treated with 50 or 100 m M NaCl returned to control levels after 4 weeks of relief. More severely stressed plants (200 m M NaCl) recovered to only 60% of the growth of the controls after 4 weeks. During relief, plants treated with 50 and 100 m M NaCl had net photosynthetic rates and stomatal conductances higher than the controls. Increasing the NaCl concentration of the external solution from 0 to 200 m M decreased both leaf pre-dawn water potential (from -0.3 to -1.0 MPa) and osmotic potential (from -2.1 to -2.7 MPa). The sodium concentration in the leaves of plants treated with 200 m M NaCl reached maximum levels of 211 and 388 m M (expressed on a tissue water basis) at the end of the first salinity and relief periods, respectively. Leaf chloride concentrations were 359 and 223 m M at the same sampling dates. These data indicate that the inhibitory effects of salinization on growth and gas exchange of the salt-tolerant olive cv. Frantoio can be readily reversed when salinity is relieved, despite the marked accumulation of potentially toxic ions (Na+. Cl) in the leaf.  相似文献   

8.
Experiments were conducted to examine whether mercury-sensitive aquaporins facilitate photosynthetic CO(2) diffusion across the plasma membrane of leaf mesophyll cells. Discs without abaxial epidermes from Vicia faba leaflets were treated with HgCl(2), an inhibitor of aquaporins. Hydraulic conductivity of the plasma membrane of these discs, measured as the weight loss of the discs in the 1 M sorbitol solution, was inhibited by sub-mM concentrations of HgCl(2) by 70 to 80%. Photosynthetic CO(2) fixation was also inhibited by the HgCl(2) treatment in a similar concentration range. When 0.3 mM HgCl(2) solution was fed to the V. faba leaflets with intact epidermes via the transpiration stream, the rate of photosynthesis on leaf area basis (A) measured at photosynthetically active photon flux density of 700 micromol m(-2) s(-1) and at leaf temperature of 25 degrees C, decreased by about 20 to 30% at any CO(2) concentration in the intercellular spaces (C(i)). However, when CO(2) concentration in the chloroplast stroma (C(c)) was calculated from fluorescence and gas exchange data and A was plotted against C(c), A at low C(c) concentrations did not differ before and after the treatment. The conductance for CO(2) diffusion from the intercellular spaces to the chloroplast stroma (g(i)) decreased to 40 and 30% of the control value, when the leaflets were fed with 0.3 mM and 1.2 mM HgCl(2), respectively. Similar results were obtained with leaves of Phaseolus vulgaris. Although effects of HgCl(2) were not specific, the present results showed that HgCl(2) consistently lowered g(i). It is, thus, probable that the photosynthetic CO(2) uptake across the plasma membrane of the mesophyll cells is facilitated by mercury-sensitive aquaporins.  相似文献   

9.
The effects of salinity (400 mM NaCl) on growth, biomass partitioning, photosynthesis, and leaf ultrastructure were studied in hydroponically grown plants of Aeluropus littoralis (Willd) Parl. NaCl produced a significant inhibition of the main growth parameters and a reduction in leaf gas exchange (e.g. decreased rates of photosynthesis and stomatal conductance). However, NaCl salinity affected neither the composition of photosynthesis pigments nor leaf water content. The reduction in leaf gas exchange seemed to correlate with a decrease in mesophyll thickness as well as a severe disorganisation of chloroplast structure, with misshapen chloroplasts and dilated thylakoid membranes. Conspicuously, mesophyll chloroplasts were more sensitive to salt treatment than those of bundle sheath cells. The effects of NaCl toxicity on leaf structure and ultrastructure and the associated physiological implications are discussed in relation to the degree of salt resistance of A. littoralis.  相似文献   

10.
The effects of light, temperature, and salinity on growth, net CO2 exchange and leaf anatomy of Distichlis spicata were investigated in controlled environment chambers. When plants were grown at low light, growth rates were significantly reduced by high substrate salinity or low temperature. However, when plants were grown at high light, growth rates were not significantly affected by temperature or salinity. The capacity for high light to overcome depressed growth at high salinity cannot be explained completely by rates of net photosynthesis, since high salinity caused decreases in net photosynthesis at all environmental conditions. This salinity-induced decrease in net photosynthesis was caused largely by stomatal closure, although plants grown at low temperature and low light showed significant increases in internal leaf resistance to CO2 exchange. Increased salinity resulted in generally thicker leaves with lower stomatal density but no significant differences in the ratio of mesophyll cell surface area to leaf area. Salinity and light during growth did not significantly affect rates of dark respiration. The mechanisms by which Distichlis spicata tolerates salt appear to be closely coulpled to the utilization of light energy. Salt-induced leaf succulence is of questionable importance to gas exchange at high salinity in this C4 species.  相似文献   

11.
Young olive plants (Olea europaea L.) were grown either in hydroponic or soil culture in a glasshouse over two growing seasons. Plants were exposed to NaCl concentrations between 0 and 200 mM for 34–35 days followed by 30–34 days of relief from stress to determine the effect of salinity on gas exchange of two cultivars ('Frantoio' and 'Leccino') differing in salt-exclusion capacity. Salinity stress brought about a reduction in net CO2 assimilation and stomatal conductance in both cultivars, but the effect was more pronounced in the salt tolerant 'Frantoio' than in the salt-sensitive 'Leccino' cultivar. Therefore, gas exchange parameters may be misleading if used to evaluate the salt tolerance of olive genotypes. Recovery in gas exchange parameters during relief from stress was slower in the salt sensitive cultivar. In general, the decline in assimilation reflected the salt-induced reduction in stomatal conductance, but a marked effect on carboxylation efficiency and CO2 compensation point was measured in plants treated with 200 mM NaCl for four weeks. The cultivar 'Frantoio' showed a 50% reduction in assimilation and stomatal conductance at 146 and 78 mM leaf Na+ concentration (tissue water molar basis) respectively, whereas the corresponding 50% thresholds for the cultivar 'Leccino' were at 275 and 264 mM, respectively.  相似文献   

12.
The effects of shading in combination with salinity treatments were studied in citrus trees on two rootstocks with contrasting salt tolerance to determine if shading could reduce the negative effects of salinity stress. Well-nourished 2-year-old 'Valencia' orange trees grafted on Cleopatra mandarin (Cleo, relatively salt tolerant) or Carrizo citrange (Carr, relatively salt sensitive), were grown either under a 50% shade cloth or left unshaded in full sunlight. Half the trees received no salinity treatment and half were salinized with 50 mM Cl- during two 9 week salinity periods in the spring and autumn interrupted by an 11 week rainy period. The shade treatment reduced midday leaf temperature and leaf-to-air vapour pressure deficit regardless of salinity treatments. In non-salinized trees, shade increased midday CO2 assimilation rate (A(CO2)) and stomatal conductance, but had no effect on leaf transpiration (E(lf)). Shade also increased leaf chlorophyll and photosynthetic water use efficiency (A(CO2)/E(lf)) in leaves on both rootstocks and increased total plant dry weight in Cleo. The salinity treatment reduced leaf growth and leaf gas exchange parameters. Shade decreased Cl- concentrations in leaves of salinized Carr trees, but had no effect on leaf or root Cl- of trees on Cleo. There were no significant differences in leaf gas exchange parameters of shaded and unshaded salinized plants but the growth reduction from salinity stress was actually greater for shaded than for unshaded trees. Shaded trees on both rootstocks had higher leaf Na+ than unshaded trees after the first salinity period, and this shade-induced elevated leaf Na+ persisted after the second salinity period in trees on Carr. Thus, shading did not alleviate the negative effects of salinity on growth and Na+ accumulation.  相似文献   

13.
Parsons  R.  Weyers  J.D.B.  Lawson  T.  Godber  I.M. 《Photosynthetica》1998,34(2):265-279
Procedures are described for estimating photosynthetic characteristics using a portable infra-red gas analysis (IRGA) system. Once the effects of stomatal limitation on CO2 assimilation have been established, up to ten parameters of photosynthesis can be estimated for a single leaf within 2 h, including: photosynthetic efficiency and capacity on both photon and CO2 bases; compensation irradiances and CO2 compensation concentrations; and light and dark respiration rates. These measurements can be made in the laboratory, glasshouse or field with relative ease. Methods for obtaining near instantaneous ("snapshot") measurements of leaf photosynthesis are also described, using carefully pre-set conditions within the leaf cuvette. Representative results are shown for Phaseolus vulgaris L. Important aspects of the procedure's experimental design, assumptions made in the analysis, and limitations of this approach are analysed.  相似文献   

14.
Addition of 50 mM NaCl to Oryza sativa L. had little effectupon the time of leaf initiation, but leaf mortality prior tothe normal phase of senescence was increased and the onset ofsenescence was advanced. There was no significant effect uponthe day-to-day pattern of growth, nor upon the ultimate length,of leaves that were developing at the time of, or shortly after,salinization with 50 mM NaCI. Leaves that developed after prolongedexposure of the plants to salinity were shorter. Addition ofNaCl, KC1 or mannitol to the root medium brought about a cessationof leaf elongation within one minute. Growth at a reduced raterestarted abruptly after a lag period that depended upon theexternal concentration. Elongation rate recovered its originalvalue within 24 h after exposure to 50 mM NaCl, though not athigher concentrations. Addition of NaCl at concentrations upto 100 mM elicited no short-term effects upon photosyntheticgas exchange. Na uptake contributed to osmotic adjustment ofthe growing zone. When plants were rapidly exposed to 50 mMNaCl, no change in turgor pressure was detectable in the growingzone with the resolution of the miniature pressure probe used(about 70 kPa). It is concluded that the initial growth reductionin rice caused by salinization is due to a limitation of watersupply. A clear distinction is made between the initial effectsof low salinity which are recoverable and the long-term effectswhich result from the accumulation of salt within expanded leaves. Key words: Leaf elongation, gas exchange, photosynthesis, water relations  相似文献   

15.
Procedures are described for estimating photosynthetic characteristics using a portable infra-red gas analysis (IRGA) system. Once the effects of stomatal limitation on CO2 assimilation have been established, up to ten parameters of photosynthesis can be estimated for a single leaf within 2 h, including: photosynthetic efficiency and capacity on both photon and CO2 bases; compensation irradiances and CO2 compensation concentrations; and light and dark respiration rates. These measurements can be made in the laboratory, glasshouse or field with relative ease. Methods for obtaining near instantaneous ("snapshot") measurements of leaf photosynthesis are also described, using carefully pre-set conditions within the leaf cuvette. Representative results are shown for Phaseolus vulgaris L. Important aspects of the procedure's experimental design, assumptions made in the analysis, and limitations of this approach are analysed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Adaptation to salinity of a semi-arid inhabitant plant, henna, is studied. The salt tolerance mechanisms are evaluated in the belief that gas exchange (water vapor and CO2) should play a key role on its adaptation to salt stress because of the strong evaporation conditions and soil water deficit in its natural area of distribution. We grow henna plants hydroponically under controlled climate conditions and expose them to control (0 mM NaCl), and two levels of salinity; medium (75 mM NaCl) and high (150 mM NaCl). Relative growth rate (RGR), biomass production, whole plant and leaf structure and ultrastructure adaptation, gas exchange, chlorophyll fluorescence, nutrients location in leaf tissue and its balance in the plant are studied. RGR and total biomass decreased as NaCl concentration increased in the nutrient solution. At 75 mM NaCl root biomass was not affected by salinity and RGR reached similar values to control plants at the end of the experiment. At this salinity level henna plant responded to salinity decreasing shoot to root ratio, increasing leaf specific mass (LSM) and intrinsic water use efficiency (iWUE), and accumulating high concentrations of Na+ and Cl in leaves and root. At 150 mM NaCl growth was severely reduced but plants reached the reproductive phase. At this salinity level, no further decrease in shoot to root ratio or increase in LSM was observed, but plants increased iWUE, maintaining water status and leaf and root Na+ and Cl concentrations were lower than expected. Moreover, plants at 150 mM NaCl reallocated carbon to the root at the expense of the shoot. The effective PSII quantum yield [Y(II)] and the quantum yield of non-regulated energy dissipation [Y(NO)] were recovered over time of exposure to salinity. Overall, iWUE seems to be determinant in the adaptation of henna plant to high salinity level, when morphological adaptation fails.  相似文献   

17.
Increased salinity is a stringent problem to crop production while seed pretreatment can effectively induce salt tolerance in plants. Hydrogen peroxide (H(2)O(2)), a stress signal molecule, was evaluated as seed treatment to produce the metabolic changes, which could lead to improved salt tolerance in wheat. Soaking in 1, 40, 80 and 120 microM H(2)O(2) revealed a low penetration, reaching maximum at 5h (2.58+/-0.23 micro mol g(-1) fresh seeds at 120 microM) and declining thereafter to the level of water control by 8h. This revealed the activation of antioxidants and H(2)O(2) scavenging in seed after 5h. Seeds treated with 1-120 microM H(2)O(2) for 8h and germinated in saline (150 mM NaCl) medium curtailed the mean germination time (MGT) being even less than water controls. Level of H(2)O(2) in seedlings arising from H(2)O(2)-treated seeds grown under salinity was markedly lower than salinized controls, suggesting the operation of antioxidant system in them. These seedlings exhibited better photosynthetic capacity, particularly the stomatal conductance (gs), thus improving the leaf gas exchange due to stomatal component of photosynthesis. Moreover, H(2)O(2) treatment improved leaf water relations and maintained turgor. Although Na(+) and Cl(-) content increased due to salinity, H(2)O(2)-treated seedlings displayed greater tissue K(+), Ca(2+), NO(3)(-) PO(4)(3-) levels and improved K(+):Na(+) ratio. H(2)O(2) treatment enhanced the membrane properties, as revealed from greatly reduced relative membrane permeability (RMP) and less altered ion leakage pattern (comparable to water controls). Seedlings exhibited the expression of two heat-stable (stress) proteins with apparent molecular masses of 32 and 52 kDa. Results suggest that H(2)O(2) signals the activation of antioxidants in seed, which persists in the seedlings to offset the ion-induced oxidative damage. These changes led to the expression of stress proteins and improved physiological attributes, which supported the seedling growth under salinity.  相似文献   

18.
The oxygen isotope composition of atmospheric CO(2) is an important signal that helps distinguish between ecosystem photosynthetic and respiratory processes. In C(4) plants the carbonic anhydrase (CA)-catalyzed interconversion of CO(2) and bicarbonate (HCO(3)(-)) is an essential first reaction for C(4) photosynthesis but also plays an important role in the CO(2)-H(2)O exchange of oxygen as it enhances the rate of isotopic equilibrium between CO(2) and water. The C(4) dicot Flaveria bidentis containing genetically reduced levels of leaf CA (CA(leaf)) has been used to test whether changing leaf CA activity influences online measurements of C(18)OO discrimination (Delta(18)O) and the proportion of CO(2) in isotopic equilibrium with leaf water at the site of oxygen exchange (theta). The Delta(18)O in wild-type F. bidentis, which contains high levels of CA relative to the rates of net CO(2) assimilation, was less than predicted by models of Delta(18)O. Additionally, Delta(18)O was sensitive to small decreases in CA(leaf). However, reduced CA activity in F. bidentis had little effect on net CO(2) assimilation, transpiration rates (E), and stomatal conductance (g(s)) until CA levels were less than 20% of wild type. The values of theta determined from measurements of Delta(18)O and the (18)O isotopic composition of leaf water at the site of evaporation (delta(e)) were low in the wild-type F. bidentis and decreased in transgenic plants with reduced levels of CA activity. Measured values of theta were always significantly lower than the values of theta predicted from in vitro CA activity and gas exchange. The data presented here indicates that CA content in a C(4) leaf may not represent the CA activity associated with the CO(2)-H(2)O oxygen exchange and therefore may not be a good predictor of theta during C(4) photosynthesis. Furthermore, uncertainties in the isotopic composition of water at the site of exchange may also limit the ability to accurately predict theta in C(4) plants.  相似文献   

19.
Variation in the C18OO content of atmospheric CO2 (delta18Oa) can be used to distinguish photosynthesis from soil respiration, which is based on carbonic anhydrase (CA)-catalyzed 18O exchange between CO2 and 18O-enriched leaf water (delta18Ow). Here we tested the hypothesis that mean leaf delta18Ow and assimilation rates can be used to estimate whole-leaf C18OO flux (isoflux), ignoring intraleaf variations in CA activity and gas exchange parameters. We observed variations in CA activity along the leaf (> 30% decline from the leaf center toward the leaf ends), which were only partially correlated to those in delta18Ow (7 to 21 per thousand), delta18O and delta13C of leaf organic matter (25 to 30 per thousand and -12.8 to -13.2 per thousand, respectively), and substomatal CO2 concentrations (intercellular CO2 concentrations, c(i), at the leaf center were approximately 40% of those at the leaf tip). The combined effect of these variations produced a leaf-integrated isoflux that was different from that predicted based on bulk leaf values. However, because of canceling effects among the influencing parameters, isoflux overestimations were only approximately 10%. Conversely, use of measured parameters from a leaf segment could produce large errors in predicting leaf-integrated C18OO fluxes.  相似文献   

20.
Spartina densiflora is a C(4) halophytic species that has proved to have a high invasive potential which derives from its physiological plasticity to environmental factors, such as salinity. It is found in coastal marshes of south-west Spain, growing over sediments with between 1 mmol l(-1) and 70 mmol l(-1) zinc. A glasshouse experiment was designed to investigate the synergic effect of zinc from 0 mmol l(-1) to 60 mmol l(-1) at 0, 1, and 3% NaCl on the growth and the photosynthetic apparatus of S. densiflora by measuring chlorophyll fluorescence parameters and gas exchange, and its recovery after removing zinc. Antioxidant enzyme activities and total zinc, sodium, calcium, iron, magnesium, manganese, phosphorus, potassium, and nitrogen concentrations were also determined. Spartina densiflora showed the highest growth at 1 mmol l(-1) zinc and 1% NaCl after 90 d of treatment; this enhanced growth was supported by the measurements of net photosynthetic rate (A). Furthermore, there was a stimulatory effect of salinity on accumulation of zinc in tillers of this species. Zinc concentrations >1 mmol l(-1) reduced growth of S. densiflora, regardless of salinity treatments. This declining growth may be attributed to a decrease in A caused by diffusional limitation of photosynthesis, owing to the modification of the potassium/calcium ratio. Also, zinc and salinity had a marked overall effect on the photochemical (photosystem II) apparatus, partially mediated by the accumulation of H(2)O(2) and subsequent oxidative damage. However, salinity favoured the recovery of the photosynthetic apparatus to the toxic action of zinc, and enhanced the nutrient uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号