首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PON1 is a high density lipoprotein-associated enzyme that plays an important role in organophosphate detoxification and prevention of atherosclerosis. In vivo animal and human studies have indicated that estradiol (E2) supplementation enhances serum PON1 activity. In this study, we sought to determine if E2 directly up-regulates cell-associated PON1 activity in vitro and to characterize the mechanism of regulation. In vitro E2 treatment of both the human hepatoma cell line Huh7 and normal rat hepatocytes resulted in a 2- to 3-fold increase in cell-associated PON1 catalytic activity. E2 potently induced PON1 activity with average EC50 values of 15 nM for normal hepatocytes and 68 nM for Huh7. The enhancement of PON1 activity by E2 was blocked by the estrogen receptor (ER) antagonist ICI 182,780 indicating that E2 was acting through the ER. The up-regulation of PON1 activity by E2 did not involve enhancement of PON1 mRNA or protein levels and did not promote secretion of PON1. Thus, E2 can enhance cell-associated PON1 activity in vitro without altering PON1 gene expression or protein level. Our data suggest that E2 may regulate the specific activity and/or stability of cell surface PON1.  相似文献   

2.
3.
Fang DH  Fan CH  Ji Q  Qi BX  Li J  Wang L 《Molecular biology reports》2012,39(6):6801-6809
Paraoxonase is an HDL-associated enzyme that plays a preventive role against oxidative stress, which is thought to contribute to cancer development. PON1 activity varies widely among individuals, which is in part related to two common nonsynonymous polymorphisms in the PON1 gene (Q192R and L55M). The polymorphisms in PON1 have been implicated in cancer risk. However, results from the studies to date have been conflicting. To clarify the association, a meta-analysis was performed for 7,073 cases and 9,520 controls from 25 published case–control studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of the association. Significant associations between PON1-L55M but not Q192R polymorphism and total cancer were observed from all the comparisons. In stratified analyses, PON1-55M allele was a risk factor for breast cancer. Similarly, increased risk was observed for prostate cancer (OR = 1.18, 95% CI: 1.01–1.36, P heterogeneity = 0.260) and Caucasian population (OR = 1.18, 95% CI: 1.02–1.38, P heterogeneity = 0.1) of the LM genotype, compared with the LL genotype. For PON1-Q192R polymorphism, PON1-192R allele was a decreased risk factor for cancer in the Asian group (RR vs QQ: OR = 0.61, 95% CI: 0.38–0.98, P heterogeneity = 0.268; QR vs QQ: OR = 0.71, 95% CI: 0.52–0.96, P heterogeneity = 0.130; RR + QR vs QQ: OR = 0.71, 95% CI: 0.53–0.95, P heterogeneity = 0.135). Although some modest bias could not be eliminated, this meta-analysis suggests that the PON1-55M allele is a risk factor for the development of cancer, in particular for breast cancer. Future studies with larger sample sizes are warranted to further evaluate these associations.  相似文献   

4.
Potential bisubstrate analogs, with adenosine and thymidine joined at their 5' positions by polyphosphoryl linkages of varying lengths (ApndT, where n = the number of phosphoryl groups), were examined as inhibitors of cytosolic thymidine kinase from blast cells of patients with acute myelocytic leukemia. Ki values were 1.2 microM for Ap3dT, 0.31 microM for Ap4dT, 0.12 microM for Ap5dT, and 0.19 microM for Ap6dT. The best inhibitor of the cytosolic enzyme, Ap5dT, was somewhat less effective as an inhibitor of the mitochondrial enzyme (Ki = 0.50 microM). In addition to their inhibitory modes of binding by the cytosolic enzyme, these compounds were bound at considerably lower concentrations (Kd = 0.029 microM for Ap4dT, 0.0025 microM for Ap5dT, and 0.0027 microM for Ap4dT), in such a way as to protect the cytosolic enzyme from thermal inactivation at 37 degrees C in the absence of substrates.  相似文献   

5.
A common polymorphism at codon 192 in the human paraoxonase (PON) 1 gene has been shown to be associated with increased risk for coronary heart disease (CHD) in Caucasian populations. However, these findings have not been reported consistently in all Caucasian and non-Caucasian populations, suggesting that this is not a functional mutation but may mark a functional mutation present in either PON1 or a nearby gene. Recently, two other PON-like genes, designated "PON2" and "PON3," have been identified, and they are linked with the known PON1 gene on chromosome 7. Identification of additional polymorphisms in the PON-gene cluster may help to locate the functional polymorphism. In this report, we describe the existence of a common polymorphism at codon 311 (Cys-->Ser; PON2*S) in the PON2 gene, as well as its association with CHD alone and in combination with the PON1 codon 192 polymorphism in Asian Indians. The frequency of the PON2*S allele was significantly higher in cases than in controls (.71 vs. .61; P=.016). The age- and sex-adjusted odds ratio (OR) was 2.5 (95% confidence interval &sqbl0;95% CI&sqbr0;=1.8-3.1; P=.0090) for the PON2*S allele carriers. Further stratification of the PON2*S association, on the basis of the presence or absence of the PON1*B allele, showed that the CHD risk associated with the PON2*S allele was confined to PON1*B-allele carriers. Likewise, the PON1*B-allele risk was present only among PON2*S carriers. Age- and sex-adjusted ORs for the PON2*S and PON1*B were 3.6 (95% CI=2.6-4.6; P=.011) and 2.9 (95% CI=2.4-3.5; P=.0002) among the PON1*B and PON2*S carriers, respectively. Our data indicate that both polymorphisms synergistically contribute to the CHD risk in this sample and that this genetic risk is independent of the conventional plasma lipid profile.  相似文献   

6.
Effects of ethanol on gastric mucosal adenosine 3', 5' monophosphate (cAMP)   总被引:1,自引:0,他引:1  
L L Tague  L L Shanbour 《Life sciences》1974,14(6):1065-1073
The effects of ethanol on the gastric mucosal adenosine 3′, 5′-monophosphate (cAMP) system were evaluated. The activity of adenylate cyclase (AC), phosphodiesterase (PDE), and tissue content of cAMP were determined in the presence of ethanol. NaF stimulated AC in rat gastric mucosa was inhibited in vitro and in vivo by 20% ethanol. Basal AC activity was so low (0.05 ± 0.10 pmoles cAMP formed/min/mg protein) that consistent results without NaF could not be obtained. The PDE activity (172 ± 11 pmoles cAMP consumed/min/mg protein) was approximately 350 fold greater than the basal AC activity. All levels of ethanol tested (2.0–20.0%) significantly inhibited (p<0.05) PDE in vitro. Gastric mucosal levels of cAMP are not measurably altered by ethanol in vivo (5–20%).  相似文献   

7.
8.
Adenosine(5')tetraphospho(5')adenosine-binding protein of calf thymus   总被引:5,自引:0,他引:5  
An adenosine(5')tetraphospho(5')adenosine (Ap4A) binding protein has been purified from calf thymus. The protein is comprised of a single polypeptide of Mr 54000 and is capable of high-affinity (Kd = 13 microM) binding of Ap4A with great substrate specificity. The Ap4A binding protein has been isolated in two forms: a 'free', or non-polymerase-bound, form which predominates, and a similar form which copurifies with DNA polymerase alpha, but which can be resolved from it. The free form of Ap4A binding protein contains associated adenosine(5')tetraphospho(5')adenosine phosphohydrolase (Ap4Aase) activity, while the form resolved from DNA polymerase alpha contains no such activity. The Ap4Aase activity, which catalyzes the phosphohydrolysis of Ap4A to ATP and AMP, is strongly inhibited by low levels (50-100 microM) of Zn2+ without any effect on the Ap4A binding protein activity. This difference in associated Ap4Aase activity between free and polymerase-bound forms of the protein, plus the copurification mentioned above, indicate a specific association between Ap4A binding protein and DNA polymerase alpha.  相似文献   

9.
Paraoxonase 1 (PON1), an HDL-associated esterase, is known to possess anti-oxidant and anti-atherogenic properties. PON1 was shown to protect macrophages from oxidative stress, to inhibit macrophage cholesterol biosynthesis, and to stimulate HDL-mediated cholesterol efflux from the cells. The aim of the present study was to characterize macrophage PON1 binding sites which could be responsible for the above anti-atherogenic activities.Incubation of FITC-labeled recombinant PON1 with J774 A.1 macrophage-like cell line at 37 °C, resulted in cellular binding and internalization of PON1, leading to PON1 localization in the cell’s cytoplasm compartment. In order to determine whether PON1 uptake is mediated via a specific binding to the macrophage, FITC-labeled recombinant PON1 was incubated with macrophages at 4 °C, followed by cell membranes separation. Macrophage membrane fluorescence was shown to be directly and dose-dependently related to the labeled PON1 concentration. Furthermore, binding assays performed at 4 and at 37 °C, using labeled and non-labeled recombinant PON1 (for competitive inhibition), demonstrated a dose-dependent significant 30% decrement in labeled PON1 binding to the macrophages, by the non-labeled PON1. Similarly, binding assays, using labeled PON1 and non-labeled HDL (the natural carrier of PON1 in the circulation) indicated that HDL decreased the binding of labeled PON1 to macrophages by 25%. Unlike HDL, LDL had no effect on labeled PON1 binding to macrophages. Finally, HDL were pre incubated without or with PON1 or apolipoprotein AI (apoAI) antibodies, in order to block PON1 or apoAI ability to bind to the cells. HDL incubation with antibody to PON1 or to apoAI significantly decreased HDL ability to inhibit macrophages-mediated LDL oxidation (by 32% or by 25%, respectively). A similar trend was also observed for HDL-mediated cholesterol efflux from macrophages, with an inhibitory effect of 35% or 19%, respectively. These results suggest that blocking HDL binding to macrophages through its apo A-I, and more so, via its PON1, results in the attenuation of HDL-PON1 biological activities.In conclusion, PON1 specifically binds to macrophage binding sites, leading to anti-atherogenic effects. Macrophage PON1 binding sites may thus be a target for future cardio protection therapy.  相似文献   

10.

Background

Human serum paraoxonase-1 (PON1) prevents oxidation of low density lipoprotein cholesterol (LDL-C) and hydrolyzes the oxidized form, therefore preventing the development of atherosclerosis. The polymorphisms of PON1 gene are known to affect the PON1 activity and thereby coronary artery disease (CAD) risk. As studies are lacking in North-West Indian Punjabi''s, a distinct ethnic group with high incidence of CAD, we determined PON1 activity, genotypes and haplotypes in this population and correlated them with the risk of CAD.

Methodology/Principal Findings

350 angiographically proven (≥70% stenosis) CAD patients and 300 healthy controls were investigated. PON1 activity was determined towards paraoxon (Paraoxonase; PONase) and phenylacetate (Arylesterase; AREase) substrates. In addition, genotyping was carried out by using multiplex PCR, allele specific oligonucleotide –PCR and PCR-RFLP methods and haplotyping was determined by PHASE software. The serum PONase and AREase activities were significantly lower in CAD patients as compared to the controls. All studied polymorphisms except L55M had significant effect on PONase activity. However AREase activity was not affected by them. In a logistic regression model, after adjustment for the conventional risk factors for CAD, QR (OR: 2.73 (1.57–4.72)) and RR (OR, 16.24 (6.41–41.14)) genotypes of Q192R polymorphism and GG (OR: 2.07 (1.02–4.21)) genotype of −162A/G polymorphism had significantly higher CAD risk. Haplotypes L-T-G-Q-C (OR: 3.25 (1.72–6.16)) and L-T-G-R-G (OR: 2.82 (1.01–7.80)) were also significantly associated with CAD.

Conclusions

In conclusion this study shows that CAD patients had lower PONase and AREase activities as compared to the controls. The coding Q192R polymorphism, promoter −162A/G polymorphism and L-T-G-Q-C and L-T-G-R-G haplotypes are all independently associated with CAD.  相似文献   

11.
12.
HDL-associated paraoxonase 1 (PON1) undergoes inactivation under oxidative stress and is preserved by dietary antioxidants. PON1 cysteines can affect PON1 enzymatic activities. S-Glutathionylation, a redox regulatory mechanism characterized by the formation of a mixed disulfide between a protein thiol and oxidized glutathione (GSSG), was shown to preserve some enzymes from irreversible inactivation under pathological conditions. We questioned whether PON1 activity is regulated by S-glutathionylation. Incubation of PON1 or HDL with GSSG indeed resulted in a dose-dependent inactivation of PON1 activities, including its physiological activity to increase HDL-mediated macrophage cholesterol efflux. This PON1 inactivation was associated with the formation of a mixed disulfide bond between GSSG and PON1's cysteine residue(s), as detected by immunoblotting with anti-glutathione IgG. PON1 activity was recovered following the addition of a reducing agent, DL-Dithiothreitol (DTT), to the PON1-SSG complex. We thus conclude that HDL-associated serum PON1 can undergo S-glutathionylation under oxidative stress with a consequent reversible inactivation.  相似文献   

13.
14.
15.
Synthetic methods leading to 5'(3')-O-amino nucleosides have been developed in an effort to prepare derivatives that may have antitumor or antiviral activities. They are based on ring opening of O2,5'-cyclonucleosides with the N-protected hydroxylamines and dehydrative coupling of 5'(3')-O-unprotected nucleosides with N-hydroxyphthalimide.  相似文献   

16.
The 3(')-->5(')-exonucleolytic activity of human apurinic/apyrimidinic endonuclease 1 (APE1) on mispaired DNA at the 3(')-termini of recessed, nicked or gapped DNA molecules was analyzed and compared with the primary endonucleolytic activity. We found that under reaction conditions optimal for AP endonuclease activity the 3(')-->5(')-exonuclease activity of APE1 manifests only at enzyme concentration elevated by 6-7 orders of magnitude. This activity does not show a preference to mismatched compared to matched DNA structures as well as to nicked or gapped DNA substrates in comparison to recessed ones. Therefore, the 3(')-->5(')-exonuclease activity associated with APE1 can hardly be considered as key mechanism that improves fidelity of DNA repair.  相似文献   

17.
《Nature methods》2005,2(8):629-630
This method is used to extend partial cDNA clones by amplifying the 5' sequences of the corresponding mRNAs 1-3. The technique requires knowledge of only a small region of sequence within the partial cDNA clone. During PCR, the thermostable DNA polymerase is directed to the appropriate target RNA by a single primer derived from the region of known sequence; the second primer required for PCR is complementary to a general feature of the target-in the case of 5' RACE, to a homopolymeric tail added (via terminal transferase) to the 3' termini of cDNAs transcribed from a preparation of mRNA. This synthetic tail provides a primer-binding site upstream of the unknown 5' sequence of the target mRNA. The products of the amplification reaction are cloned into a plasmid vector for sequencing and subsequent manipulation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号