首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software.  相似文献   

3.
Previous studies have reported that some important loci are missed in single-locus genome-wide association studies (GWAS), especially because of the large phenotypic error in field experiments. To solve this issue, multi-locus GWAS methods have been recommended. However, only a few software packages for multi-locus GWAS are available. Therefore, we developed an R software named mrMLM v4.0.2. This software integrates mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and ISIS EM-BLASSO methods developed by our lab. There are four components in mrMLM v4.0.2, including dataset input, parameter setting, software running, and result output. The fread function in data.table is used to quickly read datasets, especially big datasets, and the doParallel package is used to conduct parallel computation using multiple CPUs. In addition, the graphical user interface software mrMLM.GUI v4.0.2, built upon Shiny, is also available. To confirm the correctness of the aforementioned programs, all the methods in mrMLM v4.0.2 and three widely-used methods were used to analyze real and simulated datasets. The results confirm the superior performance of mrMLM v4.0.2 to other methods currently available. False positive rates are effectively controlled, albeit with a less stringent significance threshold. mrMLM v4.0.2 is publicly available at BioCode (https://bigd.big.ac.cn/biocode/tools/BT007077) or R (https://cran.r-project.org/web/packages/mrMLM.GUI/index.html) as an open-source software.  相似文献   

4.
5.
SUMMARY: ClaNC (classification to nearest centroids) is a simple and an accurate method for classifying microarrays. This document introduces a point-and-click interface to the ClaNC methodology. The software is available as an R package. AVAILABILITY: ClaNC is freely available from http://students.washington.edu/adabney/clanc  相似文献   

6.
The availability of user‐friendly software to annotate biological datasets and experimental details is becoming essential in data management practices, both in local storage systems and in public databases. The Ontology Lookup Service (OLS, http://www.ebi.ac.uk/ols ) is a popular centralized service to query, browse and navigate biomedical ontologies and controlled vocabularies. Recently, the OLS framework has been completely redeveloped (version 3.0), including enhancements in the data model, like the added support for Web Ontology Language based ontologies, among many other improvements. However, the new OLS is not backwards compatible and new software tools are needed to enable access to this widely used framework now that the previous version is no longer available. We here present the OLS Client as a free, open‐source Java library to retrieve information from the new version of the OLS. It enables rapid tool creation by providing a robust, pluggable programming interface and common data model to programmatically access the OLS. The library has already been integrated and is routinely used by several bioinformatics resources and related data annotation tools. Secondly, we also introduce an updated version of the OLS Dialog (version 2.0), a Java graphical user interface that can be easily plugged into Java desktop applications to access the OLS. The software and related documentation are freely available at https://github.com/PRIDE-Utilities/ols-client and https://github.com/PRIDE-Toolsuite/ols-dialog .  相似文献   

7.
SUMMARY: G-language Genome Analysis Environment (G-language GAE) is an open source generic software package aimed for higher efficiency in bioinformatics analysis. G-language GAE has an interface as a set of Perl libraries for software development, and a graphical user interface for easy manipulation. Both Windows and Linux versions are available. AVAILABILITY: From http://www.g-language.org/ under GNU General Public License. CD-ROMs are distributed freely in major conferences.  相似文献   

8.
GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox   总被引:26,自引:0,他引:26  
High-throughput gene expression analysis has become a frequent and powerful research tool in biology. At present, however, few software applications have been developed for biologists to query large microarray gene expression databases using a Web-browser interface. We present GENEVESTIGATOR, a database and Web-browser data mining interface for Affymetrix GeneChip data. Users can query the database to retrieve the expression patterns of individual genes throughout chosen environmental conditions, growth stages, or organs. Reversely, mining tools allow users to identify genes specifically expressed during selected stresses, growth stages, or in particular organs. Using GENEVESTIGATOR, the gene expression profiles of more than 22,000 Arabidopsis genes can be obtained, including those of 10,600 currently uncharacterized genes. The objective of this software application is to direct gene functional discovery and design of new experiments by providing plant biologists with contextual information on the expression of genes. The database and analysis toolbox is available as a community resource at https://www.genevestigator.ethz.ch.  相似文献   

9.
Datamonkey is a web interface to a suite of cutting edge maximum likelihood-based tools for identification of sites subject to positive or negative selection. The methods range from very fast data exploration to the some of the most complex models available in public domain software, and are implemented to run in parallel on a cluster of computers. AVAILABILITY: http://www.datamonkey.org. In the future, we plan to expand the collection of available analytic tools, and provide a package for installation on other systems.  相似文献   

10.
11.
SUMMARY: arrayQCplot is a software for the exploratory analysis of microarray data. This software focuses on quality control and generates newly developed plots for quality and reproducibility checks. It is developed using R and provides a user-friendly graphical interface for graphics and statistical analysis. Therefore, novice users will find arrayQCplot as an easy-to-use software for checking the quality of their data by a simple mouse click. AVAILABILITY: arrayQCplot software is available from Bioconductor at http://www.bioconductor.org. A more detailed manual is available at http://bibs.snu.ac.kr/software/arrayQCplot CONTACT: tspark@stats.snu.ac.kr.  相似文献   

12.
Here we describe the Immunogenetic Management Software (IMS) system, a novel web-based application that permits multiplexed analysis of complex immunogenetic traits that are necessary for the accurate planning and execution of experiments involving large animal models, including nonhuman primates. IMS is capable of housing complex pedigree relationships, microsatellite-based MHC typing data, as well as MHC pyrosequencing expression analysis of class I alleles. It includes a novel, automated MHC haplotype naming algorithm and has accomplished an innovative visualization protocol that allows users to view multiple familial and MHC haplotype relationships through a single, interactive graphical interface. Detailed DNA and RNA-based data can also be queried and analyzed in a highly accessible fashion, and flexible search capabilities allow experimental choices to be made based on multiple, individualized and expandable immunogenetic factors. This web application is implemented in Java, MySQL, Tomcat, and Apache, with supported browsers including Internet Explorer and Firefox on Windows and Safari on Mac OS. The software is freely available for distribution to noncommercial users by contacting Leslie.kean@emory.edu. A demonstration site for the software is available at http://typing.emory.edu/typing_demo , user name: imsdemo7@gmail.com and password: imsdemo.  相似文献   

13.
MOTIVATION: This article describes the development of a useful graphical user interface for stochastic simulation of biochemical networks which allows model builders to run stochastic simulations of their models and perform statistical analysis on the results. These include the construction of correlations, power-spectral densities and transfer functions between selected inputs and outputs. AVAILABILITY: The software is licensed under the BSD open source license and is available at http://sourceforge.net/projects/jdesigner. In addition, a more detailed account of the algorithms employed in the tool can be found at the Wiki at http://www.sys-bio.org/sbwWiki. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

14.
BeoBLAST is an integrated software package that handles user requests and distributes BLAST and PSI-BLAST searches to nodes of a Beowulf cluster, thus providing a simple way to implement a scalable BLAST system on top of relatively inexpensive computer clusters. Additionally, BeoBLAST offers a number of novel search features through its web interface, including the ability to perform simultaneous searches of multiple databases with multiple queries, and the ability to start a search using the PSSM generated from a previous PSI-BLAST search on a different database. The underlying system can also handle automated querying for high throughput work. AVAILABILITY: Source code is available under the GNU public license at http://bioinformatics.fccc.edu/  相似文献   

15.
16.
MOTIVATION: InFiRe, Insertion Finder via Restriction digest, is a novel software tool that allows for the computational identification of transposon insertion sites in known bacterial genome sequences after transposon mutagenesis experiments. The approach is based on the fact that restriction endonuclease digestions of bacterial DNA yield a unique pattern of DNA fragments with defined sizes. Transposon insertion changes the size of the hosting DNA fragment by a known number of base pairs. The exact size of this fragment can be determined by Southern blot hybridization. Subsequently, the position of insertion can be identified with computational analysis. The outlined method provides a solid basis for the establishment of a new high-throughput technology. AVAILABILITY AND IMPLEMENTATION: The software is freely available on our web server at www.infire.tu-bs.de. The algorithm was implemented in the statistical programming language R. For the most flexible use, InFiRe is provided in two different versions. A web interface offers the convenient use in a web browser. In addition, the software and source code is freely available for download as R-packages on our website. CONTACT: m.steinert@tu-bs.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

17.
ABSTRACT: BACKGROUND: Two-dimensional data needs to be processed and analysed in almost any experimental laboratory. Some tasks in this context may be performed with generic software such as spreadsheet programs which are available ubiquitously, others may require more specialised software that requires paid licences. Additionally, more complex software packages typically require more time by the individual user to understand and operate. Practical and convenient graphical data analysis software in Java with a user-friendly interface are rare. RESULTS: We have developed SDAR, a Java application to analyse two-dimensional data with an intuitive graphical user interface. A smart ASCII parser allows import of data into SDAR without particular format requirements. The centre piece of SDAR is the Java class GraphPanel which provides methods for generic tasks of data visualisation. Data can be manipulated and analysed with respect to the most common operations experienced in an experimental biochemical laboratory. Images of the data plots can be generated in SVG-, TIFF- or PNG-format. Data exported by SDAR is annotated with commands compatible with the Grace software. CONCLUSION: Since SDAR is implemented in Java, it is truly cross-platform compatible. The software is easy to install, and very convenient to use judging by experience in our own laboratories. It is freely available to academic users at http://www.structuralchemistry.org/pcsb/. To download SDAR, users will be asked for their name, institution and email address. A manual, as well as the source code of the GraphPanel class can also be downloaded from this site.  相似文献   

18.
19.
MOTIVATION: Next-generation sequencing technologies have led to the widespread use of -omic applications. As a result, there is now a pronounced bioinformatic bottleneck. The general model organism database (GMOD) tool kit (http://gmod.org) has produced a number of resources aimed at addressing this issue. It lacks, however, a robust online solution that can deploy heterogeneous data and software within a Web content management system (CMS). RESULTS: We present a bioinformatic framework for the Drupal CMS. It consists of three modules. First, GMOD-DBSF is an application programming interface module for the Drupal CMS that simplifies the programming of bioinformatic Drupal modules. Second, the Drupal Bioinformatic Software Bench (biosoftware_bench) allows for a rapid and secure deployment of bioinformatic software. An innovative graphical user interface (GUI) guides both use and administration of the software, including the secure provision of pre-publication datasets. Third, we present genes4all_experiment, which exemplifies how our work supports the wider research community. Conclusion: Given the infrastructure presented here, the Drupal CMS may become a powerful new tool set for bioinformaticians. The GMOD-DBSF base module is an expandable community resource that decreases development time of Drupal modules for bioinformatics. The biosoftware_bench module can already enhance biologists' ability to mine their own data. The genes4all_experiment module has already been responsible for archiving of more than 150 studies of RNAi from Lepidoptera, which were previously unpublished. Availability and implementation: Implemented in PHP and Perl. Freely available under the GNU Public License 2 or later from http://gmod-dbsf.googlecode.com.  相似文献   

20.
AraCyc is a database containing biochemical pathways of Arabidopsis, developed at The Arabidopsis Information Resource (http://www.arabidopsis.org). The aim of AraCyc is to represent Arabidopsis metabolism as completely as possible with a user-friendly Web-based interface. It presently features more than 170 pathways that include information on compounds, intermediates, cofactors, reactions, genes, proteins, and protein subcellular locations. The database uses Pathway Tools software, which allows the users to visualize a bird's eye view of all pathways in the database down to the individual chemical structures of the compounds. The database was built using Pathway Tools' Pathologic module with MetaCyc, a collection of pathways from more than 150 species, as a reference database. This initial build was manually refined and annotated. More than 20 plant-specific pathways, including carotenoid, brassinosteroid, and gibberellin biosyntheses have been added from the literature. A list of more than 40 plant pathways will be added in the coming months. The quality of the initial, automatic build of the database was compared with the manually improved version, and with EcoCyc, an Escherichia coli database using the same software system that has been manually annotated for many years. In addition, a Perl interface, PerlCyc, was developed that allows programmers to access Pathway Tools databases from the popular Perl language. AraCyc is available at the tools section of The Arabidopsis Information Resource Web site (http://www.arabidopsis.org/tools/aracyc).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号