首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptotic cell death eventually results in secondary necrotic cell death, whereas caspase-independent primary necrotic cell death has been reported and its mechanism involving RIP1 and RIP3 has been recently elucidated. Dual staining with fluorescent Annexin V and propidium iodide (PI) has been used to discriminate apoptotic and necrotic cell death, in which Annexin V-positive/PI-negative staining is regarded as apoptosis and PI-positive staining as necrosis. Here we demonstrate that primary necrotic cells unexpectedly show Annexin V-positive/PI-negative staining before they become PI-positive, and that primary necrotic and apoptotic Annexin V-positive/PI-negative cells can be discriminated by necrostatin-1, an inhibitor of primary necrosis by inhibition of RIP1.  相似文献   

2.
Ischemia-reperfusion induces both necrotic and apoptotic cell death. The ability of adenosine to attenuate reperfusion-induced injury (RI) and the role played by adenosine receptors are unclear. We therefore studied the role of the A(3) receptor (A(3)R) in ameliorating RI using the specific A(3)R agonist 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxi-N-methyl-b-D-ribofuranuronamide (2-Cl-IB-MECA). Isolated rat hearts and cardiomyocytes were subjected to ischemia or simulated ischemia, followed by reperfusion/reoxygenation. The end points were percent infarction/risk zone and annexin-V (apoptosis) and/or propidium iodide positivity (necrosis), respectively. In isolated hearts, 2-Cl-IB-MECA significantly limited infarct size (44.2 +/- 2.7% in control vs. 21.9 +/- 2.4% at 1 nM and 35.8 +/- 3.3% at 0.1 nM, P < 0.05). In isolated myocytes, apoptosis and necrosis were significantly reduced compared with controls (5.7 +/- 2.6% vs. 17.1 +/- 1.3% and 13.7 +/- 2.0% vs. 23.1 +/- 1.5%, respectively, P < 0.0001). In both models, the beneficial effects were abrogated using the A(3)R antagonist MRS-1191. The involvement of A(2a) receptor activation was also examined. This is the first study to demonstrate that A(3)R activation at reperfusion limits myocardial injury in the isolated rat heart and improves survival in isolated myocytes, possibly by antiapoptotic and antinecrotic mechanisms.  相似文献   

3.
4.
Apoptosis, an active process of cell self-destruction, is associated with myocardial ischemia. The redistribution of phosphatidylserine (PS) from the inner to the outer leaflet of the cell membrane is an early event in apoptosis. Annexin V, a protein with high specificity and tight binding to PS, was used to identify and localize apoptosis in the ischemic heart.Fluorescein-labeled annexin V has been used routinely for the assessment of apoptosis in vitro. For the detection of apoptosis in vivo, positron emission tomography and single-photon emission computed tomography have been shown to be suitable tools. In view of the relatively low spatial resolution of nuclear imaging techniques, we developed a high-resolution contrast-enhanced magnetic resonance imaging (MRI) method that allows rapid and noninvasive monitoring of apoptosis in intact organs. Instead of employing superparamagnetic iron oxide particles linked to annexin V, a new T1 contrast agent was used. To this effect, annexin V was linked to gadolinium diethylenetriamine pentaacetate (Gd-DTPA)-coated liposomes.The left coronary artery of perfused isolated rat hearts was ligated for 30 min followed by reperfusion. T(1) and T(2)* images were acquired by using an 11.7-T magnet before and after intracoronary injection of Gd-DTP-labeled annexin V to visualize apoptotic cells. A significant increase in signal intensity was visible in those regions containing cardiomyocytes in the early stage of apoptosis. Because labeling of early apoptotic cell death in intact organs by histological and immunohistochemical methods remains challenging, the use of Gd-DTPA-labeled annexin V in MRI is clearly an improvement in rapid targeting of apoptotic cells in the ischemic and reperfused myocardium.  相似文献   

5.
6.
Cyclic GMP-dependent protein kinases protein kinase G (PKG) Ialpha and PKGIbeta are major mediators of cGMP signaling in the cardiovascular system. PKGIalpha is present in the heart, although its role in protection against ischemia/reperfusion injury is not known. We investigated the direct effect of PKGIalpha against necrosis and apoptosis following simulated ischemia (SI) and reoxygenation (RO) in cardiomyocytes. Adult rat cardiomyocytes were infected with adenoviral vectors containing hPKGIalpha or catalytically inactive mutant hPKGIalphaK390A. After 24 h, the cells were subjected to 90 min of SI and 2 h RO for necrosis (trypan blue exclusion and lactate dehydrogenase release) or 18 h RO for apoptosis studies. To evaluate the role of K(ATP) channels, subgroups of cells were treated with 5-hydroxydecanoate (100 microm), HMR1098 (30 microm), or glibenclamide (50 microm), the respective blockers of mitochondrial, sarcolemmal, or both types of K(ATP) channels prior to SI. The necrosis observed in 33.7 +/- 1.6% of total myocytes in the SI-RO control group was reduced to 18.6 +/- 0.8% by PKGIalpha (mean +/- S.E., n = 7, p < 0.001). The apoptosis observed in 17.9 +/- 1.3% of total myocytes in the SI-RO control group was reduced to 6.0 +/- 0.6% by PKGIalpha (mean +/- S.E., n = 7, p < 0.001). In addition, PKGIalpha inhibited the activation of caspase-3 after SI-RO in myocytes. Myocytes infected with the inactive PKGIalphaK390A mutant showed no protection. PKGIalpha enhanced phosphorylation of Akt, ERK1/2, and JNK, increased Bcl-2, inducible nitric-oxide synthase, endothelial nitric-oxide synthase, and decreased Bax expression. 5-Hydroxydecanoate and glibenclamide abolished PKGIalpha-mediated protection against necrosis and apoptosis. However, HMR1098, had no effect. A scavenger of reactive oxygen species, as well as inhibitors of phosphatidylinositol 3-kinase, ERK, JNK1, and NOS, also blocked PKGIalpha-mediated protection against necrosis and apoptosis. These results show that opening of mitochondrial K(ATP) channels and generation of reactive oxygen species, in association with phosphorylation of Akt, ERK, and JNK, and increased expression of NOS and Bcl-2, play an essential role in the protective effect of PKGIalpha.  相似文献   

7.
Zhu HF  Dong JW  Zhu WZ  Ding HL  Zhou ZN 《Life sciences》2003,73(10):1275-1287
The aim of this study was to investigate the protection afforded by intermittent hypoxia (IH) against ischemia/reperfusion injury and its effects on calcium homeostasis during ischemia/reperfusion. The roles of KATP channels in these two actions were to be explored. Isolated hearts from IH and normoxic rats were subjected to 30 min global ischemia followed by 30 min reperfusion. Cardiac function was less deteriorated during ischemia and reperfusion in the IH rat hearts compared to normoxia rat hearts. Amplitude of the maximal contracture during ischemia was lower, while time to maximal contracture was extended in IH hearts. Post-ischemic recovery of left ventricular developed pressure and +/-dP/dtmax were higher in IH hearts than in normoxic hearts. KATP antagonist glibenclamide (10 microM) completely abolished these protective effects of IH, but had no appreciable influence on normoxic hearts. In cardiomyocytes isolated from normoxic hearts, [Ca2+]i, measured as arbitrary units of fluorescence ratio (340 nm/380 nm) of fura-2, gradually increased during 20 min simulated ischemia and kept at high level during 30 min reperfusion (1.081 +/- 0.004 and 1.088 +/- 0.006 respectively, p<0.01 vs pre-ischemia perfusion). However, in cardiomyocytes isolated from IH hearts, [Ca2+]i kept at normal level during ischemia and reperfusion (1.012 +/- 0.006 and 1.021 +/- 0.002 respectively, P>0.05 vs pre-ischemia perfusion). 10 microM glibenclamide and 100 microM 5-hydroxydecanoate (a selective mitochondria KATP antagonist) respectively abolished this effect of IH; calcium overloading reappeared during ischemia (1.133 +/- 0.007 and 1.118 +/- 0.007 respectively, P<0.01) and reperfusion (1.091 +/- 0.004 and 1.095 +/- 0.012 respectivly, P<0.01). However they had no effects on simulated ischemia and reperfusion-induced calcium overloading in normoxic myocytes. 50 microM pinacidil, a KATP opener, attenuated calcium overloading during ischemia and reperfusion in normoxic myocytes, but had no effect on [Ca2+]i change in IH myocytes. These results suggested that KATP channels contributed to the cardiac protection induced by IH against ischemia/reperfusion injury; the elimination of calcium overloading during ischemia/reperfusion by IH might underlie the mechanism of protection.  相似文献   

8.
Oxidative stress may cause apoptosis of cardiomyocytes in ischemic-reperfused myocardium. We investigated whether ischemia-reperfusion modifies the susceptibility of cardiomyocyte induction of apoptosis by oxidative stress. Ischemia was simulated by incubating isolated cardiomyocytes from adult rats in an anoxic, glucose-free medium, pH 6.4, for 3 h. Annexin V-fluorescein isothiocyanate/propidium iodide staining and the detection of DNA laddering were used as apoptotic markers. H(2)O(2) (7.5 micromol/l) induced apoptosis in 20.1 +/- 1.8% of cells under normoxic conditions but only 14.4 +/- 1.6% (n = 6, P < 0.05) after ischemia-reoxygenation. This partial protection of ischemic-reoxygenated cells was observed despite a reduction in their cellular glutathione content, from 11.4 +/- 1.9 in normoxic controls to 2.9 +/- 0.8 nmol/mg protein (n = 3, P < 0.05). Elevation of end-ischemic glutathione contents by pretreatment with 1 mmol/l N-acetylcysteine entirely protected ischemic-reoxygenated cells against induction of apoptosis by H(2)O(2). In conclusion, ischemia-reperfusion can protect cardiomyocytes against induction of apoptosis by exogenous oxidative stress. This endogenous protective effect is most clearly demonstrated when control and postischemic cardiomyocytes are compared at similar glutathione levels.  相似文献   

9.
Ross JL  Howlett SE 《PloS one》2012,7(6):e38425
Sex differences in responses to myocardial ischemia have been described, but whether cardiomyocyte function is influenced by sex in the setting of ischemia and reperfusion has not been elucidated. This study compared contractions and intracellular Ca(2+) in isolated ventricular myocytes exposed to ischemia and reperfusion. Cells were isolated from anesthetized 3-month-old male and female Fischer 344 rats, paced at 4 Hz (37°C), exposed to simulated ischemia (20 mins) and reperfused. Cell shortening (edge detector) and intracellular Ca(2+) (fura-2) were measured simultaneously. Cell viability was assessed with Trypan blue. Ischemia reduced peak contractions and increased Ca(2+) levels equally in myocytes from both sexes. However, contraction amplitudes were reduced in reperfusion in male myocytes, while contractions recovered to exceed control levels in females (62.6±5.1 vs. 140.1±15.8%; p<0.05). Only 60% of male myocytes excluded trypan blue dye after ischemia and reperfusion, while all female cardiomyocytes excluded the dye (p<0.05). Parallel experiments were conducted in myocytes from ~24-month-old female rats or 5-6-month-old rats that had an ovariectomy at 3-4 weeks of age. Beneficial effects of female sex on myocyte viability and contractile dysfunction in reperfusion were abolished in cells from 24-month-old females. Aged female myocytes also exhibited elevated intracellular Ca(2+) and alternans in ischemia. Cells from ovariectomized rats displayed increased Ca(2+) transients and spontaneous activity in ischemia compared to sham-operated controls. None of the myocytes from ovariectomized rats were viable after 15 minutes of ischemia, while 75% of sham cells remained viable at end of reperfusion (p<0.05). These findings demonstrate that cardiomyocytes from young adult females are more resistant to ischemia and reperfusion injury than cells from males. Age and OVX abolish these beneficial effects and induce Ca(2+) dysregulation at the level of the cardiomyocyte. Thus, beneficial effects of estrogen in ischemia and reperfusion are mediated, in part, by effects on cardiomyocytes.  相似文献   

10.
Ji X  Xu Z  Criswell HE  Boysen PG 《Life sciences》2004,74(24):3043-3052
The effects of propyl paraben, an antimicrobial preservative, on voltage-dependent sodium current and myocardial ischemia-reperfusion injury were investigated in isolated adult rat cardiomyocytes. Whole cell voltage-clamp recording showed that propyl paraben reversibly blocked the voltage-gated sodium channel both in concentration- and voltage-dependent manners. Propyl paraben (500 microM but not 100 microM) significantly shifted the steady-state inactivation of the sodium channel toward the hyperpolarizing direction at the V(1/2) point. Consistent with the above result, the propidium iodide (PI) uptake test revealed that pretreatment with 500 microM but not 100 microM of propyl paraben significantly reduced cell death induced by 45 min of sustained ischemia followed by 15 h of reperfusion (42.37 +/- 7.01% of cell viability in control and 71.05 +/- 7.06% in the propyl paraben group), suggesting that propyl paraben can protect myocytes from ischemia-reperfusion injury. These results indicate a possible correlation between the inhibition of sodium current and cardioprotection against ischemia-reperfusion injury.  相似文献   

11.
Dong JW  Zhu HF  Zhou ZN 《生理学报》2003,55(3):245-250
本文旨在研究Na+/H+交换以及Na+/Ca2 +交换对模拟缺血 /复灌引起的大鼠心肌细胞内游离钙水平变化的调节作用。分别利用模拟缺血液和正常台氏液对大鼠心肌细胞进行缺血 /复灌处理 ,在缺血期间分别应用Na+/H+交换抑制剂阿米洛利 (amiloride)、Na+/Ca2 +交换抑制剂NiCl2 以及无钙液 ,观察它们对细胞内游离Ca2 +浓度变化的影响。利用Zeiss LSM 5 10激光共聚焦显微镜检测、采集细胞内游离Ca2 +的指示剂Fluo 3 AM的荧光信号 ,计算出相对于正常(缺血前 )的相对荧光强度 ,以表示胞内游离Ca2 +浓度的变化。结果显示 ,模拟缺血引起大鼠心肌细胞内游离Ca2 +持续上升 ,缺血前的相对荧光强度值为 10 0 % ,模拟缺血 5min后为 140 3± 13 0 % (P <0 0 5 ) ,复灌 15min后为 142 8±15 5 % (P <0 0 5 )。经 10 0 μmol/Lamiloride、5mmol/LNiCl2 和无钙液分别预处理 ,模拟缺血 5min后的相对荧光强度分别为 10 1 4± 16 3 % (P <0 0 5 )、110 4± 11 1% (P <0 0 5 )和 10 7 1± 10 8(P <0 0 5 ) ;复灌 15min后则分别为 97 8±14 3 % (P <0 0 5 )、10 6 2± 14 5 % (P <0 0 5 )和 10 6 6± 15 7(P <0 0 5 )。另外 ,与对照组细胞相比 ,再灌注期间NiCl2和无钙液处理的细胞钙振荡的产生幅度明显减弱 ,amilorid  相似文献   

12.
We examined the relationship between clusterin and activated complement in human heart infarction and evaluated the effect of this protein on ischemic rat neonatal cardiomyoblasts (H9c2) and isolated adult ventricular rat cardiomyocytes as in vitro models of acute myocardial infarction. Clusterin protects cells by inhibiting complement and colocalizes with complement on jeopardized human cardiomyocytes after infarction. The distribution of clusterin and complement factor C3d was evaluated in the infarcted human heart. We also analyzed the protein expression of clusterin in ischemic H9c2 cells. The binding of endogenous and purified human clusterin on H9c2 cells was analyzed by flow cytometry. Furthermore, the effect of clusterin on the viability of ischemically challenged H9c2 cells and isolated adult ventricular rat cardiomyocytes was analyzed. In human myocardial infarcts, clusterin was found on scattered, morphologically viable cardiomyocytes within the infarcted area that were negative for complement. In H9c2 cells, clusterin was rapidly expressed after ischemia. Its expression was reduced after reperfusion. Clusterin bound to single annexin V-positive or annexin V and propidium iodide-positive H9c2 cells. Clusterin inhibited ischemia-induced death in H9c2 cells as well as in isolated adult ventricular rat cardiomyocytes in the absence of complement. We conclude that ischemia induces the upregulation of clusterin in ischemically challenged, but viable, cardiomyocytes. Our data suggest that clusterin protects cardiomyocytes against ischemic cell death via a complement-independent pathway.  相似文献   

13.
Atherosclerosis and coronary heart disease are causing high morbidity and mortality worldwide. Different risk factors have been demonstrated, but the exact mechanisms behind these diseases are still not fully understood. Recent studies have suggested Chlamydia pneumoniae to be involved in the pathogenesis, and increased apoptotic indexes in atherosclerotic plaques have been documented. In this study, we show that C. pneumoniae induces apoptosis and necrosis in populations of human coronary artery endothelial cells. Apoptosis was determined by TUNEL and flow cytometry after staining of cells with annexin V and propidium iodide, and defined as TUNEL-reactive or annexin V-positive, propidium iodide-negative cells. The apoptosis was induced within 2 h postinfection and increased with inoculation dose. The general caspase inhibitor z-VAD-fmk did not affect apoptotic frequencies. By immunochemistry and immunoblot, we demonstrated activation and subcellular translocation of the proapoptotic protein Bax, and translocation of apoptosis-inducing factor from the cytosol to the nucleus. These results indicate that C. pneumoniae-induced apoptosis in human coronary artery endothelial cells is caspase-independent and regulated by Bax and apoptosis-inducing factor.  相似文献   

14.
The Chromogranin A (CgA)-derived anti-hypertensive peptide catestatin (CST) antagonizes catecholamine secretion, and is a negative myocardial inotrope acting via a nitric oxide-dependent mechanism. It is not known whether CST contributes to ischemia/reperfusion injury or is a component of a cardioprotective response to limit injury. Here, we tested whether CST by virtue of its negative inotropic activity improves post-ischemic cardiac function and cardiomyocyte survival. Three groups of isolated perfused hearts from adult Wistar rats underwent 30-min ischemia and 120-min reperfusion (I/R, Group 1), or were post-conditioned by brief ischemic episodes (PostC, 5-cycles of 10-s I/R at the beginning of 120-min reperfusion, Group 2), or with exogenous CST (75 nM for 20 min, CST-Post, Group-3) at the onset of reperfusion. Perfusion pressure and left ventricular pressure (LVP) were monitored. Infarct size was evaluated with nitroblue-tetrazolium staining. The CST (5 nM) effects were also tested in simulated ischemia/reperfusion experiments on cardiomyocytes isolated from young-adult rats, evaluating cell survival with propidium iodide labeling. Infarct size was 61 ± 6% of risk area in hearts subjected to I/R only. PostC reduced infarct size to 34 ± 5%. Infarct size in CST-Post was 36 ± 3% of risk area (P < 0.05 respect to I/R). CST-Post reduced post-ischemic rise of diastolic LVP, an index of contracture, and significantly improved post-ischemic recovery of developed LVP. In isolated cardiomyocytes, CST increased the cell viability rate by about 65% after simulated ischemia/reperfusion. These results suggest a novel cardioprotective role for CST, which appears mainly due to a direct reduction of post-ischemic myocardial damages and dysfunction, rather than to an involvement of adrenergic terminals and/or endothelium.  相似文献   

15.
An increase in cytosolic Ca2+ via a capacitative calcium entry (CCE)-mediated pathway, attributed to members of the transient receptor potential (TRP) superfamily, TRPC1 and TRPC3, has been reported to play an important role in regulating cardiomyocyte hypertrophy. Increased cytosolic Ca2+ also plays a critical role in mediating cell death in response to ischemia-reperfusion (I/R). Therefore, we tested the hypothesis that overexpression of TRPC3 in cardiomyocytes will increase sensitivity to I/R injury. Adult cardiomyocytes isolated from wild-type (WT) mice and from mice overexpressing TRPC3 in the heart were subjected to 90 min of ischemia and 3 h of reperfusion. After I/R, viability was 51 +/- 1% in WT mice and 42 +/- 5% in transgenic mice (P < 0.05). Apoptosis assessed by annexin V was significantly increased in the TRPC3 group compared with WT (32 +/- 1% vs. 21 +/- 3%; P < 0.05); however, there was no significant difference in necrosis between groups. Treatment of TRPC3 cells with the CCE inhibitor SKF-96365 (0.5 microM) significantly improved cellular viability (54 +/- 4%) and decreased apoptosis (15 +/- 4%); in contrast, the L-type Ca2+ channel inhibitor verapamil (10 microM) had no effect. Calpain-mediated cleavage of alpha-fodrin was increased approximately threefold in the transgenic group following I/R compared with WT (P < 0.05); this was significantly attenuated by SKF-96365. The calpain inhibitor PD-150606 (25 microM) attenuated the increase in both alpha-fodrin cleavage and apoptosis in the TPRC3 group. Increased TRPC3 expression also increased sensitivity to Ca2+ overload stress, but it did not affect the response to TNF-alpha-induced apoptosis. These results suggest that CCE mediated via TRPC may play a role in cardiomyocyte apoptosis following I/R due, at least in part, to increased calpain activation.  相似文献   

16.
 Biochemical alterations occurring in many cell types during apoptosis include the loss of plasma membrane phospholipid asymmetry and nuclear DNA fragmentation. Annexin V staining detects phosphatidylserine translocation into the outer plasma membrane layer occurring during cell death, while the in situ tailing (IST or TUNEL) reaction labels the DNA strand breaks typical of apoptosis. To compare the time course of these processes we investigated methylprednisolone-induced apoptosis of rat thymocytes, topoisomerase inhibitor-induced apoptosis in the human histiocytic lymphoma cell line U937, and serum deprivation-induced apoptosis in the rat pheochromocytoma cell line, PC12. At all time points, FACS analysis and quantitative fluorescence light microscopy showed a higher proportion of annexin V-positive than IST-positive cells, with significantly different time courses in the apoptotic cell models investigated (Anova test). Results were confirmed by confocal microscopy. Our data indicate that the exposure of phosphatidylserine, a potential phagocyte recognition signal on the cell surface of apoptotic cells in vivo, precedes DNA strand breaks during apoptosis in different cell types. Accepted: 29 June 1998  相似文献   

17.
The reliability of eight distinct methods (Giemsa staining, trypan blue exclusion, acridine orange/ethidium bromide (AO/EB) double staining for fluorescence microscopy and flow cytometry, propidium iodide (PI) staining, annexin V assay, TUNEL assay and DNA ladder) for detection and quantification of cell death (apoptosis and necrosis) was evaluated and compared. Each of these methods detects different morphological or biochemical features of these two processes. The comparative analysis of the 8 techniques revealed that AO/EB (read in fluorescence microscopy) provides a reliable method to measure cells in different compartments (or pathways) of cell death though it is very time consuming. PI staining and TUNEL assay were also sensitive in detecting very early signs of apoptosis, but do not allow precise quantification of apoptotic cells. These three methods were concordant in relation to induction of apoptosis and necrosis in HL60 cells with the various UV irradiation time periods tested. Both AO/EB (read by flow cytometry) and annexin V-FITC/PI failed to detect the same number of early apoptotic cells as the other three methods. Trypan blue is valueless for this purpose. Giemsa and DNA ladder might be useful as confirmatory tests in some situations.  相似文献   

18.
The purpose of the study was to examine the phosphatidylserine translocation in human spermatozoa membrane during capacitation. Material consisted of human semen from normozoospermic men. Spermatozoa were stained with fluorescein-labelled annexin V. The presence and distribution of annexin V binding sites were analysed using the fluorescence microscope. Within first 60 min afterejaculation, 5-39% viable annexin V-positive spermatozoa were detected. The annexin V binding sites were found mainly in the midpiece. After 4 to 8 h of incubation of spermatozoa in capacitation medium (BMI), the number of cells positively stained with annexin V increased. After capacitation, the localisations of phosphatidylserine was changed and the annexin V binding sites were found also in the acrosomal region but never in the equatorial area. The process of the phosphatidylserine translocation observed during our experiments may reflect changes of the plasma membrane occurring during capacitation or, less likely, apoptosis of spermatozoa.  相似文献   

19.
BACKGROUND: Methods widely used to detect apoptosis do not allow us to easily distinguish between nuclei from viable or necrotic cells. Even if apoptosis and necrosis seem to occur as alternatives at the single cell level, they could be present simultaneously in a cell population much more frequently than expected. For this reason, attention was focused on attempting to recognize, by multiparameter flow cytometry, the characteristics of viable cells and of apoptotic or necrotic dead cells. METHODS: Apoptosis and necrosis were induced in vitro in murine thymocytes and lymphocytes from adult peripheral blood by using dexamethasone or prostaglandin E2 treatment and heat shock at 60 degrees C or hydrogen peroxide, respectively. Traditional methods, such as DNA gel electrophoresis and propidium iodide staining followed by single-fluorescence analysis or annexin-V-fluorescein isothiocyanate plus propidium iodide staining by using flow cytometry, were compared with a new method. This method consisted of combined light-scatter and red fluorescence analysis by flow cytometry after isolation of nuclei by hypotonic solution as well as high-dose detergent treatment and DNA staining with propidium iodide. RESULTS: Results showed that, although traditional methods such as DNA-gel electrophoresis and single-parameter fluorescence flow cytometry analysis were unable, as expected, to discriminate among viability, apoptosis, and necrosis, our new method has enabled us to easily identify nuclei from viable, apoptotic, and necrotic cells. Results obtained by using our method were comparable to those obtained by using two-color analysis of cells after propidium iodide/annexin V staining. CONCLUSIONS: A highly reproducible, inexpensive, rapid, and easily accessible method of analysis has been developed for simultaneously detecting apoptosis and necro sis.  相似文献   

20.
To investigate cardiac stunning, we recorded intracellular [Ca(2+)], contractions, and electrical activity in isolated guinea pig ventricular myocytes exposed to simulated ischemia and reperfusion. After equilibration, ischemia was simulated by exposing myocytes to hypoxia, acidosis, hyperkalemia, hypercapnia, lactate accumulation, and substrate deprivation for 30 min at 37 degrees C. Reperfusion was simulated by exposure to Tyrode solution. Field-stimulated myocytes exhibited stunning upon reperfusion. By 10 min of reperfusion, contraction amplitude decreased to 43.0 +/- 5.5% of preischemic values (n = 15, P < 0.05), although action potential configuration and sarcoplasmic reticulum Ca(2+) stores, assessed with caffeine, were normal. Diastolic [Ca(2+)] and Ca(2+) transients (fura 2) were also normal in stunned myocytes. In voltage-clamped cells, peak L-type Ca(2+) current was reduced to 47.4 +/- 4.5% of preischemic values at 10 min of reperfusion (n = 21, P < 0.05). Contractions elicited by Ca(2+)-induced Ca(2+) release and the voltage-sensitive release mechanism were both depressed in reperfusion. Our observations suggest that stunning is associated with reduced L-type Ca(2+) current but that alterations in Ca(2+) homeostasis and release are not directly responsible for stunning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号