首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hyperglycemia is an important predictor of cardiovascular mortality in patients with diabetes. We investigated the hypothesis that diabetes or acute hyperglycemia attenuates the reduction of myocardial infarct size produced by activation of mitochondrial ATP-regulated potassium (K(ATP)) channels. Acutely instrumented barbiturate-anesthetized dogs were subjected to a 60-min period of coronary artery occlusion and 3 h of reperfusion. Myocardial infarct size (triphenyltetrazolium chloride staining) was 25 +/- 1, 28 +/- 3, and 25 +/- 1% of the area at risk (AAR) for infarction in control, diabetic (3 wk after streptozotocin-alloxan), and hyperglycemic (15% intravenous dextrose) dogs, respectively. Diazoxide (2.5 mg/kg iv) significantly decreased infarct size (10 +/- 1% of AAR, P < 0.05) but did not produce protection in the presence of diabetes (28 +/- 5%) or moderate hyperglycemia (blood glucose 310 +/- 10 mg/dl; 23 +/- 2%). The dose of diazoxide and the degree of hyperglycemia were interactive. Profound (blood glucose 574 +/- 23 mg/dl) but not moderate hyperglycemia blocked the effects of high-dose (5.0 mg/kg) diazoxide [26 +/- 3, 15 +/- 3 (P < 0.05), and 11 +/- 2% (P < 0.05), respectively]. There were no differences in systemic hemodynamics, AAR, or coronary collateral blood flow (by radioactive microspheres) between groups. The results indicate that diabetes or hyperglycemia impairs activation of mitochondrial K(ATP) channels.  相似文献   

2.
We tested the hypothesis that glucose-insulin-potassium (GIK)-induced protection against myocardial infarction depends on ATP-dependent K(+) (K(ATP)) channel activation and is abolished by hyperglycemia before the ischemia. Dogs were subjected to a 60-min coronary artery occlusion and 3-h reperfusion in the absence or presence of GIK (25% dextrose; 50 IU insulin/l; 80 mM/l KCl infused at 1.5 ml x kg(-1) x h(-1)) beginning 75 min before coronary artery occlusion or 5 min before reperfusion. The role of K(ATP) channels was evaluated by pretreatment with glyburide (0.1 mg/kg). The efficacy of GIK was investigated with increases in blood glucose (BG) concentrations to 300 or 600 mg/dl or experimental diabetes (alloxan/streptozotocin). Infarct size (IS) was 29 +/- 2% of the area at risk in control experiments. GIK decreased (P < 0.05) IS when administered beginning 5 min before reperfusion. This protective action was independent of BG (13 +/- 2 and 12 +/- 2% of area at risk; BG = 80 or 600 mg/dl, respectively) but was abolished in dogs receiving glyburide (30 +/- 4%), hyperglycemia before ischemia (27 +/- 4%), or diabetes (25 +/- 3%). IS was unchanged by GIK when administered before ischemia independent of BG (31 +/- 3, 27 +/- 2, and 35 +/- 3%; BG = 80, 300, and 600 mg/dl, respectively). The insulin component of GIK promotes cardioprotection by K(ATP) channel activation. However, glucose decreases K(ATP) channel activity, and this effect predominates when hyperglycemia is present before ischemia.  相似文献   

3.
Patients with diabetes mellitus exhibit postprandial hyperglycemia, systemic oxidative stress, impaired endothelium-dependent, nitric oxide (NO)-mediated coronary artery dilatation, and an increased incidence of coronary events. Whether hyperglycemia causally mediates these associations is unknown. To test the hypothesis that postprandial hyperglycemia acutely impairs coronary endothelial function in humans, we compared the ability of the endothelium-dependent vasodilator acetylcholine to increase conduit coronary diameter (the macrovascular response) and coronary blood flow velocity (the microvascular response) in 12 cardiac transplant recipients without diabetes before and after blood glucose was raised from 6.7 +/- 1.3 mmol/l (121 +/- 24 mg/dl) to 17.8 +/- 1.5 mmol/l (321 +/- 27 mg/dl) for 1 h. Hyperglycemia acutely doubled circulating levels of the oxidation product malondialdehyde, indicating systemic oxidative stress, but did not affect the ability of acetylcholine to dilate conduit coronary segments or accelerate coronary blood flow. We conclude that the oxidative stress associated with a single acute episode of hyperglycemia affects neither acetylcholine-mediated coronary endothelial NO release nor the subsequent bioavailability, metabolism, or action of NO within the coronary circulation of cardiac transplant recipients. These observations imply that the relationship among hyperglycemia, oxidative stress, and coronary endothelial dysfunction is presumably mediated by mechanisms operating over longer periods of time.  相似文献   

4.
Hyperglycemia is associated with generation of reactive oxygen species (ROS), and this action may contribute to accelerated atherogenesis. We tested the hypothesis that hyperglycemia produces alterations in left anterior descending coronary artery (LAD) wall shear stress concomitant with endothelial dysfunction and ROS production in dogs (n = 12) instrumented for measurement of LAD blood flow, velocity, and diameter. Dogs were randomly assigned to receive vehicle (0.9% saline) or the superoxide dismutase mimetic 4- hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (tempol) and were administered intravenous infusions of d-glucose to achieve target blood glucose concentrations of 350 and 600 mg/dl (moderate and severe hyperglycemia, respectively). Endothelial function and ROS generation were assessed by coronary blood flow responses to acetylcholine (10, 30, and 100 ng/kg) and dihydroethidium fluorescence of myocardial biopsies, respectively. Indexes of wall shear stress were calculated with conventional fluid dynamics theory. Hyperglycemia produced dose-related endothelial dysfunction, increases in ROS production, and reductions in oscillatory shear stress that were normalized by tempol. The results suggest a direct association between hyperglycemia-induced ROS production, endothelial dysfunction, and decreases in oscillatory shear stress in vivo.  相似文献   

5.
Recent evidence suggests that reactive oxygen species (ROS) promote proliferation and migration of vascular smooth muscle (VSMC) and endothelial cells (EC). We tested the hypothesis that ROS serve as crucial messengers during coronary collateral development. Dogs were subjected to brief (2 min), repetitive coronary artery occlusions (1/h, 8/day, 21 day duration) in the absence (occlusion, n = 8) or presence of N-acetylcysteine (NAC) (occlusion + NAC, n = 8). A sham group (n = 8) was instrumented identically but received no occlusions. In separate experiments, ROS generation after a single 2-min coronary artery occlusion was assessed with dihydroethidium fluorescence. Coronary collateral blood flow (expressed as a percentage of normal zone flow) was significantly increased (71 +/- 7%) in occlusion dogs after 21 days but remained unchanged (13 +/- 3%) in sham dogs. Treatment with NAC attenuated increases in collateral blood flow (28 +/- 8%). Brief coronary artery occlusion and reperfusion caused ROS production (256 +/- 33% of baseline values), which was abolished with NAC (104 +/- 12%). Myocardial interstitial fluid produced tube formation and proliferation of VSMC and EC in occlusion but not in NAC-treated or sham dogs. The results indicate that ROS are critical for the development of the coronary collateral circulation.  相似文献   

6.
Thromboxane A2 (TXA2) receptor antagonists can limit infarct size in models of coronary occlusion and reperfusion, but it was unknown if these compounds can mitigate reperfusion injury. Anesthetized open chest dogs were subjected to left circumflex coronary (LCX) occlusion for 90 min. Two minutes before reperfusion, the dogs were given iv saline (0.9% NaCl) or the TXA2 antagonist SQ 29,548 (0.2 mg/kg + 0.2 mg/kg/hr). Reperfusion was instituted for 5 hr at which time infarct size was determined. Regional myocardial blood flow was determined before, during, and after occlusion. SQ 29,548 treatment resulted in a significant reduction in infarct size (57 +/- 7 and 34 +/- 8% of the left ventricular area at risk infarcted in the saline and SQ 29,548 groups, respectively). No differences in collateral flow during occlusion were observed between groups, but SQ 29,548 treatment resulted in a significantly higher subendocardial reperfusion flow (54 +/- 10 and 93 +/- 14 ml/min/100g for the saline and SQ 29,548 groups, respectively). Thus, TXA2 seems to play a role in exacerbating reperfusion injury and TXA2 receptor blockade may have potential as a mode of therapy for ischemia-reperfusion damage.  相似文献   

7.
This study was conducted to determine whether the thromboxane A2 receptor antagonist SQ 30,741 can improve post-ischemic recovery of cardiac function in anesthetized dogs. Saline or SQ 30,741 was infused throughout a 15-min coronary occlusion and 5 hr of reperfusion. Ischemic regional cardiac function was determined using subendocardial ultrasonic crystals. Despite no differences in collateral blood flow or reperfusion flow, SQ 30,741 significantly improved ventricular segmental shortening at all times measured during reperfusion. At 5 hr after the initiation of reperfusion, segmental shortening was 3 +/- 16 and 44 +/- 10% of baseline values for saline and SQ 30,741 groups, respectively. These results implicate thromboxane receptor activation in the pathogenesis of myocardial stunning, and thromboxane antagonists may be useful in mitigating this functional deficit.  相似文献   

8.
We examined the effect of the A3 adenosine receptor (AR) agonist IB-MECA on infarct size in an open-chest anesthetized dog model of myocardial ischemia-reperfusion injury. Dogs were subjected to 60 min of left anterior descending (LAD) coronary artery occlusion and 3 h of reperfusion. Infarct size and regional myocardial blood flow were assessed by macrohistochemical staining with triphenyltetrazolium chloride and radioactive microspheres, respectively. Four experimental groups were studied: vehicle control (50% DMSO in normal saline), IB-MECA (100 microg/kg iv bolus) given 10 min before the coronary occlusion, IB-MECA (100 microg/kg iv bolus) given 5 min before initiation of reperfusion, and IB-MECA (100 microg/kg iv bolus) given 10 min before coronary occlusion in dogs pretreated 15 min earlier with the ATP-dependent potassium channel antagonist glibenclamide (0.3 mg/kg iv bolus). Administration of IB-MECA had no effect on any hemodynamic parameter measured including heart rate, first derivative of left ventricular pressure, aortic pressure, LAD coronary blood flow, or coronary collateral blood flow. Nevertheless, pretreatment with IB-MECA before coronary occlusion produced a marked reduction in infarct size ( approximately 40% reduction) compared with the control group (13.0 +/- 3.2% vs. 25.2 +/- 3.7% of the area at risk, respectively). This effect of IB-MECA was blocked completely in dogs pretreated with glibenclamide. An equivalent reduction in infarct size was observed when IB-MECA was administered immediately before reperfusion (13.1 +/- 3.9%). These results are the first to demonstrate efficacy of an A3AR agonist in a large animal model of myocardial infarction by mechanisms that are unrelated to changes in hemodynamic parameters and coronary blood flow. These data also demonstrate in an in vivo model that IB-MECA is effective as a cardioprotective agent when administered at the time of reperfusion.  相似文献   

9.
Inhibition of endothelial nitric oxide (NO) synthase (eNOS) is associated with an increase in glucose uptake by the heart. We have already shown that Type I diabetes also causes a decrease in eNOS protein expression and altered NO control of both coronary vascular resistance and oxygen consumption. Therefore, we predict that the increase in plasma glucose and the reduction in eNOS during diabetes together would result in a large increase in cardiac glucose uptake. Arterial (A) and coronary sinus (C) plasma levels of glucose, free fatty acid (FFA), beta-hydroxybutyric acid (beta-HBA), and lactate were measured, and myocardial uptake was calculated before and at week 1, 2, 3, and 4 of alloxan-induced diabetes. The heart of healthy dogs consumed FFA (19.2 +/- 2.6 microeq/min) and lactate (19.7 +/- 3.4 micromol/min). Dogs in the late stage of diabetes (at week 4) had elevated arterial beta-HBA concentrations (1.6 +/- 0.7 micromol/l) that were accompanied by an increased beta-HBA uptake (0.3 +/- 0.2 micromol/min). In contrast, myocardial lactate (-4.8 +/- 3.0 micromol/min) and FFA uptake (2.5 +/- 1.9 microeq/min) were significantly reduced in diabetic animals. Despite a marked hyperglycemia (449 +/- 25 mg/dl), the heart did not take up glucose (-7.9 +/- 4.1 mg/dl). Our results indicate significant changes in the myocardial substrate utilization in dogs only in the late stage of diabetes, at a time when myocardial NO production is already decreased.  相似文献   

10.
The hypothesis that acetaminophen can reduce necrosis during myocardial infarction was tested in male dogs. Two groups were studied: vehicle- (n=10) and acetaminophen-treated (n=10) dogs. All dogs were obtained from the same vendor, and there were no significant differences in their ages (18 +/- 2 mo), weights (24 +/- 1 kg), or housing conditions. Selected physiological data, e.g., coronary blood flow, nonspecific collateral flow, epicardial temperature, heart rate, systemic mean arterial pressure, left ventricular developed pressure, the maximal first derivative of left ventricular developed pressure, blood gases, and pH, were collected at baseline and during regional myocardial ischemia and reperfusion. There were no significant differences in coronary blood flow, nonspecific collateral flow, epicardial temperature, heart rate, systemic mean arterial pressure, or blood gases and pH between the two groups at any of the three time intervals, even though there was a trend toward improved function in the presence of acetaminophen. Infarct size, the main objective of the investigation, was markedly and significantly reduced by acetaminophen. For example, when expressed as a percentage of ventricular wet weight, infarct size was 8 +/- 1 versus 3 +/- 1%(P <0.05) in vehicle- and acetaminophen-treated hearts, respectively. When infarct size was expressed as percentage of the area at risk, it was 35 +/- 3 versus 13 +/- 2% (P <0.05) in vehicle- and acetaminophen-treated groups, respectively. When area at risk was expressed as percentage of total ventricular mass, there were no differences in the two groups. Results reveal that the recently reported cardioprotective properties of acetaminophen in vitro can now be extended to the in vivo arena. They suggest that it is necessary to add acetaminophen to the growing list of pharmaceuticals that possess cardioprotective efficacy in mammals.  相似文献   

11.
MPG静注减轻清醒狗缺血后心肌顿抑   总被引:2,自引:0,他引:2  
为了解自由基清除剂2巯基丙酰基甘氨酸(MPG)能否减轻缺血后心肌顿抑,本文报告了在清醒狗模型中氧自由基清除剂MPG对缺血后心肌顿抑的疗效。39只清醒狗模型阻闭前降支15min后再灌注48h。治疗组(n=17)于阻闭前15min始静脉给予MPG(100mg/kg·h),共持续60min,对照组(n=22)给予生理盐水。结果表明,二组缺血区侧支血流、缺血区大小及血液动力学指标无显著差异,而治疗组室壁收缩增厚指数(一种局部心肌功能指标)于再灌注后2、3、4、5、6h明显大于对照组,当侧支血流低于10%时,改善更明显。指数回归分析结果显示,治疗组侧支血流越低,收缩功能恢复程度越明显。结论,MPG可以促进缺血后心肌顿抑的恢复,这种有益的疗效在低侧支血流时更明显。  相似文献   

12.
Recent evidence indicates that hyperglycemia is an important risk factor for the development of cardiovascular disease. We tested the hypothesis that myocardial infarct size is related to blood glucose concentration in the presence or absence of ischemic preconditioning (PC) stimuli in canine models of diabetes mellitus and acute hyperglycemia. Barbiturate-anesthetized dogs were subjected to a 60-min period of coronary artery occlusion and 3-h reperfusion. Infarct size was 24 +/- 2% of the area at risk (AAR) for infarction in control dogs. PC significantly (P < 0.05) decreased the extent of infarction in normal (8 +/- 2% of AAR), but not diabetic (22 +/- 4% of AAR), dogs. Infarct size was linearly related to blood glucose concentration during acute hyperglycemia (r = 0.96; P < 0.001) and during diabetes (r = 0.74; P < 0.002) in the presence or absence of PC stimuli. Increases in serum osmolality caused by administration of raffinose (300 g) did not increase infarct size (11 +/- 3% of AAR) or interfere with the ability of PC to protect against infarction (2 +/- 1% of AAR). The results indicate that hyperglycemia is a major determinant of the extent of myocardial infarction in the dog.  相似文献   

13.
Oxygen-derived free radicals (the superoxide anion O2- and hydroxyl radical.OH) have been implicated in myocardial injury associated with coronary artery occlusion followed by reperfusion. Transition metals (such as iron or copper) are needed to catalyze the formation of the .OH radical and subsequent .OH-mediated lipid peroxidation, yet the role of these transition metals in the pathogenesis of myocyte necrosis remains undefined. To address this issue, 21 dogs underwent 2 h of coronary artery occlusion and 4 h of reperfusion. Each animal was randomly assigned into 1 of 3 treatment groups: 7 received the iron chelator deferoxamine beginning 30 min preocclusion, 7 received deferoxamine beginning 5 min prior to reperfusion, while 7 dogs served as saline controls. Deferoxamine effectively chelated free iron in both treatment groups (total urine iron content averaged 42 +/- 16, 662 +/- 177 and 803 +/- 2.5 micrograms in control, pretreated, and deferoxamine at reperfusion groups respectively; p less than 0.05), but had no significant effect on in vivo area at risk (AR), hemodynamic parameters, collateral blood flow during occlusion, or myocardial blood flow following reperfusion. Area of necrosis (AN) in dogs pretreated with deferoxamine (34.6 +/- 3.7% of the AR; p less than 0.05) was significantly smaller than that observed in the saline control group (55.4 +/- 4.7% of the AR). Deferoxamine administered at the time of reperfusion, however, had no significant effect on infarct size (AN/AR = 54.3 +/- 8.7%, p = NS vs. controls). Thus, early treatment with the iron chelator deferoxamine acutely reduced the extent of myocyte necrosis produced by 2 h of transient coronary artery occlusion in the canine model.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Anti-hyperglycemic effects of ginseng: Comparison between root and berry   总被引:5,自引:0,他引:5  
L. Dey  J.T. Xie  A. Wang  J. Wu  S.A. Maleckar  C.-S. Yuan   《Phytomedicine》2003,10(6-7):600-605
Previous studies demonstrated that both ginseng root and ginseng berry possess anti-diabetic activity. However, a direct comparison between the root and the berry under the same experimental conditions has not been conducted. In the present study, we compared anti-hyperglycemic effect between Panax ginseng root and Panax ginseng berry in ob/ob mice, which exhibit profound obesity and hyperglycemia that phenotypically resemble human type-2 diabetes. We observed that ob/ob mice had high baseline glucose levels (195 mg/dl). Ginseng root extract (150 mg/kg body wt.) and ginseng berry extract (150 mg/kg body wt.) significantly decreased fasting blood glucose to 143 +/- 9.3 mg/dl and 150 +/- 9.5 mg/dl on day 5, respectively (both P < 0.01 compared with the vehicle). On day 12, although fasting blood glucose level did not continue to decrease in the root group (155 +/- 12.7 mg/dl), the berry group became normoglycemic (129 +/- 7.3 mg/dl; P < 0.01). We further evaluated glucose tolerance using the intraperitoneal glucose tolerance test. On day 0, basal hyperglycemia was exacerbated by intraperitoneal glucose load, and failed to return to baseline after 120 min. After 12 days of treatment with ginseng root extract (150 mg/kg body wt.), the area under the curve (AUC) showed some decrease (9.6%). However, after 12 days of treatment with ginseng berry extract (150 mg/kg body wt.), overall glucose exposure improved significantly, and the AUC decreased 31.0% (P < 0.01). In addition, we observed that body weight did not change significantly after ginseng root extract (150 mg/kg body wt.) treatment, but the same concentration of ginseng berry extract significantly decreased body weight (P < 0.01). These data suggest that, compared to ginseng root, ginseng berry exhibits more potent anti-hyperglycemic activity, and only ginseng berry shows marked anti-obesity effects in ob/ob mice.  相似文献   

15.
Volatile anesthetics stimulate, but hyperglycemia attenuates, the activity of mitochondrial ATP-regulated K(+) channels. We tested the hypothesis that diabetes mellitus interferes with isoflurane-induced preconditioning. Acutely instrumented, barbiturate-anesthetized dogs were randomly assigned to receive 0, 0.32, or 0.64% end-tidal concentrations of isoflurane in the absence or presence of diabetes (3 wk after administration of alloxan and streptozotocin) in six experimental groups. All dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3 h of reperfusion. Myocardial infarct size (triphenyltetrazolium staining) was 29 +/- 3% (n = 8) of the left ventricular area at risk in control experiments. Isoflurane reduced infarct size (15 +/- 2 and 13 +/- 1% during 0.32 and 0.64% concentrations; n = 8 and 7 dogs, respectively). Diabetes alone did not alter infarct size (30 +/- 3%; n = 8) but blocked the protective effects of 0.32% (27 +/- 2%; n = 7) and not 0.64% isoflurane (18 +/- 3%; n = 7). Infarct size was directly related to blood glucose concentrations in diabetic dogs, but this relationship was abolished by higher concentrations of isoflurane. The results indicate that blood glucose and end-tidal isoflurane concentrations are important determinants of infarct size during anesthetic-induced preconditioning.  相似文献   

16.
Intermittent hypoxic training protects canine myocardium from infarction   总被引:6,自引:0,他引:6  
This investigation examined cardiac protective effects of normobaric intermittent hypoxia training. Six dogs underwent intermittent hypoxic training for 20 consecutive days in a normobaric chamber ventilated intermittently with N2 to reduce fraction of inspired oxygen (FiO2) to 9.5%-10%. Hypoxic periods, initially 5 mins and increasing to 10 mins, were followed by 4-min normoxic periods. This hypoxia-normoxia protocol was repeated, initially 5 times and increasing to 8 times. The dogs showed no discomfort during intermittent hypoxic training. After 20 days of hypoxic training, the resistance of ventricular myocardium to infarction was assessed in an acute experiment. The left anterior descending (LAD) coronary artery was occluded for 60 mins and then reperfused for 5 hrs. At 30 mins of LAD occlusion, radioactive microspheres were injected through a left atrial catheter to assess coronary collateral blood flow into the ischemic region. After 5 hrs reperfusion, the heart was dyed to delineate the area at risk (AAR) of infarction and stained with triphenyl tetrazolium chloride to identify infarcted myocardium. During LAD occlusion and reperfusion, systemic hemodynamics and global left ventricular function were stable. Infarction was not detected in 4 hearts and was 1.6% of AAR in the other 2 hearts. In contrast, 6 dogs sham-trained in a chamber ventilated with compressed air and 5 untrained dogs subjected to the same LAD occlusion/reperfusion protocol had infarcts of 36.8% +/- 5.8% and 35.2% +/- 9.5% of the AAR, respectively. The reduction in infarct size of four of the six hypoxia-trained dogs could not be explained by enhanced collateral blood flow to the AAR. Hypoxia-trained dogs had no ventricular tachycardia or ventricular fibrillation. Three sham-trained dogs had ventricular tachycardia and two had ventricular fibrillation. Three untrained dogs had ventricular fibrillation. In conclusion, intermittent hypoxic training protects canine myocardium from infarction and life-threatening arrhythmias during coronary artery occlusion and reperfusion. The mechanism responsible for this potent cardioprotection merits further study.  相似文献   

17.
Effect of L-arginine on leukocyte adhesion in ischemia-reperfusion injury   总被引:5,自引:0,他引:5  
Nitric oxide has been reported to be beneficial in preserving muscle viability following ischemia-reperfusion injury. The purpose of this study was to evaluate the influence of nitric oxide via L-arginine on leukocyte adhesion following ischemia-reperfusion injury. Intravital videomicroscopy of rat gracilis muscle was used to quantify changes in leukocyte adherence. The gracilis muscle was raised on its vascular pedicle in 48 male Wistar rats. The animals were assigned to one of five groups: (1) nonischemic control; (2) ischemia-reperfusion; (3) ischemia-reperfusion and L-arginine; (4) ischemia-reperfusion and Nomega-nitro-L-arginine methyl ester (L-NAME); and (5) ischemia-reperfusion, L-NAME, and L-arginine. All groups that included ischemia-reperfusion were subjected to 4 hours of global ischemia followed by 2 hours of reperfusion. L-Arginine (10 mg/kg) and L-NAME (10 mg/kg) were infused into the contralateral femoral vein beginning 5 minutes before reperfusion, for a total of 30 minutes. The number of adherent leukocytes was counted at baseline and at 5, 15, 30, 60, and 120 minutes after reperfusion (reported as mean change from baseline, +/- SEM). Groups were compared by repeated-measures analysis of variance (five groups, five times). P < or =0.05 was accepted as significant. L-Arginine significantly reduced leukocyte adherence to venular endothelium during reperfusion when compared with the ischemia-reperfusion group (1.39 +/- 0.92 versus 12.78 +/- 1.43 at 2 hours, p < 0.05). Administration of L-NAME with L-arginine showed no significant difference in adherent leukocytes when compared with the ischemia-reperfusion group (10.28 +/- 2.03 at 2 hours). The nitric oxide substrate L-arginine appears to reduce the deleterious neutrophil-endothelial adhesion associated with ischemia-reperfusion injury. L-NAME (nitric oxide synthesis inhibitor) given concomitantly with L-arginine reversed the beneficial effect of L-arginine alone, indicating that L-arginine may be acting via a nitric oxide synthase pathway. These results suggest an important role for nitric oxide in decreasing the neutrophil-endothelial interaction associated with ischemia-reperfusion injury.  相似文献   

18.
L-arginine slows the development of atheromatous lesions, improves endothelium-dependent relaxation, and reduces the vascular superoxide anion production in hypercholesterolemic rabbits. These beneficial effects have been attributed to L-arginine-dependent formation of nitric oxide within the endothelial layer; a direct effect of L-arginine on other cells, however, has not been investigated. We hypothesised that in hypercholesterolemia L-arginine also specifically acts via a direct inhibitory effect on leukocytes, without affecting endothelial cells. The action of L-arginine was compared to vitamin E and the HMG CoA reductase inhibitor lovastatin which are known to attenuate progression of atherosclerosis. Rabbits were fed cholesterol enriched diet and from week five on lovastatin (10 mg/day), vitamin E (300 mg/d) or L-arginine (2% in drinking water) were given. After 16 weeks, blood cholesterol concentration was determined and leukocyte adhesion to cotton wool was measured. In order to exclude any endothelium-mediated effects an adhesion assay to endothelial cells was avoided. Cholesterol-enriched diet increased plasma cholesterol concentration (19+/-3 vs. 1427+/-117 mg/dl). Cholesterol levels were not affected by L-arginine (1344+/-163 mg/dl) or vitamine E (1312+/-243 mg/dl). Lovastatin treatment reduced cholesterol concentration by 35% as compared to the cholesterol group (899+/-51, p<0.05 vs. cholesterol). Cholesterol diet significantly increased leukocyte adhesion to cotton wool (16+/-3% vs 27+/-4%, p<0.05). Lovastatin or vitamine E had no effect on leukocyte adhesion (31+/-4%, 39+/-5), whereas L-arginine completely normalized adhesion (8.8+/-3%). CONCLUSION: Rabbits fed high cholesterol diet have increased leukocyte adhesion, which is not affected by lovastatin or vitamine E treatment, but prevented by L-arginine supplementation. A direct inhibitory effect of L-arginine on leukocyte adhesion may contribute to the beneficial effects observed with this substance.  相似文献   

19.
The effects of anesthetic agents, commonly used in animal models, on blood glucose levels in fed and fasted rats were investigated. In fed Sprague-Dawley rats, ketamine (100 mg/kg)/xylazine (10 mg/kg) (KX) produced acute hyperglycemia (blood glucose 178.4 +/- 8.0 mg/dl) within 20 min. The baseline blood glucose levels (104.8 +/- 5.7 mg/dl) reached maximum levels (291.7 +/- 23.8 mg/dl) at 120 min. Ketamine alone did not elevate glucose levels in fed rats. Isoflurane also produced acute hyperglycemia similar to KX. Administration of pentobarbital sodium did not produce hyperglycemia in fed rats. In contrast, none of these anesthetic agents produced hyperglycemia in fasted rats. The acute hyperglycemic effect of KX in fed rats was associated with decreased plasma levels of insulin, adrenocorticotropic hormone (ACTH), and corticosterone and increased levels of glucagon and growth hormone (GH). The acute hyperglycemic response to KX was dose-dependently inhibited by the specific alpha2-adrenergic receptor antagonist yohimbine (1-4 mg/kg). KX-induced changes of glucoregulatory hormone levels such as insulin, GH, ACTH, and corticosterone were significantly altered by yohimbine, whereas the glucagon levels remained unaffected. In conclusion, the present study indicates that both KX and isoflurane produce acute hyperglycemia in fed rats. The effect of KX is mediated by modulation of the glucoregulatory hormones through stimulation of alpha2-adrenergic receptors. Pentobarbital sodium did not produce hyperglycemia in either fed or fasted rats. Based on these findings, it is suggested that caution needs to be taken when selecting anesthetic agents, and fed or fasted state of animals in studies of diabetic disease or other models where glucose and/or glucoregulatory hormone levels may influence outcome and thus interpretation. However, fed animals are of value when exploring the hyperglycemic response to anesthetic agents.  相似文献   

20.
Glucose-free perfusion preconditions myocardium against the consequences of subsequent ischemia. We investigated whether mitochondrial ATP-sensitive potassium (mK (ATP)) channels are involved in preconditioning by glucose deprivation, and whether moderate glucose deprivation also preconditions myocardium. Isolated rat hearts underwent 30 min of no-flow ischemia followed by 1 h reperfusion. Controls were not further treated. Three groups were preconditioned by perfusion with 0, 40 or 80 mg/dl (0, 2.22, 4.44 mmol/l) glucose (correction of osmotic pressure by addition of urea) for 10 min followed by 10 min perfusion with normal buffer (150 mg/dl, or 8.33 mmol/l glucose) before the ischemia reperfusion protocol. In one group, 100 micromol/l of the mK (ATP) channel blocker 5-HD was added to the glucose-free perfusate. Two groups were treated with 5-HD or urea before ischemia without preconditioning. Left ventricular developed pressure and maximum ischemic contracture (82 +/- 21 mmHg) were similar in all groups. Mean left ventricular developed pressure was 100 +/- 16 mm Hg under baseline conditions, and poorly recovered to 8 +/- 11 mm Hg during reperfusion. Preconditioning with 0 and 40 mg/dl glucose containing buffer reduced infarct size from 41 +/- 10% (control) to 23 +/- 12% (p = 0.02) and 26 +/- 8% (p = 0.011). The 5-HD blocked preconditioning by glucose deprivation (38 +/- 9%, p = 0.04) while 80 mg/dl glucose, 5-HD and urea had no effect on infarct size (39 +/- 9%; 38 +/- 13%; 37 +/- 8%; p = 1.0 each). We conclude that transient severe glucose deprivation and moderate glucose deprivation preconditions the isolated rat heart. Preconditioning by complete glucose deprivation depends on the opening of mK (ATP) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号