首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variations of Ca2+ influx (evaluated by the initial rate of 45Ca2+ uptake) and cytosolic free Ca2+ concentration ([Ca2+]i, measured with fura-2) were investigated in human erythrocytes. When external Ca2+ concentration ([Ca2+]o) rose from 1 to 2 mM, the initial rate of Ca2+ influx nearly doubled whereas [Ca2+]i increased only by 15%. Nicardipine dose-dependently decreased both initial rate of Ca2+ influx and [Ca2+]i (up to 53 and 18%. respectively at 10(-6) M). The less marked changes in [Ca2+]i than in Ca2+ influx indicate a partial adjustment of the Ca2+ extruding-pump activity to of Ca2+ influx. In vivo administration of nicardipine reduced [Ca2+]i only when its initial value exceeded 80 nM and prevented the rise in [Ca2+]i induced by the increase in [Ca2+]o. Our results indicate that nicardipine may reduce Ca2+ influx in human erythrocytes and participate in the control of [Ca2+]i when elevated.  相似文献   

2.
In the pancreatic beta-cell, insulin secretion is stimulated by glucose metabolism resulting in membrane potential-dependent elevation of cytosolic Ca2+ ([Ca2+]c). This cascade involves the mitochondrial membrane potential (delta psi[m]) hyperpolarization and elevation of mitochondrial Ca2+ ([Ca2+]m) which activates the Ca(2+)-sensitive NADH-generating dehydrogenases. Metabolism-secretion coupling requires unidentified signals, other than [Ca2+]c, possibly generated by the mitochondria through the rise in [Ca2+]m. To test this paradigm, we have established an alpha-toxin permeabilized cell preparation permitting the simultaneous monitoring of [Ca2+] with mitochondrially targeted aequorin and insulin secretion under conditions of saturating [ATP] (10 mM) and of clamped [Ca2+]c at substimulatory levels (500 nM). The tricarboxylic acid (TCA) cycle intermediate succinate hyperpolarized delta psi(m), raised [Ca2+]m up to 1.5 microM and stimulated insulin secretion 20-fold, without changing [Ca2+]c. Blockade of the uniporter-mediated Ca2+ influx into the mitochondria abolished the secretory response. Moreover, glycerophosphate, which raises [Ca2+]m by hyperpolarizing delta psi(m) without supplying carbons to the TCA cycle, failed to stimulate exocytosis. Activation of the TCA cycle with citrate evoked secretion only when combined with glycerophosphate. Thus, mitochondrially driven insulin secretion at permissive [Ca2+]c requires both a substrate for the TCA cycle and a rise in [Ca2+]m. Therefore, mitochondrial metabolism generates factors distinct from Ca2+ and ATP capable of inducing insulin exocytosis.  相似文献   

3.
During hypoxia of isolated cardiomyocytes, Ca2+ entry into mitochondria may occur via the Na/Ca exchanger, the normal efflux pathway, and not the Ca-uniporter, the normal influx route. If this is the case, then depletion of myocyte Na+ should inhibit Ca2+ uptake, and collapse of the mitochondrial membrane potential (delta psi(m)) would inhibit the uniporter. To test these hypotheses, isolated rat myocytes were exposed to metabolic inhibition, to mimic hypoxia, and [Ca2+]m and [Ca2+]c determined by selective loading of indo-1 into these compartments. Delta psi(m) was determined using rhodamine 123. Following metabolic inhibition, [Ca2+]m was significantly lower in Na-depleted cells than controls (P<0.001), [Ca2+]c was approximately the same in both groups, and mitochondria depolarised completely. Thus Na-depletion inhibited mitochondrial Ca2+ uptake, suggesting that Ca2+ entry occurred via Na/Ca exchange, and the collapse of delta psi(m) during metabolic inhibition is consistent with inactivity of the Ca-uniporter.  相似文献   

4.
(1) The free Ca2+ concentration of the matrix of rat heart mitochondria ([Ca2+]m) was determined from the fluorescence of internalized indo-1. The value of the Kd of indo-1-Ca2+ in the mitochondrial matrix was determined to be 95 nM, on the basis of equilibration of [Ca2+]m with the extramitochondrial free Ca2+ ([Ca2+]o) in the presence of rotenone, nigericin, valinomycin and Br-A23187. (2) [Ca2+]m responded to energization/de-energization protocols, the inhibition of Ca2+-uptake by Ruthenium Red and the potentiation of Ca2+-efflux by Na+ in a manner which was consistent with the known kinetic properties of the mitochondrial Ca2+-transport processes. (3) The concentration gradient [Ca2+]m/[Ca2+]o was found to be near unity (0.82 +/- 0.18) when mitochondria were incubated in media containing 10 mM-Na+; the additional presence of 1 mM-Mg2+ reduced the gradient to values below unity (0.26 +/- 0.03). The polyamine spermine increased the Ca2+ concentration gradient in the presence of 1 mM-Mg2+. (4) The fraction of pyruvate dehydrogenase in the active form (PDHA) was found to increase with [Ca2+]m, with a K0.5 for activation of approximately 300 nM-Ca2+. This value of the activation constant was not affected by conditions, e.g. addition of Mg2+, which changed the [Ca2+]m/[Ca2+]o concentration gradient, and the presence of different oxidizable substrates, which changed the [NADH/NAD+]m concentration ratio. Thus pyruvate dehydrogenase interconversion responds directly to changes in [Ca2+]m, as inferred in earlier work.  相似文献   

5.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

6.
Elevated extracellular calcium levels ([Ca2+]e) inhibit osteoclast function by elevating cytosolic free calcium levels ([Ca2+]i), presumably via the activation of a surface Ca2+ "receptor". It is unclear whether or not Ca(2+)-induced [Ca2+]i elevation involves the direct gating, by the putative "receptor", of a divalent cation channel. The results show that [Ca2+]i elevation in response to elevated [Ca2+]e comprises a distinct component of Ca2+ influx, the magnitude of which can be decreased and increased, respectively, by depolarising (100 mM-[K+]) and hyperpolarising (1 microM-[valinomycin]) the osteoclast membrane. In addition, activation of the putative Ca2+ "receptor" by elevated [Ca2+]e causes influx of the related divalent cation, magnesium (Mg2+). We suggest that Ca2+ influx induced by Ca2+ "receptor" activation is a major component of the observed [Ca2+]i response.  相似文献   

7.
The objective of this study was to evaluate the role of mitochondrial Ca2+ uptake (MCU) in modulation (shaping) of the glutamate (Glu)-induced changes in neuronal cytoplasmic Ca2+ ([Ca2+]i). In order to block MCU, nerve cells were treated with mitochondrial inhibitors (MI) inducing collapse of the mitochondrial potential (Delta Psim). Measurements of changes in [Ca2+]i were performed using either the low-affinity (fura-2FF) or high-affinity (fura-2) Ca2+ indicators. Loading of nerve cells with rhodamine 123 made it possible to monitor changes in Delta Psim. In the first series of experiments it was shown that blockade of MCU in fura-2FF-loaded cells with a cocktail of rotenone (2 microM)+oligomycin (2.5 microg/ml) greatly (2.53+/-0.4 times, n=61) increased the [Ca2+]i response to a 1-min Glu (100 microM) pulse. In fura-2-loaded cells, this increase was small (less than 1.3 times) or absent. In the second series of experiments, cocktails of rotenone+oligomycin or FCCP (1 microM)+oligomycin were applied during a prolonged Glu application. This produced strong mitochondrial depolarisation and an additional [Ca2+]i increase. In most cells the latter could be reversed or prevented by a removal of external Ca2+. The MI-induced additional [Ca2+]i increase was especially pronounced in cells loaded with fura-2FF. In some neurones a removal of external Ca2+ did not produce a decrease in [Ca2+]i during combined Glu+MI application, suggesting an impairment of [Ca2+]i extrusion mechanisms of these cells. The conclusion is drawn that MCU makes a considerable contribution to regulation of [Ca2+]i responses caused by Ca2+ influx via Glu-activated ionic channels. The reasons for a quantitative difference between [Ca2+]i responses observed in fura-2- and fura-2FF-loaded neurones are discussed.  相似文献   

8.
In Retzius neurones of the medicinal leech, Hirudo medicinalis, kainate activates ionotropic glutamate receptors classified as AMPA/kainate receptors. Activation of the AMPA/kainate receptor-coupled cation channels evokes a marked depolarization, intracellular acidification, and increases in the intracellular concentrations of Na+ ([Na+]i) and Ca2+. Qualitatively similar changes are observed upon the application of carbachol, an activator of acetylcholine receptor-coupled cation channels. Using multibarrelled ion-selective microelectrodes it was demonstrated that kainate, but not carbachol, caused additional increases in the intracellular free Mg2+ concentration ([Mg2+]i). Experiments were designed to investigate whether this kainate-induced [Mg2+]i increase was due to a direct Mg2+ influx through the AMPA/kainate receptor-coupled cation channels or a secondary effect due to the depolarization or the ionic changes. It was found that: (a) Similar [Mg2+]i increases were evoked by the application of glutamate or aspartate. (b) All kainate-induced effects were inhibited by the glutamatergic antagonist DNQX. (c) The magnitude of the [Mg2+]i increases depended on the extracellular Mg2+ concentration. (d) A reduction of the extracellular Ca2+ concentration increased kainate-induced [Mg2+]i increases, excluding possible Ca2+ interference at the Mg2+-selective microelectrode or at intracellular buffer sites. (e) Neither depolarizations evoked by the application of 30 mM K+, nor [Na+]i increases induced by the inhibition of the Na+/K+ ATPase caused comparable [Mg2+]i increases. (f) Inhibitors of voltage-dependent Ca2+ channels did not affect the kainate-induced [Mg2+]i increases. Moreover, previous experiments had already shown that intracellular acidification evoked by the application of 20 mM propionate did not cause changes in [Mg2+]i. The results indicate that kainate-induced [Mg2+]i increases in leech Retzius neurones are due to an influx of extracellular Mg2+ through the AMPA/kainate receptor-coupled cation channel. Mg2+ may thus act as an intracellular signal to distinguish between glutamatergic and cholinergic activation of leech Retzius neurones.  相似文献   

9.
Thin strips of guinea pig tenia cecum were loaded with the Mg2+ indicator furaptra, and the indicator fluorescence signals measured in Ca2+-free condition were converted to cytoplasmic-free Mg2+ concentration ([Mg2+]i). Lowering the extracellular Na+ concentration ([Na+]o) caused a reversible increase in [Mg2+]i, consistent with the inhibition of Na+ gradient-dependent extrusion of cellular Mg2+ (Na+-Mg2+ exchange). Curve-fitting analysis indicated that the relation between [Na+]o and the rate of rise in [Mg2+], had a Hill coefficient of approximately 3, a [Na+]o at the half-maximal rate of rise of approximately 30 mM, and a maximal rate of 0.16 +/- 0.01 microM/s (mean +/- SE, n = 6). Depolarization with 56 mM K+ shifted the curve slightly toward higher [Na+]o without significantly changing the maximal rate, suggesting that the Na+-Mg2+ exchange was inhibited by depolarization. The maximal rate would correspond to a flux of 0.15-0.4 pmol/cm2/s, if cytoplasmic Mg2+ buffering power (defined as the ratio of the changes in total Mg2+ and free Mg2+ concentrations) is assumed to be 2-5. Ouabain (1-5 microM) increased the intracellular Na+ concentration, as assessed with fluorescence of SBFI (sodium-binding benzofuran isophthalate, a Na+ indicator), and elevated [Mg2+]i. In ouabain-treated preparations, removal of extracellular Na+ rapidly increased [Mg2+]i, with an initial rate of rise roughly proportional to the degree of the Mg2+ load, and, probably, to the Na+ load caused by ouabain. The enhanced rate of rise in [Mg2+]i (up to approximately 1 microM/s) could be attributed to the Mg2+ influx as a result of the reversed Na+-Mg2+ exchange. Our results support the presence of a reversible and possibly electrogenic Na+-Mg2+ exchange in the smooth muscle cells of tenia cecum.  相似文献   

10.
It has long been recognized that magnesium is associated with several important diseases, including diabetes, hypertension, cardiovascular, and cerebrovascular diseases. In the present study, we measured the intracellular free Mg2+ concentration ([Mg2+]i) using 31P nuclear magnetic resonance (NMR) in pig carotid artery smooth muscle. In normal solution, application of amiloride (1 mm) decreased [Mg2+]i by approximately 12% after 100 min. Subsequent washout tended to further decrease [Mg2+]i. In contrast, application of amiloride significantly increased [Mg2+]i (by approximately 13% after 100 min) under Ca2+-free conditions, where passive Mg2+ influx is facilitated. The treatments had little effect on intracellular ATP and pH (pHi). Essentially the same Ca2+-dependent changes in [Mg2+]i were produced with KB-R7943, a selective blocker of reverse mode Na+-Ca2+ exchange. Application of dimethyl amiloride (0.1 mM) in the presence of Ca2+ did not significantly change [Mg2+]i, although it inhibited Na+-H+ exchange at the same concentration. Removal of extracellular Na+ caused a marginal increase in [Mg2+]i after 100-200 min, as seen in intestinal smooth muscle in which Na+-Mg2+ exchange is known to be the primary mechanism of maintaining a low [Mg2+]i against electrochemical equilibrium. In Na+-free solution (containing Ca2+), neither amiloride nor KB-R7943 decreased [Mg2+]i, but they rather increased it. The results suggest that these inhibitory drugs for Na+-Ca2+ exchange directly modulate Na+-Mg2+ exchange in a Ca2+-dependent manner, and consequently produce the paradoxical decrease in [Mg2+]i in the presence of Ca2+.  相似文献   

11.
Magnesium (Mg2+) is an abundant intracellular cation that participates in the regulation of the intracellular concentration of ATP. In this study, we examined the relationship between insulin secretion and intracellular free Mg2+ ([Mg2+]i) in a rat-insulinoma cell line (RIN m5F), using a fluorescent dye (Mag-fura-2). KCI, forskolin, and D-glyceraldehyde increased [Mg2+]i and insulin secretion from RIN m5F cells in a dose-dependent fashion. Verapamil, a voltage-dependent Ca2+ channel blocker, inhibited the increase of [Mg2+]i that was evoked by KCI, forskolin, and D-glyceraldehyde. In a Mg(2+)-free buffer, these agents failed to cause an elevation in [Mg2+]i; however, the insulin response to KCI and forskolin was enhanced, compared with that in the presence of Mg2+ (1.25 mM). Our findings suggest that [Mg2+]i is dependent upon extracellular Mg2+, and the influx through the voltage-dependent Ca2+ channel. Mg2+ may competitively inhibit the voltage-dependent Ca2+ channel, which is known to play a role in insulin secretion. An absence of Mg2+ in the extracellular space may result in enhanced insulin secretion. [Mg2+]i may play a role in insulin secretion from RIN m5F cells.  相似文献   

12.
Sphingolipids have a variety of important signaling roles in mammalian cells. We tested the hypothesis that certain sphingolipids and neutral sphingomyelinase (N-SMase) can regulate intracellular free magnesium ions ([Mg2+]i) in vascular smooth muscle (VSM) cells. Herein, we show that several sphingolipids, including C2-ceramide, C8-ceramide, C16-ceramide, and sphingosine, as well as N-SMase, have potent and direct effects on content and mobilization of [Mg2+]i in primary cultured rat aortic smooth muscle cells. All of these sphingolipid molecules increase, rapidly, [Mg2+]i in these vascular cells in a concentration-dependent manner. The increments of [Mg2+]i, induced by these agents, are derived from influx of extracellular Mg2+ and are extracellular Ca2+ concentration-dependent. Phospholipase C and Ca2+/calmodulin/Ca2+-ATPase activity appear to be important in the sphingolipid-induced rises of [Mg2+]i. Activation of certain PKC isozymes may also be required for sphingolipid-induced rises in [Mg2+]i. These novel results suggest that sphingolipids may be homeostatic regulators of extracellular Mg2+ concentration influx (and transport) and [Mg2+]i content in vascular muscle cells.  相似文献   

13.
To determine the nature of intracellular Mg2+ stores and Mg2+ release mechanisms in differentiated PC12 cells, Mg2+ and Ca2+ mobilizations were measured simultaneously in living cells with KMG-104, a fluorescent Mg2+ indicator, and fura-2, respectively. Treatment with the mitochondrial uncoupler, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), increased both the intracellular Mg2+ concentration ([Mg2+]i) and the [Ca2+]i in these cells. Possible candidates as intracellular Mg2+ stores under these conditions include intracellular divalent cation binding sites, endoplasmic reticulum (ER), Mg-ATP and mitochondria. Given that no change in [Mg2+]i was induced by caffeine application, intracellular IP3 or Ca2+ liberated by photolysis, it appears that no Mg2+ release mechanism thus exists that is mediated via the action of Ca2+ on membrane-bound receptors in the ER or via the offloading of Mg2+ from binding sites as a result of the increased [Ca2+]i. FCCP treatment for 2 min did not alter the intracellular ATP content, indicating that Mg2+ was not released from Mg-ATP, at least in the first 2 min following exposure to FCCP. FCCP-induced [Mg2+]i increase was observed at mitochondria localized area, and vice versa. These results suggest that the mitochondria serve as the intracellular Mg2+ store in PC12 cell. Simultaneous measurements of [Ca2+]i and mitochondrial membrane potential, and also of [Ca2+]i and [Mg2+]i, revealed that the initial rise in [Mg2+]i followed that of mitochondrial depolarization for several seconds. These findings show that the source of Mg2+ in the FCCP-induced [Mg2+]i increase in PC12 cells is mitochondria, and that mitochondrial depolarization triggers the Mg2+ release.  相似文献   

14.
Smaili SS  Russell JT 《Cell calcium》1999,26(3-4):121-130
In this study, we investigated the importance of mitochondrial permeability transition pore (PTP) in agonist-evoked cytosolic Ca2+ ([Ca2+]c) signals in oligodendrocyte progenitor cells (OP cells). We measured transmembrane potential across the mitochondrial inner membrane (delta psi m) and [Ca2+]c in the immediate vicinity simultaneously using tetramethylrhodamine ethyl ester (TMRE) and calcium green respectively. Stimulation of OP cells with methacholine evoked robust [Ca2+]c signals in approximately 80% of cells which were either oscillatory or showed a peak followed by a plateau. Elevations in [Ca2+]c induced by supramaximal concentrations of the agonist (> 200 microM) were accompanied by changes in delta psi m in 33-42% of the total mitochondria investigated. The mitochondria that responded either depolarized (26-29%), hyperpolarized (7-13%) or showed no change (58-67%). Thus, of the responsive mitochondria, most (70%) depolarized during agonist-evoked [Ca2+]c signals. Blockade of PTP with cyclosporin A (CSA) reduced the number of mitochondria that depolarized with a corresponding increase in the number that hyperpolarized. In addition, CSA or its analogue methyl valine-4- CSA (MeVal-CSA), reduced the frequency of agonist-evoked global [Ca2+]c oscillations. In resting cells, CSA (63%) and MeVal-CSA (77%) hyperpolarized a majority of the mitochondria suggesting that PTP is constitutively active and may show flickering openings. Such hyperpolarizations were not mimicked by either cyclosporine H or verapamil and were inhibited by Ru360, which blocks the mitochondrial uniporter. This observation suggested that in resting cells, Ca2+ ions might redistribute between cytosol and mitochondrial matrix through the uniporter and the PTP. Taken together, these data suggest that PTP may play an important role in regulating delta psi m and local [Ca2+]c signals during agonist stimulation in OP cells.  相似文献   

15.
We report here that exposing cultured chromaffin cells to a low ionic strength medium (with sucrose in place of NaCl to maintain osmolarity) can induce a marked elevation in cytosolic Ca2+ concentration ([Ca2+]i) and catecholamine (CA) release. To determine the underlying mechanism, we first studied the effects of low [Na+]o on single cell [Ca2+]i (using fluo-3 as Ca2+ indicator) and CA release from many cells. In a Mg2+ and Ca2+-deficient medium, lowering the external concentration of Na2+ ([Na+]o) evoked CA secretion preceded by a transitory [Ca2+]i rise, the amplitude of which was inversely related to [Na+]o. By contrast, in the presence of either [Ca2+]o (2 mM) and [Mg2+]o (1.4 mM) or [Mg2+]o alone (3.4 mM), lowering the ionic strength was without effect. Furthermore, in a physiologic [Na+]o, [Ca2+]o and [Mg2+]o medium, two or three consecutive applications of the cholinergic agonist oxotremorine-M (oxo-M) consistently evoked a substantial [Ca2+]i rise. By contrast, consecutive applications of oxo-M in a Ca2+-deficient medium failed to evoke a rise in [Ca2+]i after the first exposure to the agonist. To clarify the underlying mechanism, we measured and compared the effects of low [Na+]o and the cholinergic agonists nicotine and oxo-M on changes in [Ca2+]i; we studied the effects of these agonists on both membrane potential, Vm (under current clamp conditions), and [Ca2+]i by single cell microfluorimetry (indo-1 as Ca2+ indicator). We observed that, in the presence of [Ca2+]o and [Mg2+]o, lowering [Na+]o had no effect on Vm. In a Ca2+-deficient medium, lowering [Na+]o depolarized the membrane from ca. –60 to –10 mV. As expected, we found that nicotine (10 M) depolarized the membrane (from ca. –60 to –20 mV) and simultaneously evoked a substantial [Ca2+]i rise that was [Ca2+]o-dependent. However, contrary to our expectations, we found that the muscarinic agonist oxo-M (50 M) also depolarized the membrane and induced an elevation in [Ca2+]i. Furthermore, both signals were blocked by D-tubocurarine, insinuating the nicotinic character of oxo-M in adrenal chromaffin cells from bovine. These results suggest that both nicotine and oxo-M stimulate Ca2+ entry, probably through voltage-gated Ca2+-channels. We also show here that oxo-M (and not low [Na+]o) stimulates phosphoinositide turnover.  相似文献   

16.
Human interferon (IFN) stimulates a 1.5- to 1.7-fold transient increase in the concentration of cytoplasmic-free calcium ion ([Ca2+]i) within 10-20 s upon exposure of RPMI-4788 cells to IFN. This early event of IFN-induced [Ca2+]i mobilization was measurable by loading the cells with Fura-2AM, a fluorescent Ca2+ indicator. The mobilization induced by IFN-beta or IFN-gamma was dependent on the concentration of each IFN. The increased [Ca2+]i gradually returned to its resting level within 60 s. The addition of EGTA (0.5-10 mM) to medium induced a marked decrease in the amount of [Ca2+]i mobilized by IFN-beta and a partial decrease by IFN-gamma. This finding suggests that the mechanisms of [Ca2+]i mobilization by IFN-beta and IFN-gamma might be different. While IFN-beta-induced mobilization may be mainly from an influx of the extracellular calcium ion ([Ca2+]o), IFN-gamma-induced mobilization may be a summation of an influx of [Ca2+]o and a release from intracellular Ca2+ stores.  相似文献   

17.
Regulatory effects of extracellular magnesium ions ([Mg2+]o) on intracellular free ionized calcium ([Ca2+]i) were studied in cultured vascular smooth muscle cells (VSMCs) from rat aorta by use of the fluorescent indicator fura-2 and digital imaging microscopy. With normal Mg2+ (1.2 mM)-containing incubation media, [Ca2+]i in VSMCs was 93.6 +/- 7.93 nM with a heterogeneous cellular distribution. Lowering [Mg2+]o to 0 mM or 0.3 mM (the lowest physiological range) resulted in 5.8-fold (579.5 +/- 39.99 nM) and 3.5-fold (348.0 +/- 31.52 nM) increments of [Ca2+]i, respectively, without influencing the cellular distribution of [Ca2+]i. Surprisingly, [Mg2+]o withdrawal induced changes of cell geometry in many VSMCs, i.e., the cells rounded up. However, elevation of [Mg2+]o up to 4.8 mM only induced slight decrements of [Ca2+]i (mean = 72.0 +/- 4.55 nM). The large increment of [Ca2+]i induced by [Mg2+]o withdrawal was totally inhibited when [Ca2+]o was removed. The data suggest that: (1) [Mg2+]o regulates the level of [Ca2+]i in rat aortic smooth muscle cells, and (2) [Mg2+] acts as an important regulatory ion by modulating cell shapes in cultured VSMc and their metabolism to control vascular contractile activities.  相似文献   

18.
Reactive oxygen species (ROS) contribute to cell damage during reperfusion of the heart. ROS may exert their effects partly by interfering with Ca(2+) homeostasis of the myocardium. The purpose of this study was to investigate the effects of hydrogen peroxide (H(2)O(2)) on Ca(2+) accumulation during reoxygenation of isolated adult rat cardiomyocytes exposed to 1 h of hypoxia and to relate the effects to possible changes in release of lactate dehydrogenase (LDH), free intracellular Ca(2+) ([Ca(2+)](i)) and Mg(2+)([Mg(2+)](i)), and mitochondrial membrane potential (Deltapsim). Cell Ca(2+) was determined by (45)Ca(2+) uptake. Free [Mg(2+)](i) and [Ca(2+)](i) and Deltapsim were measured by flow cytometry. Reoxygenation-induced Ca(2+) accumulation was attenuated by 23 and 34% by 10 and 25 microM H(2)O(2), respectively, added at reoxygenation. H(2)O(2) at 100 and 250 microM increased cell Ca(2+) by 50 and 83%, respectively, whereas 500 microM H(2)O(2) decreased cell Ca(2+) by 20%. H(2)O(2) at (25 microM) reduced LDH release and [Mg(2+)](i) and increased Deltapsim, indicating cell protection, whereas 250 microM H(2)O(2) increased LDH release and [Mg(2+)](i) and decreased Deltapsim, indicating cell damage. Clonazepam (100 microM) attenuated the increase in Ca(2+) accumulation, the elevation of [Ca(2+)](i), and the decrease in Deltapsim induced by 100 and 250 microM H(2)O(2) during reoxygenation. We report for the first time that 25 microM H(2)O(2) attenuates Ca(2+) accumulation, LDH release, and dissipation of Deltapsim during reoxygenation of hypoxic cardiomyocytes, indicating cell protection.  相似文献   

19.
H Takemura  H Ohshika 《Life sciences》1999,64(17):1493-1500
Capacitative Ca2+ entry exists in rat glioma C6 cells; however, how the information of depletion of Ca2+ in intracellular stores transmits to the plasma membrane is unknown. In the present study, we examined whether Ca2+ influx factor (CIF) causes capacitative Ca2+ entry in C6 cells. CIF was extracted from non-treated (Non-CIF), bombesin-treated (BBS-CIF) and thapsigargin-treated (TG-CIF) C6 cells by a reverse-phase silica cartridge. The addition of BBS-CIF and TG-CIF gradually increased cytoplasmic Ca2+ concentration ([Ca2+]i) but Non-CIF did not increase [Ca2+]i. Neither BBS-CIF nor TG-CIF elevated [Ca2+]i in the absence of extracellular Ca2+. Gd3+ inhibited the increase in [Ca2+]i induced by BBS-CIF and TG-CIF. Genistein abolished an elevation of [Ca2+]i induced by BBS-CIF and TG-CIF. BBS-CIF and TG-CIF did not increase inositol 1,4,5-trisphosphate accumulation. The results suggest that capacitative Ca2+ entry is caused by CIF in rat glioma C6 cells.  相似文献   

20.
Activity-dependent modulation of synaptic transmission is an essential mechanism underlying many brain functions. Here we report an unusual form of synaptic modulation that depends on Na+ influx and mitochondrial Na(+)-Ca2+ exchanger, but not on Ca2+ influx. In Ca(2+)-free medium, tetanic stimulation of Xenopus motoneurons induced a striking potentiation of transmitter release at neuromuscular synapses. Inhibition of either Na+ influx or the rise of Ca2+ concentrations ([Ca2+]i) at nerve terminals prevented the tetanus-induced synaptic potentiation (TISP). Blockade of Ca2+ release from mitochondrial Na(+)-Ca2+ exchanger, but not from ER Ca2+ stores, also inhibited TISP. Tetanic stimulation in Ca(2+)-free medium elicited an increase in [Ca2+]i, which was prevented by inhibition of Na+ influx or mitochondrial Ca2+ release. Inhibition of PKC blocked the TISP as well as mitochondrial Ca2+ release. These results reveal a novel form of synaptic plasticity and suggest a role of PKC in mitochondrial Ca2+ release during synaptic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号