首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
2.
3.
4.
5.
The sequence of 3'-termini of mRNAs from early region III of adenovirus 2   总被引:10,自引:0,他引:10  
C M Ahmed  R Chanda  N Stow  B S Zain 《Gene》1982,19(3):297-301
  相似文献   

6.
C Hashimoto  J A Steitz 《Cell》1986,45(4):581-591
RNAs containing the polyadenylation sites for adenovirus L3 or E2a mRNA or for SV40 early or late mRNA are substrates for cleavage and poly(A) addition in an extract of HeLa cell nuclei. When polyadenylation reactions are probed with ribonuclease T1 and antibodies directed against either the Sm protein determinant or the trimethylguanosine cap structure at the 5' end of U RNAs in small nuclear ribonucleoproteins, RNA fragments containing the AAUAAA polyadenylation signal are immunoprecipitated. The RNA cleavage step that occurs prior to poly(A) addition is inhibited by micrococcal nuclease digestion of the nuclear extract. The immunoprecipitation of fragments containing the AAUAAA sequence can be altered, but not always abolished, by pretreatment with micrococcal nuclease. We discuss the involvement of small nuclear ribonucleoproteins in the cleavage and poly(A) addition reactions that form the 3' ends of most eukaryotic mRNAs.  相似文献   

7.
Region E3 of adenovirus encodes about 10 overlapping mRNAs with different spliced structures. The mRNAs are 5' coterminal and form two major 3'-coterminal families termed E3A and E3B. As a group, the mRNAs have two 5' splice sites and four or five 3' splice sites. We previously described a novel class of virus mutants with deletions that enhance distant upstream and downstream 5' and 3' splice sites in region E3 (S. L. Deutscher, B. M. Bhat, M. H. Pursley, C. Cladaras, and W. S. M. Wold, Nucleic Acids Res. 13:5771-5788, 1985). We now report that two of these mutants, dl710 and dl712, are defective in RNA 3'-end formation at the E3A site. This result was surprising because the deletions in dl710 and dl712 are upstream of the putative signal for E3A RNA 3'-end formation. The explanation that we favor for this result is that the enhanced splicing activity in these mutants results in the splicing out of the E3A 3'-end site from the RNA precursor before the E3A 3' ends have a chance to form.  相似文献   

8.
Sedimentation analysis of polyadenylation-specific complexes.   总被引:21,自引:11,他引:10  
Precursor RNA containing the adenovirus L3 polyadenylation site is assembled into a 50S complex upon incubation with HeLa nuclear extract at 30 degrees C. The cofactor and sequence requirements for 50S complex formation are similar to those of the in vitro polyadenylation reaction. Assembly of this complex requires ATP but is not dependent upon synthesis of a poly(A) tract. In addition, a 50S complex does not form on substrate RNA in which the AAUAAA hexanucleotide upstream of the poly(A) site has been mutated to AAGAAA or on RNA in which sequences between +5 and +48 nucleotides downstream of the site have been removed. These mutations also prevent in vitro processing of substrate RNA. Kinetic studies suggest that the 50S complex is an intermediate in the polyadenylation reaction. It forms at an early stage in the reaction and at later times contains both poly(A)+ RNA as well as unreacted precursor. U-type small nuclear ribonucleoprotein particles are components of the 50S complex, as shown by immunoprecipitation with antiserum specific to the trimethyl cap of these small nuclear RNAs.  相似文献   

9.
Regulation of poly(A) site selection in adenovirus.   总被引:24,自引:4,他引:20       下载免费PDF全文
  相似文献   

10.
The murine dihydrofolate reductase (DHFR) gene gives rise to multiple polyadenylated mRNAs displaying heterogeneity in the length of the 3' untranslated region. These species are present in the cytoplasm at levels that vary over 2 orders of magnitude, suggesting that certain poly(A) sites are preferred over others. Previous observations have shown that three out of the four major sites of polyadenylation do not display consensus hexanucleotide (AATAAA, ATTAAA) signals. We have further analyzed the sequences involved in directing multiple polyadenylation events on the DHFR gene by focusing our attention on the 4.1- and 5.6-kilobase mRNAs, the lowest abundance DHFR species observed on RNA blot analysis. Identification and sequence analysis of the poly(A) addition sites corresponding to these species revealed appropriately positioned consensus hexanucleotide signals; additional nearby poly(A) sites were also detected which apparently do not use consensus hexanucleotides to direct poly(A) addition to DHFR mRNAs of relatively lower abundance. We have also identified polyadenylation sites downstream of the 4.1- and 5.6-kilobase sites which display consensus hexanucleotide signals and correspond to messenger species too rare for detection by routine RNA blot analysis. Our data bring to 11 the number of known functional poly(A) addition sites associated with the DHFR gene.  相似文献   

11.
12.
The late polyadenylation signal of simian virus 40 functions with greater efficiency than the early polyadenylation signal, in turn affecting steady-state mRNA levels. Two chloramphenicol acetyltransferase (CAT) transient expression vectors, pL-EPA and pL-LPA, that differ only in their polyadenylation signals were constructed by using the early and late polyadenylation signals, respectively. In transfections of Cos, CV-1P, or HeLa cells and subsequent Northern blot analysis of CAT-specific RNA, approximately five times more steady-state CAT mRNA was produced in transfections with pL-LPA than with pL-EPA. The basis for this difference was not related to the specific promoter used or to RNA stability. Overall, the difference in steady-state mRNA levels derived from the two plasmids appeared to be attributable to intrinsic properties of the two polyadenylation signals, resulting in distinctly different cleavage and polyadenylation efficiencies. Additionally, we found that the utilization of the late polyadenylation site was dramatically reduced by deletion of sequences between 48 and 29 nucleotides 5' of the AAUAAA hexanucleotide. This reduction of mRNA levels was shown not to be caused by altered stability of mutant precursor RNAs or mRNAs, suggesting that these upstream sequences constitute an element of the late polyadenylation signal and may cause, at least to some extent, the greater efficiency of utilization of the late polyadenylation site.  相似文献   

13.
The great majority of viral mRNAs in mouse C127 cells transformed by bovine papillomavirus type 1 (BPV) have a common 3' end at the early polyadenylation site which is 23 nucleotides (nt) downstream of a canonical poly(A) consensus signal. Twenty percent of BPV mRNA from productively infected cells bypasses the early polyadenylation site and uses the late polyadenylation site approximately 3,000 nt downstream. To inactivate the BPV early polyadenylation site, the early poly(A) consensus signal was mutated from AAUAAA to UGUAAA. Surprisingly, this mutation did not result in significant read-through expression of downstream RNA. Rather, RNA mapping and cDNA cloning experiments demonstrate that virtually all of the mutant RNA is cleaved and polyadenylated at heterogeneous sites approximately 100 nt upstream of the wild-type early polyadenylation site. In addition, cells transformed by wild-type BPV harbor a small population of mRNAs with 3' ends located in this upstream region. These experiments demonstrate that inactivation of the major poly(A) signal induces preferential use of otherwise very minor upstream poly(A) sites. Mutational analysis suggests that polyadenylation at the minor sites is controlled, at least in part, by UAUAUA, an unusual variant of the poly(A) consensus signal approximately 25 nt upstream of the minor polyadenylation sites. These experiments indicate that inactivation of the major early polyadenylation signal is not sufficient to induce expression of the BPV late genes in transformed mouse cells.  相似文献   

14.
15.
Extracts from HeLa cell nuclei assemble RNAs containing the adenovirus type 2 L3 polyadenylation site into a number of rapidly sedimenting heterodisperse complexes. Briefly treating reaction mixtures prior to sedimentation with heparin reveals a core 25S assembly formed with substrate RNA but not an inactive RNA containing a U----C mutation in the AAUAAA hexanucleotide sequence. The requirements for assembly of this heparin-stable core complex parallel those for cleavage and polyadenylation in vitro, including a functional hexanucleotide, ATP, and a uridylate-rich tract downstream of the cleavage site. The AAUAAA and a downstream U-rich element are resistant in the assembly to attack by RNase H. The poly(A) site between the two protected elements is accessible, but is attacked more slowly than in naked RNA, suggesting that a specific factor or secondary structure is located nearby. The presence of a factor bound to the AAUAAA in the complex is independently demonstrated by immunoprecipitation of a specific T1 oligonucleotide containing the element from the 25S fraction. Precipitation of this fragment from reaction mixtures is blocked by the U----C mutation. However, neither ATP nor the downstream sequence element is required for binding of this factor in the nuclear extract, suggesting that recognition of the AAUAAA is an initial event in complex assembly.  相似文献   

16.
17.
18.
Structure of three spliced mRNAs from region E3 of adenovirus type 2   总被引:13,自引:0,他引:13  
A cDNA library representing early adenovirus type 2 (Ad2) mRNA was constructed. The cDNA copies were inserted into the PstI cleavage site of the pBR322 plasmid, and clones containing sequences from region E3 of the Ad2 genome were identified by colony hybridization. Selected clones were characterized by restriction enzyme cleavage, hybridization, and partial DNA sequence analysis. The precise structure of three spliced mRNAs was established by comparing the results with the DNA sequence of region E3 from Ad2 (Herissé et al., Nucl. Acids Res. 8 (1980) 2173--2191; Herissé and Galibert, Nucl. Acids Res. 9 (1981) 1229--1249). One of the characterized mRNA species encodes the E3/19K glycoprotein, whereas the other two most likely encode the E3/14K protein. The results demonstrate, moreover, that certain splice points which are used to generate the major E3 mRNAs are also used to splice the supplementary leader segments to the fibre mRNA at late times after infection. Two separate poly(A)-addition sites were identified in region E3 by analysis of the cDNA clones; one is preceded by the hexanucleotide sequence AAUAAA, whereas the other is preceded by an altered hexanucleotide, having the sequence AUUAAA.  相似文献   

19.
Regulation of polyadenylation efficiency at the secretory poly(A) site plays an essential role in gene expression at the immunoglobulin (IgM) locus. At this poly(A) site the consensus AAUAAA hexanucleotide sequence is embedded in an extended AU-rich region and there are two downstream GU-rich regions which are suboptimally placed. As these sequences are involved in formation of the polyadenylation pre-initiation complex, we examined their function in vivo and in vitro . We show that the upstream AU-rich region can function in the absence of the consensus hexanucleotide sequence both in vivo and in vitro and that both GU-rich regions are necessary for full polyadenylation activity in vivo and for formation of polyadenylation-specific complexes in vitro . Sequence comparisons reveal that: (i) the dual structure is distinct for the IgM secretory poly(A) site compared with other immunoglobulin isotype secretory poly(A) sites; (ii) the presence of an AU-rich region close to the consensus hexanucleotide is evolutionarily conserved for IgM secretory poly(A) sites. We propose that the dual structure of the IgM secretory poly(A) site provides a flexibility to accommodate changes in polyadenylation complex components during regulation of polyadenylation efficiency.  相似文献   

20.
S Perri  D Ganem 《Journal of virology》1996,70(10):6803-6809
The terminal regions of hepatitis B virus (HBV) pregenomic RNA (pgRNA) harbors sites governing many essential functions in the viral life cycle, including polyadenylation, translation, RNA encapsidation, and DNA synthesis. We have examined the binding of host proteins to a 170-nucleotide region from the 5' end of HBV pgRNA; a large portion of this region is duplicated at the 3' end of this terminally redundant RNA. By UV cross-linking labeled RNA to HepG2 cell extracts, we have identified a 65-kDa factor (p65) of nuclear origin which can specifically bind to this region. Two discrete binding sites were identified within this region; in vitro cross-competition experiments suggest that the same factor binds to both elements. One binding site (termed UBS) overlaps a portion of the highly conserved stem-loop structure (epsilon), while the other site (termed DBS) maps 35 nucleotides downstream of the hexanucleotide polyadenylation sequence. Both binding sites are highly pyrimidine rich and map to regions previously found to be important in the regulation of viral polyadenylation. However, functional analysis of mutant binding sites in vivo indicates that p65 is not involved in the polyadenylation of HBV pgRNA. Potential roles for the factor in viral replication in vivo are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号