首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of a novel c(7)-type cytochrome domain that has two bishistidine coordinated hemes and one heme with histidine, methionine coordination (where the sixth ligand is a methionine residue) was determined at 1.7 A resolution. This domain is a representative of domains that form three polymers encoded by the Geobacter sulfurreducens genome. Two of these polymers consist of four and one protein of nine c(7)-type domains with a total of 12 and 27 hemes, respectively. Four individual domains (termed A, B, C, and D) from one such multiheme cytochrome c (ORF03300) were cloned and expressed in Escherichia coli. The domain C produced diffraction quality crystals from 2.4 M sodium malonate (pH 7). The structure was solved by MAD method and refined to an R-factor of 19.5% and R-free of 21.8%. Unlike the two c(7) molecules with known structures, one from G. sulfurreducens (PpcA) and one from Desulfuromonas acetoxidans where all three hemes are bishistidine coordinated, this domain contains a heme which is coordinated by a methionine and a histidine residue. As a result, the corresponding heme could have a higher potential than the other two hemes. The apparent midpoint reduction potential, E(app), of domain C is -105 mV, 50 mV higher than that of PpcA.  相似文献   

2.
Fago A  Mathews AJ  Moens L  Dewilde S  Brittain T 《FEBS letters》2006,580(20):4884-4888
Previously identified, potentially neuroprotective reactions of neuroglobin require the existence of yet unknown redox partners. We show here that the reduction of ferric neuroglobin by cytochrome b(5) is relatively slow (k=6 x 10(2)M(-1)s(-1) at pH 7.0) and thus is unlikely to be of physiological significance. In contrast, the reaction between ferrous neuroglobin and ferric cytochrome c is very rapid (k=2 x 10(7)M(-1)s(-1)) with an apparent overall equilibrium constant of 1 microM. Based on this data we propose that ferrous neuroglobin may well play a role in preventing apoptosis.  相似文献   

3.
A c-type monohaem, cytochrome c6was isolated from a soluble extract of the green alga Chlorella fusca. The isolated protein shows an apparent molecular mass of 10 kDa by SDS-PAGE, but behaves as a dimer of 20.3 kDa in gel-filtration; the isoelectric point is 3.6. The N-terminal sequence shows high identity with other green algae cytochromes c6. The mid-point redox potential is about +350 mV between pH 5 and 9. The ferric and ferrous forms, and their pH equilibria, have been studied using visible, CD and EPR spectroscopies. The visible spectrum of the reduced cytochrome c6is typical of a c-type haem protein, with maxima at 274 nm, 318 nm (-peak), 416 nm (-peak), 522 nm (-peak), 552–553 nm (-peak). A 690 nm band, characteristic of a haem Met-His axial coordination of the haem group, is present in the oxidized form. At high pH values ( 8), cytochrome c6undergoes an alkaline transition, with a pKa of 8.7. Between pH 3 and 9 the EPR spectrum is dominated by two rhombic species, with g-values at 3.32, 2.05, 1.05 and 2.96, 2.30, 1.43, which interconvert with a pKaof 4. CD spectrum of Chlorella fusca cytochrome c6shows that the proteins must be mainly built up by -helices. Even though there are similarities between Chlorella fusca cytochrome c6and that isolated from Monoraphidium braunii, no cross-reactivity with the antibodies raised against the Chlorella fusca cytochrome has been detected for the protein from Monoraphidium braunii.  相似文献   

4.
The interaction of bovine microsomal ferricytochrome b5 with yeast iso-1-ferri and ferrocytochrome c has been investigated using heteronuclear NMR techniques. Chemical-shift perturbations for 1H and 15N nuclei of both cytochromes, arising from the interactions with the unlabeled partner proteins, were used for mapping the interacting surfaces on both proteins. The similarity of the binding shifts observed for oxidized and reduced cytochrome c indicates that the complex formation is not influenced by the oxidation state of the cytochrome c. Protein-protein docking simulations have been performed for the binary cytochrome b5-cytochrome c and ternary (cytochrome b5)-(cytochrome c)2 complexes using a novel HADDOCK approach. The docking procedure, which makes use of the experimental data to drive the docking, identified a range of orientations assumed by the proteins in the complex. It is demonstrated that cytochrome c uses a confined surface patch for interaction with a much more extensive surface area of cytochrome b5. Taken together, the experimental data suggest the presence of a dynamic ensemble of conformations assumed by the proteins in the complex.  相似文献   

5.
Both the soluble cytochrome c2 and the membrane-bound cytochrome cy act as secondary electron carriers in photoinduced cyclic electron transfer chain of Rhodobacter capsulatus [Jenney and Daldal (1993) EMBO J 12: 1283–1292]. In this work, we have studied the kinetics of electron transfer between these secondary electron donors and the reaction center in intact cells of two mutants, MT-G4/S4 and MT-GS18 deleted in cytochrome c2 and in cytochrome c2 plus cytochrome bc1 complex, respectively. In the MT-G4/S4 mutant, only about one third of the primary electron donor is reduced by cytochrome cy in less than five ms. The remaining fraction is reduced in several seconds, although about 90% of the photoxidized cytochrome cy is reduced in less than 10 ms by the cytochrome bc1 complex. This implies that cytochrome cy is not in thermodynamic equilibrium with the large fraction of primary donors which are slowly reduced. As shown by energy transfer measurements, the reaction centers connected to cytochrome cy and the disconnected reaction centers are localized in the same membrane region. We propose that the movement of cyt cy is restricted to a small membrane domain which includes a single cytochrome bc1 complex. The kinetics of cytochrome cy photooxidation in the MT-G4/S4 mutant in the presence of myxothiazol presents a fast phase (t1/2 3 µs) followed by a slower phase (t1/2 20 µs). In the case of the double mutant MT-GS18, the kinetics of electron transfer between cytochrome cy and the reaction center is highly multiphasic and much slower than those observed for the MT-G4/S4 mutant. In particular, the amplitude of the fast phase is decreased by more than a factor 2 and the 20-µs phase is not observed. This implies an important structural role of the cytochrome bc1 complex in the interaction between reaction center and cytochrome cy, and their formation in supercomplex. The more problable stoichiometry of electron carriers in this supercomplex is 2 reaction centers, 2 cytochrome cy and 1 cytochrome bc1 complex.  相似文献   

6.
7.
The chemical denaturation of Pseudomonas aeruginosa cytochrome c(551) variants was examined at pH 5.0 and 3.6. All variants were stabilized at both pHs compared with the wild-type. Remarkably, the variants carrying the F34Y and/or E43Y mutations were more stabilized than those having the F7A/V13M or V78I ones at pH 5.0 compared with at pH 3.6 by ~3.0-4.6 kJ/mol. Structural analyses predicted that the side chains of introduced Tyr-34 and Tyr-43 become hydrogen donors for the hydrogen bond formation with heme 17-propionate at pH 5.0, but less efficiently at pH 3.6, because the propionate is deprotonated at the higher pH. Our results provide an insight into a stabilization strategy for heme proteins involving variation of the heme electronic state and introduction of appropriate mutations.  相似文献   

8.
In Desulfovibrio metabolism, periplasmic hydrogen oxidation is coupled to cytoplasmic sulfate reduction via transmembrane electron transfer complexes. Type II tetraheme cytochrome c3 (TpII-c3), nine-heme cytochrome c (9HcA) and 16-heme cytochrome c (HmcA) are periplasmic proteins associated to these membrane-bound redox complexes and exhibit analogous physiological function. Type I tetraheme cytochrome c3 (TpI-c3) is thought to act as a mediator for electron transfer from hydrogenase to these multihemic cytochromes. In the present work we have investigated Desulfovibrio africanus (Da) and Desulfovibrio vulgaris Hildenborough (DvH) TpI-c3/TpII-c3 complexes. Comparative kinetic experiments of Da TpI-c3 and TpII-c3 using electrochemistry confirm that TpI-c3 is much more efficient than TpII-c3 as an electron acceptor from hydrogenase (second order rate constant k = 9 x 10(8) M(-1) s(-1), K(m) = 0.5 microM as compared to k = 1.7 x 10(7) M(-1) s(-1), K(m) = 40 microM, for TpI-c3 and TpII-c3, respectively). The Da TpI-c3/TpII-c3 complex was characterized at low ionic strength by gel filtration, analytical ultracentrifugation and cross-linking experiments. The thermodynamic parameters were determined by isothermal calorimetry titrations. The formation of the complex is mainly driven by a positive entropy change (deltaS = 137(+/-7) J mol(-1) K(-1) and deltaH = 5.1(+/-1.3) kJ mol(-1)) and the value for the association constant is found to be (2.2(+/-0.5)) x 10(6) M(-1) at pH 5.5. Our thermodynamic results reveal that the net increase in enthalpy and entropy is dominantly produced by proton release in combination with water molecule exclusion. Electrostatic forces play an important role in stabilizing the complex between the two proteins, since no complex formation is detected at high ionic strength. The crystal structure of Da TpI-c3 has been solved at 1.5 angstroms resolution and structural models of the complex have been obtained by NMR and docking experiments. Similar experiments have been carried out on the DvH TpI-c3/TpII-c3 complex. In both complexes, heme IV of TpI-c3 faces heme I of TpII-c3 involving basic residues of TpI-c3 and acidic residues of TpII-c3. A secondary interacting site has been observed in the two complexes, involving heme II of Da TpII-c3 and heme III of DvH TpI-c3 giving rise to a TpI-c3/TpII-c3 molar ratio of 2:1 and 1:2 for Da and DvH complexes, respectively. The physiological significance of these alternative sites in multiheme cytochromes c is discussed.  相似文献   

9.
The solution structure of oxidized bovine microsomal cytochrome b(5) mutant (E48, E56/A, D60/A) has been determined through 1524 meaningful nuclear Overhauser effect constraints together with 190 pseudocontact shift constraints. The final family of 35 conformers has rmsd values with respect to the mean structure of 0.045+/-0.009 nm and 0.088+/-0.011 nm for backbone and heavy atoms, respectively. A characteristic of this mutant is that of having no significant changes in the whole folding and secondary structure compared with the X-ray and solution structures of wild-type cytochrome b(5). The binding of different surface mutants of cytochrome b(5) with cytochrome c shows that electrostatic interactions play an important role in maintaining the stability and specificity of the protein complex formed. The differences in association constants demonstrate the electrostatic contributions of cytochrome b(5) surface negatively charged residues, which were suggested to be involved in complex formation in the Northrup and Salemme models, have cumulative effect on the stability of cyt c-cyt b(5) complex, and the contribution of Glu48 is a little higher than that of Glu44. Moreover, our result suggests that the docking geometry proposed by Northrup, which is involved in the participation of Glu48, Glu56, Asp60, and heme propionate of cytochrome b(5), do occur in the association between cytochrome b(5) and cytochrome c.  相似文献   

10.
Complete nucleotide sequences are now available for the pet (fbc) operons coding for the three electron carrying protein subunits of the cytochrome bc 1 complexes of four photosynthetic purple non-sulfur bacteria. It has been demonstrated that, although the complex from one of these bacteria may contain a fourth subunit, three subunit complexes appear to be fully functional. The ligands to the three hemes and the one [2Fe-2S] cluster in the complex have been identified and considerable progress has been made in mapping the two quinone-binding sites present in the complex, as well as the binding sites for quinone analog inhibitors. Hydropathy analyses and alkaline phosphatase fusion experiments have provided considerable insight into the likely folding pattern of the cytochrome b peptide of the complex and identification of the electrogenic steps associated with electron transport through the complex has allowed the orientation within the membrane of the electron-carrying groups of the complex to be modeled.  相似文献   

11.
The Mn4 cluster of PS II advances through a series of oxidation states (S states) that catalyze the breakdown of water to dioxygen in the oxygen-evolving complex. The present study describes the engineering and purification of highly active PS II complexes from mesophilic His-tagged Synechocystis PCC 6803 and purification of PS II core complexes from thermophilic wild-type Synechococcus lividus with high levels of the extrinsic polypeptide, cytochrome c 550. The g = 4.1 S2 state EPR signal, previously not characterized in untreated cyanobacterial PS II, is detected in high yields in these PS II preparations. We present a complete characterization of the g = 4.1 state in cyanobacterial His-tagged Synechocystis PCC 6803 PS II and S. lividus PS II. Also presented are a determination of the stoichiometry of cytochrome c 550 bound to His-tagged Synechocystis PCC 6803 PS II and analytical ultracentrifugation results which indicate that cytochrome c 550 is a monomer in solution. The temperature-dependent multiline to g = 4.1 EPR signal conversion observed for the S2 state in cyanobacterial PS II with high cytochrome c 550 content is very similar to that previously found for spinach PS II. In spinach PS II, the formation of the S2 state g = 4.1 EPR signal has been found to correlate with the binding of the extrinsic 17 and 23 kDa polypeptides. The finding of a similar correlation in cyanobacterial PS II with the binding of cytochrome c 550 suggests a functional homology between cytochrome c 550 and the 17 and 23 kDa extrinsic proteins of spinach PS II. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
An ensemble of structural models of the adduct between cytochrome c and cytochrome c oxidase from Paracoccus denitrificans has been calculated based on the experimental data from site-directed mutagenesis and NMR experiments that have accumulated over the last years of research on this system. The residues from each protein that are at the protein–protein interface have been identified by the above experimental work, and this information has been converted in a series of restraints explicitly used in calculations. It is found that a single static structural model cannot satisfy all experimental data simultaneously. Therefore, it is proposed that the adduct exists as a dynamic ensemble of different orientations in equilibrium, and may be represented by a combination or average of the various limiting conformations calculated here. The equilibrium involves both conformations that are competent for electron transfer and conformations that are not. Long-range recognition of the partners is driven by non-specific electrostatic interactions, while at shorter distances hydrophobic contacts tune the reciprocal orientation. Electron transfer from cytochrome bc 1 to cytochrome c oxidase is mediated through cytochrome c experiencing multiple encounters with both of its partners, only part of which are productive. The number of encounters, and thus the electron transfer rate, may be increased by the formation of a cytochrome bc 1–cytochrome c oxidase supercomplex and/or (in human) by increasing the concentration of the two enzymes in the membrane space. Protein Data Bank Accession numbers The coordinates of the five best structural models for each of the four clusters have been deposited in the Protein Data Bank (PDB ID 1ZYY).  相似文献   

13.
The physiological transient complex between cytochrome f (Cf) and cytochrome c6 (Cc6) from the cyanobacterium Nostoc sp. PCC 7119 has been analysed by NMR spectroscopy. The binding constant at low ionic strength is 8 ± 2 mM−1, and the binding site of Cc6 for Cf is localized around its exposed haem edge. On the basis of the experimental data, the resulting docking simulations suggest that Cc6 binds to Cf in a fashion that is analogous to that of plastocyanin but differs between prokaryotes and eukaryotes.  相似文献   

14.
Monomeric cytochrome c5 from deep-sea piezophilic Shewanella violacea (SVcytc5) was stable against heat and denaturant compared with the homologous protein from shallow-sea piezo-sensitive Shewanella livingstonensis (SLcytc5). Here, the SVcytc5 crystal structure revealed that the Lys-50 side chain on the flexible loop formed a hydrogen bond with heme whereas that of corresponding hydrophobic Leu-50 could not form such a bond in SLcytc5, which appeared to be one of possible factors responsible for the difference in stability between the two proteins. This structural insight was confirmed by a reciprocal mutagenesis study on the thermal stability of these two proteins. As SVcytc5 was isolated from a deep-sea piezophilic bacterium, the present comparative study indicates that adaptation of monomeric SVcytc5 to high pressure environments results in stabilization against heat.  相似文献   

15.
The permeability transition pore (PTP) is central for apoptosis by acting as a good candidate pathway for the release of Cyt. c and apoptosis induction factors (AIF). Arsenite induces apoptosis via a direct effect on PTP. To characterize the exact mechanism for arsenite induces PTP opening, the effect of Ca2+ on As2O3-induced PTP opening, the relationship between As2O3-induced PTP opening and Cyt. c release from mitochondria and calcium-induced calcium release from mitochondria (mCICR), and the effects of As2O3 on Ca2+-induced PTP opening were studied. The results showed As2O3 induces Cyt. c release by triggering PTP opening. Ca2+ is necessary for As2O3-induced PTP opening. As2O3-induced PTP opening and Cyt. c release depends on mCICR. As2O3 promotes PTP opening by lowering Ca2+-threshold. These results indicated As2O3 induce Cyt. c release from mitochondria by lowering Ca2+-threshold for PTP and triggering mCICR-dependent PTP opening. Suggesting that it is possible to control apoptosis by altering Ca2+ threshold and mCICR to modulate PTP opening and Cyt. c release.  相似文献   

16.
Cytochrome bc 1 complexes have been isolated from wild type Rhodopseudomonas viridis and Rhodospirillum rubrum and purified by affinity chromatography on cytochrome c-Sepharose 4B. Both complexes are largely free of bacteriochlorophyll and carotenoids and contain cytochromes b and c 1 in a 2:1 molar ratio. For the Rps. viridis complex, evidence has been obtained for two spectrally distinct b-cytochromes. The R. rubrum complex contains a Rieske iron-sulfur protein (present in approximately 1:1 molar ratio to cytochrome c 1) and catalyzes an antimycin A- and myxothiazol-sensitive electron transfer from duroquinol to equine cytochrome c or R. rubrum cytochrome c 2. Although an attempt to prepare a cytochrome bc 1 complex from the gliding green bacterium Chloroflexus aurantiacus was not successful, membranes isolated from phototrophically grown Cfl. aurantiacus were shown to contain a Rieske iron-sulfur protein and protoheme (the prosthetic group of b-type cytochromes).Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

17.
We report a protein conformational change following carbon monoxide photodetachment from fully reduced bovine cytochrome c oxidase that is hypothesized to be associated with changes in ligand mobility through a dioxygen access channel in the protein. Although not resolved by earlier photoacoustic or optical studies on this adduct, utilization of slightly lower temperatures revealed a process with a kinetic lifetime of about 70 ns at 10 degrees C. We measure an enthalpy change of about 8 kcal/mol in 0.050 M HEPES buffer that becomes less endothermic (DeltaH approximately 2 kcal/mol) at higher ionic strength. The volume contraction of about -0.7 mL/mol associated with the process almost doubles in higher ionic strength buffer systems. Measurements of samples in phosphate buffer systems are similar and appear to display the same subtle ionic strength dependence. Both the isolation of this photoacoustic signal component and the possible dependence on ionic strength of the thermodynamic parameters derived from its analysis appear analogous to and consistent with prior photoacoustic results monitoring CO photodetachment from the camphor complex of cytochrome P-450. Accordingly, we consider a similar model in which a conformational change results in movement of an exposed charged group or groups towards the interior of the protein, out of contact with solvent, as in the closing of a salt bridge.  相似文献   

18.
The import of cytochrome c into the mitochondrial intermembrane space is not understood at a mechanistic level. While the precursor apocytochrome c can insert into protein-free lipid bilayers, the purified translocase of the outer membrane (TOM) complex supports the translocation of apocytochrome c into proteoliposomes. We report an in organello analysis of cytochrome c import into yeast mitochondria from wild-type cells and different mutants cells, each defective in one of the seven Tom proteins. The import of cytochrome c is not affected by removal of the receptor Tom20 or Tom70. Moreover, neither the transfer protein Tom5 nor the assembly factors Tom6 and Tom7 are needed for import of cytochrome c. When the general import pore (GIP)-protein Tom40 is blocked, the import of cytochrome c is moderately affected. Mitochondria lacking the central receptor and organizing protein Tom22 contain greatly reduced levels of cytochrome c. We conclude that up to two components of the TOM complex, Tom22 and possibly the GIP, are involved in the biogenesis of cytochrome c.  相似文献   

19.
Steady-state kinetics for the reaction of Rhodobacter capsulatus bacterial cytochrome c peroxidase (BCCP) with its substrate cytochrome c(2) were investigated. The Rb. capsulatus BCCP is dependent on calcium for activation as previously shown for the Pseudomonas aeruginosa BCCP and Paracoccus denitrificans enzymes. Furthermore, the activity shows a bell-shaped pH dependence with optimum at pH 7.0. Enzyme activity is greatest at low ionic strength and drops off steeply as ionic strength increases, resulting in an apparent interaction domain charge product of -13. All cytochromes c(2) show an asymmetric distribution of surface charge, with a concentration of 14 positive charges near the exposed heme edge of Rb. capsulatus c(2) which potentially may interact with approximately 6 negative charges, localized near the edge of the high-potential heme of the Rb. capsulatus BCCP. To test this proposal, we constructed charge reversal mutants of the 14 positively charged residues located on the front face of Rb. capsulatus cytochrome c(2) and examined their effect on steady-state kinetics with BCCP. Mutated residues in Rb. capsulatus cytochrome c(2) that showed the greatest effects on binding and enzyme activity are K12E, K14E, K54E, K84E, K93E, and K99E, which is consistent with the site of electron transfer being located at the heme edge. We conclude that a combination of long-range, nonspecific electrostatic interactions as well as localized salt bridges between, e.g., cytochrome c(2) K12, K14, K54, and K99 with BCCP D194, D241, and D6, account for the observed kinetics.  相似文献   

20.
A comparative study of direct and mediated electrochemistry of metalloproteins in bulk and membrane-entrapped solutions is presented. This work reports the first electrochemical study of the electron transfer between a bacterial cytochrome c peroxidase and horse heart cytochrome c. The mediated catalysis of the peroxidase was analysed both using the membrane electrode configuration and with all proteins in solution. An apparent Michaelis constant of 66 +/- 4 and 42 +/- 5 microM was determined at pH 7.0 and 0 M NaCl for membrane and bulk solutions, respectively. The data revealed that maximum activity occurs at 50 mM NaCl, pH 7.0, with intermolecular rate constants of (4.4 +/- 0.5) x 10(6) and (1.0 +/- 0.5) x 10(6) M(-1) s(-1) for membrane-entrapped and bulk solutions, respectively. The influence of parameters such as pH or ionic strength on the mediated catalytic activity was analysed using this approach, drawing attention to the fact that careful analysis of the results is needed to ensure that no artefacts are introduced by the use of the membrane configuration and/or promoters, and therefore the dependence truly reflects the influence of these parameters on the (mediated) catalysis. From the pH dependence, a pK of 7.5 was estimated for the mediated enzymatic catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号