首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fragment B of protein A conjugated with fluorescein at various lysine residues is prepared and separated by using a DEAE column in anion-exchange chromatography. The binding of IgG Fc to fragment B contributes to an additional positive electric potential around fragment B. The change in the local electrostatic environment and pH can then be specifically monitored by measuring the fluorescence intensity of fluorescein conjugated with fragment B before and after the introduction of IgG. The studies for the quantitative dependence of fluorescein location on the effectiveness of fluorescein for sensing the protein A-IgG reaction are presented and discussed. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
A hydrophilic matrix of periodate-oxidized dextran was used as a double-sided linker to covalently immobilize Staphylococcus aureus protein A (SpA) molecules onto a poly-L-lysine-modified piezoelectric crystal surface to improve their stability, activity, and binding specificity with human immunoglobulin G (IgG) in flow injection assays. The prepared sensing crystals displayed best sensitivity and reusability at a flow rate of 140 microL/min. A human IgG concentration as low as 0.3 nM can be detected by this system. Up to 19 successive assay repetitions were achieved without significant loss of sensitivity using the same crystal. The analysis of adsorption kinetics indicates that such a preparation can greatly increase the amount of available active human IgG binding sites on immobilized SpA. Hardly any response arising from unspecific binding was detected. In addition, the sensing crystal prepared by this method was found to retain activity better than one prepared via direct deposition when stored in either wet or dry states. Finally, the prepared SpA-coated crystals were applied to the affinity immobilization of polyclonal goat anti-Schistosoma japonicum glutathione-S-transferase (GST) and were able to subsequently detect GST and its genetically engineered mutant either in a purified form or in the crude cell lysate.  相似文献   

3.
The surface of a protein, or a membrane, is spotted with a multitude of proton binding sites, some of which are only few A apart. When a proton is released from one site, it propagates through the water by a random walk under the bias of the local electrostatic potential determined by the distribution of the charges on the protein. Eventually, the released protons are dispersed in the bulk, but during the first few nanoseconds after the dissociation, the protons can be trapped by encounter with nearby acceptor sites. While the study of this reaction on the surface of a protein suffers from experimental and theoretical difficulties, it can be investigated with simple model compounds like derivatives of fluorescein. In the present study, we evaluate the mechanism of proton transfer reactions that proceed, preferentially, inside the Coulomb cage of the dye molecules. Kinetic analysis of the measured dynamics reveals the role of the dimension of the Coulomb cage on the efficiency of the reaction and how the ordering of the water molecules by the dye affects the kinetic isotope effect.  相似文献   

4.
5.
We demonstrate a label-free peptide-coated carbon nanotube-based immunosensor for the direct assay of human serum. A rheumatoid arthritis (RA)-specific (cyclic citrulline-containing) peptide, was immobilized to functionalized single-walled carbon nanotubes deposited on a quartz crystal microbalance (QCM) sensing crystal. Serum from RA patients was used to probe these nanotube-based sensors, and antibody binding was detected by QCM sensing. Specific antibody binding was also determined by comparing the assay of two serum control groups (normal and diseased sera), and the native unmodified peptide. The sensitivity of the nanotube-based sensor (detection in the femtomol range) was higher than that of the established ELISA and recently described microarray assay systems, detecting 34.4 and 37.5% more RA patients with anti-citrullinated peptide antibodies than those found by ELISA and microarray, respectively. There was also an 18.4 and 19.6% greater chance of a negative test being a true indicator of a person not having RA than by either ELISA or microarray, respectively. The performance of our label-free biosensor enables its application in the direct assay of sera in research and diagnostics.  相似文献   

6.
The elucidation of antibody higher order structure (HOS) is critical in therapeutic antibody development. Since HOS determines the protein bioactivity and chemo-physical properties, this knowledge can help to ensure that the safety and efficacy attributes are not compromised. Protein conformational array (PCA) is a novel method for determining the HOS of monoclonal antibodies. Previously, we successfully utilized an enzyme-linked immunosorbent assay (ELISA)-based PCA along with other bioanalytical tools to elucidate the structures of antibody aggregates. In this study, applying a new multiplex-based PCA with 48-fold higher throughput than the ELISA-based one we revealed structural differences between different antibody molecules and antibody structure changes affected by various processing conditions. The PCA analysis of antibody molecules clearly demonstrated significant differences between IgG1 and IgG4 subclasses in epitope exposure and folding status. Furthermore, we applied small angle X-ray scattering to decipher mechanistic insights of PCA technology and validate structural information obtained using PCA. These findings enhance our fundamental understanding of mAbs' HOS in general. The PCA analysis of antibody samples from various processing conditions also revealed that antibody aggregation caused significantly higher exposure of antibody epitopes, which potentially led to a “foreign” molecule that could cause immunogenicity. The PCA data correlated well with protein stability results from traditional methods such as size-exclusion chromatography and protein thermal shift assay. Our study demonstrated that high throughput PCA is a suitable method for HOS analysis in the discovery and development of therapeutic antibodies.  相似文献   

7.
The mechanism of interaction of lectins with IgG molecules by the method of the lectin-enzyme assay has been described that allows to register a degree of human serum IgG molecules' glycosylation (mannosylation in case of lectin of Pisum sativum) in norm and at pathology. To detect an authentic difference in a glycosylation degree between control and pathological IgG, the wells of an ELISA plate were coated with an antibody in concentration of 1 microg/ml. Introducing alpha-D-mannose between the stages of incubation of immunoglobulin and lectin showed, that alpha-D-mannose inhibits the affinity of lectins for IgG. The preliminary incubation of lectin with IgG molecules stabilizes the activity of horseradish peroxidase, which labeled the lectins. Lectin-enzyme assay, in which Fab and Fc fragments of IgG were used, showed that lectin of Pisum sativum possesses a higher affinity for Fab regions. These findings and the glycosylation analysis of paraproteins and Bence-Jones proteins of multiple myeloma patients help to understand the details of interaction of immunoglobulins and lectins.  相似文献   

8.
The surface of a protein, or a membrane, is spotted with a multitude of proton binding sites, some of which are only few Å apart. When a proton is released from one site, it propagates through the water by a random walk under the bias of the local electrostatic potential determined by the distribution of the charges on the protein. Eventually, the released protons are dispersed in the bulk, but during the first few nanoseconds after the dissociation, the protons can be trapped by encounter with nearby acceptor sites. While the study of this reaction on the surface of a protein suffers from experimental and theoretical difficulties, it can be investigated with simple model compounds like derivatives of fluorescein. In the present study, we evaluate the mechanism of proton transfer reactions that proceed, preferentially, inside the Coulomb cage of the dye molecules. Kinetic analysis of the measured dynamics reveals the role of the dimension of the Coulomb cage on the efficiency of the reaction and how the ordering of the water molecules by the dye affects the kinetic isotope effect.  相似文献   

9.
An improved ELISA test for determination of potency of Inactivated Poliovirus Vaccine (IPV) is proposed. The method is based on the use of IgG purified from immune rabbit serum conjugated with biotin. Optimized and validated materials for the test can be stored for a long time in the form of ready-to-use kits. Optimization included selection of anti-poliovirus rabbit antibody batches with the best specificity to D-antigen as well as finding the most efficient parameters for all steps of ELISA protocol. The assay is based on direct ("sandwich") ELISA scheme, in which antigens are captured on ELISA plates coated with purified rabbit polyclonal D-antigen specific IgG raised against wild polioviruses of three serotypes. D-antigen specificity of the IgG was at least 10 times higher than to H-antigen (heat-inactivated virus). The presence of antigen was detected using biotin-conjugated IgG from the same source. Eight-point dose-response curves were obtained for each sample and the reference vaccine. The protocol ensured low background (less than 0.2 OD), linear response over the entire range of optical density measurements (up to 3.0 OD), and high precision of data (assay variability was about 3%). The quantitative results and the validity of the test were determined by two numerical approaches, linear regression and a new analysis procedure called the local interpolation method. For the first approach we also proposed a new method for testing of parallelism of regression lines. The ELISA protocol for all three types of poliovirus is based on standard off-the-shelf reagents, and is highly reproducible and reliable. An in-house Reference Reagent was formulated and calibrated against the International Reference for IPV.  相似文献   

10.
A 2200-ps molecular dynamics (MD) simulation of the U2 snRNA hairpin IV/U2B" complex was performed in aqueous solution using the particle mesh Ewald method to consider long-range electrostatic interactions. To investigate the interaction and recognition process between the RNA and protein, the free energy contributions resulting from individual amino acids of the protein component of the RNA/protein complex were calculated using the recently developed glycine-scanning method. The results revealed that the loop region of the U2 snRNA hairpin IV interacted mainly with three regions of the U2B" protein: 1) beta 1-helix A, 2) beta 2-beta 3, and 3) beta 4-helix C. U2 snRNA hairpin IV bound U2B" in a similar orientation as that previously described for U1 snRNA with the U1A' protein; however, the details of the interaction differed in several aspects. In particular, beta 1-helix A and beta 4-helix C in U2B" were not observed to interact with RNA in the U1A' protein complex. Most of the polar and charged residues in the interacting regions had larger mutant free energies than the nonpolar residues, indicating that electrostatic interactions were important for stabilizing the RNA/protein complex. The interaction was further stabilized by a network of hydrogen bonds and salt bridges formed between RNA and protein that was maintained throughout the MD trajectory. In addition to the direct interactions between RNA and the protein, solvent-mediated interactions also contributed significantly to complex stability. A detailed analysis of the ordered water molecules in the hydration of the RNA/protein complex revealed that bridged water molecules reside at the interface of RNA and protein as long as 2100 ps in the 2200-ps trajectory. At least 20 bridged water molecules, on average, contributed to the instantaneous stability of the RNA/protein complex. The stabilizing interaction energy due to bridging water molecules was obtained from ab initio Hartree-Fock and density functional theory calculations.  相似文献   

11.
A novel minicolumn chromatographic method to monitor the production of inclusion bodies during fermentation and an enzyme-linked immunosorbent assay (ELISA) system allowing direct analysis of the particles with surface-displayed antigens are described. A 33-kDa protein containing 306 amino acids with three sulfur bridges produced as inclusion bodies was labeled with polyclonal antibodies against 15 amino acid (anti-A15) and 17 amino acid (anti-B17) residues at the N- and C-terminal ends of the protein, respectively. Labeled particles were bound to macroporous monolithic protein A-cryogel adsorbents inserted into the open-ended wells of a 96-well plate (referred to as protein A-cryogel minicolumn plate). The concept behind this application is that the binding degree of inclusion bodies from lysed fermentation broth to the cryogel minicolumns increases with an increase in their concentration during fermentation. The technique allowed us to monitor the increase in the production levels of the inclusion bodies as the fermentation process progressed. The system also has a built-in quality parameter to ensure that the target protein has been fully expressed. Alternatively, inclusion bodies immobilized on phenyl-cryogel minicolumn plate were used in indirect ELISA based on anti-A15 and anti-B17 antibodies against terminal amino acid residues displayed on the surface of inclusion bodies. Drainage-protected properties of the cryogel minicolumns allow performance of successive reactions with tested immunoglobulin G (IgG) samples and enzyme-conjugated secondary IgG and of enzymatic reaction within the adsorbent.  相似文献   

12.
Oxidative stress, originating from reactive oxygen species (ROS), has been implicated in aging and various human diseases. The ROS generated can oxidize proteins producing protein carbonyl derivatives. The level of protein carbonyls in blood plasma has been used as a measure of overall oxidative stress in the body. Classically, protein carbonyls have been quantitated spectrophotometrically by directly reacting them with 2,4-dinitrophenylhydrazine (DNPH). However, the applicability of this method to biological samples is limited by its low inherent sensitivity. This limitation has been overcome by the development of sensitive enzyme-linked immunosorbent assay (ELISA) methods to measure protein carbonyls. As part of the Healthy Aging in Neighborhoods of Diversity across the Lifespan (HANDL) study, oxidative stress in humans was quantified by measuring blood plasma protein carbonyls using the two commercially available ELISA kits and the spectrophotometric DNPH assay. Surprisingly, two ELISA methods gave very different values for protein carbonyls, both of which were different from the value of the spectrophotometric method. We have developed a fluorescent semi-microplate format assay of protein carbonyls involving direct reaction of protein carbonyls with fluorescein thiosemicarbazide that correlates (R = 0.992) with the direct spectrophotometric method. It has a coefficient of variation of 4.99% and is at least 100 times more sensitive than the spectrophotometric method.  相似文献   

13.
We have developed a technique for sensing protein-small molecule and protein-ion interactions in bulk aqueous solution by utilizing a pH sensitive dye, 5-(and-6)-carboxyfluorescein, conjugated to free lysine residues on the surfaces of designated capture proteins. The fluorescein intensity was found to change by about 6% and 15% for small molecule and ion binding, respectively. The assay works by modulating the local electric fields around a pH sensitive dye. This, in turn, alters the dye's apparent pK(A) value. Such changes may result directly from the charge on the analyte, occur through allosteric effects related to the binding process, or result from a combination of both. The assay was used to follow the binding of Ca(2+) to calmodulin (CaM) and thiamine monophosphate (ThMP) to thiamine binding protein A (TbpA). The results demonstrate a binding constant of 1.1μM for the Ca(2+)/CaM pair and 3.2nM for ThMP/TbpA pair, which are in excellent agreement with literature values. These assays demonstrate the generality of this method for observing the interactions of small molecules and ions with capture proteins. In fact, the assay should work as a biosensor platform for most proteins containing a specific ligand binding site, which would be useful as a simple and rapid preliminary screen of protein-ligand interactions.  相似文献   

14.
We present experimental results in order to establish a correlation between pH sensitivity of immunologically modified nano-scaled field-effect transistor (NS-ImmunoFET) with their sensing capacity for label-free detection. The NS-ImmunoFETs are fabricated from silicon-on-insulator (SOI) wafers and are fully-depleted with thickness of ~20 nm. The data shows that higher sensitivity to pH entails enhanced sensitivity to analyte detection. This suggests that the mechanism of analyte detection as pure electrostatic perturbation induced by antibody-analyte interaction is over simplified. The fundamental assumption, in existing models for field-effect sensing mechanism assumes that the analyte molecules do not directly interact with the surface but rather stand 'deep' in the solution and away from the dielectric surface. Recent studies clearly provide contradicting evidence demonstrating that antibodies lie down flat on the surface. These observations led us to propose that the proteins that cover the gate area intimately interact with active sites on the surface thus forming a network of interacting sites. Since sensitivity to pH is directly correlated with the amount of amphoteric sites, we witness a direct correlation between sensitivity to pH and analyte detection. The highest and lowest threshold voltage shift for a label-free and specific detection of 6.5 nM IgG were 40 mV and 2.3 mV for NS-ImmunoFETs with pH sensitivity of 35 mV/decade and 15 mV/decade, respectively. Finally, physical modeling of the NS-ImmunoFET is presented and charge of a single IgG protein at pH 6 is calculated. The obtained value is consistent with charge of IgG protein cited in literature.  相似文献   

15.
F(ab) fragments imprinted surface plasmon resonance (SPR) chip was prepared for the real-time detection of human immunoglobulin G (IgG). In order to attach polymerization precursor on SPR chip, the SPR chip surface was modified with allyl mercaptan. F(ab) fragments of the IgG molecules were prepared by papain digestion procedure and collected by fast protein liquid chromatography (FPLC) system using Hi-Trap_r Protein A FF column. The collected F(ab) fragments were complexed with histidine containing specific monomer, N-methacryloyl-l-histidine methyl ester (MAH). Molecular imprinted polymeric nanofilm was prepared on SPR chip in the presence of ethylene glycol dimethacrylate and 2-hydroxyethylmethacrylate. The template molecules, F(ab) fragments, were removed from the polymeric nanofilm using 1M NaCl solution (pH: 7.4, phosphate buffer system). The molecular imprinted SPR chip was characterized by contact angle, atomic force microscopy and Fourier transform infrared spectroscopy. By the real-time IgG detection studies carried out using aqueous IgG solutions in different concentrations, the kinetics and isotherm parameters of the molecular imprinted SPR chip-IgG system were calculated. To show selectivity and specificity of the molecular imprinted SPR chip, competitive kinetic analyses were performed using bovine serum albumin (BSA), IgG, F(ab) and F(c) fragments in singular and competitive manner. As last step, IgG detection studies from human plasma were performed and the measured IgG concentrations were well matched with the results determined by enzyme-linked immunosorbent assay (ELISA). The results obtained with the molecular imprinted SPR chip were well fitted to Langmuir isotherm and the detection limit was found as 56 ng/mL. In the light of the results, we can conclude that the proposed molecular imprinted SPR chip can detect IgG molecules from both aqueous solutions and complex natural samples.  相似文献   

16.
A new cation-exchange high-performance liquid chromatography (HPLC) method that separates fragment antigen-binding (Fab) and fragment crystallizable (Fc) domains generated by the limited proteolysis of monoclonal antibodies (mAbs) was developed. This assay has proven to be suitable for studying complex degradation processes involving various immunoglobulin G1 (IgG1) molecules. Assignment of covalent degradations to specific regions of mAbs was facilitated by using Lys-C and papain to generate Fab and Fc fragments with unique, protease-dependent elution times. In particular, this method was useful for characterizing protein variants formed in the presence of salt under accelerated storage conditions. Two isoforms that accumulated during storage were readily identified as Fab-related species prior to mass-spectrometric analysis. Both showed reduced biological activity likely resulting from modifications within or in proximity of the complementarity-determining regions (CDRs). Utility of this assay was further illustrated in the work to characterize light-induced degradations in mAb formulations. In this case, a previously unknown Fab-related species which populated upon light exposure was observed. This species was well resolved from unmodified Fab, allowing for direct and high-purity fractionation. Mass-spectrometric analysis subsequently identified a histidine-related degradation product associated with the CDR2 of the heavy chain. In addition, the method was applied to assess the structural organization of a noncovalent IgG1 dimer. A new species corresponding to a Fab–Fab complex was found, implying that interactions between Fab domains were responsible for dimerization. Overall, the data presented demonstrate the suitability of this cation-exchange HPLC method for studying a wide range of covalent and noncovalent degradations in IgG1 mAbs.  相似文献   

17.
Macromolecules that can assemble a large number of enzyme and antibody molecules have been used frequently for improvement of sensitivities in enzyme-linked immunosorbent assays (ELISAs). We generated bionanocapsules (BNCs) of approximately 30 nm displaying immunoglobulin G (IgG) Fc-binding ZZ domains derived from Staphylococcus aureus protein A (designated as ZZ-BNC). In the conventional ELISA using primary antibody and horseradish peroxidase-labeled secondary antibody for detecting antigen on the solid phase, ZZ-BNCs in the aqueous phase gave an approximately 10-fold higher signal. In Western blot analysis, the mixture of ZZ-BNCs with secondary antibody gave an approximately 50-fold higher signal than that without ZZ-BNCs. These results suggest that a large number of secondary antibody molecules are immobilized on the surface of ZZ-BNCs and attached to antigen, leading to the significant enhancement of sensitivity. In combination with the avidin-biotin complex system, biotinylated ZZ-BNCs showed more significant signal enhancement in ELISA and Western blot analysis. Thus, ZZ-BNC is expected to increase the performance of various conventional immunoassays.  相似文献   

18.
Abstract

In order to evaluate the possibility of using IgY as the secondary antibody in immunoassay, specific IgY (1: 128,000) was generated by immunizing hens with mouse serum IgG purified by protein A column. IgY was extracted from egg yolk by polyethylene glycol 6000 (PEG-6000), and further purified using protein M affinity chromatography column. The purified IgY was conjugated with horseradish peroxidase (HRP) and fluorescein?isothiocyanate (FITC), in that order. The reactivity of conjugated antibodies was evaluated by ELISA, Western blot and Immunofluorescence, demonstrating that the obtained IgY was able to conjugate with enzymes, react with mouse primary IgG antibody, and subsequently amplify the antigen-antibody signals in different immune reaction conditions, in a comparable secondary effect to conventional goat anti-mouse IgG antibody. The obtained conjugated antibodies showed high stability in broad pH ranges (4–10; >70%) and high thermostability at 37?°C for 84?h (>85%). Despite the need to further consider and evaluate the industrial standardization and production process, our data provided the primary evidence that conjugated IgY antibodies can be used as a secondary antibody for broad immunological analysis.  相似文献   

19.
马立克氏病毒单克隆抗体的研究   总被引:1,自引:0,他引:1  
获得了4株分泌马立克氏病毒(MDV)特异性单克隆抗体(McAb)的杂交瘤细胞:4BS10对MDV所有毒株呈阳性反应;4CN8 对MDV血清1,3型毒株发生反应;2BN90和4CN24只对MDV血清1型毒株有阳性反应。3个McAb属IgG1,1个为IgG2b,均不中和MDV,免疫扩散试验也无沉淀线。对禽白血病毒(ALV)无交叉反应。 以2BN90和辣根过氧化物酶、异硫氰酸荧光素的结合物进行直接酶联免疫吸附试验和直接荧光抗体试验,均获得成功。抗体滴度前者为1/51,200,后者为1/640。对ALV无交叉反应。  相似文献   

20.
A sandwich-type enzyme-linked immunosorbent assay (ELISA) was established for monitoring the secretion of ZZ-fusion proteins. Two antibodies, a monoclonal mouse anti-human proinsulin and a rabbit antibovine IgG (strongly binding to the ZZ-domain), were used to quantify the secretion of recombinant human ZZ-proinsulin to the growth medium of Escherichia coli cultures. The method here reported conjugates the advantages of sandwich-type ELISA assays, namely, high sensitivity, specificity, and throughput, with the possibility of quantifying small protein molecules (e.g., peptides). A further advantage of gene fusion techniques integrating both downstream processing and product detection and quantitation is highlighted. The method is capable of detecting levels of 0.05 ng of ZZ-proinsulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号