首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:从鼠黑色素瘤BL6F10细胞系中分离与鉴定癌干细胞(CSC)样细胞,为今后对CSC的鉴定及靶向治疗奠定基础。方法:用不同免疫磁珠标记的单克隆抗体,从BL6F10细胞系中分离有特征性CD表型的瘤细胞,体外观察不同CD表型瘤细胞在软琼脂培养基上形成克隆的能力;将这些瘤细胞皮下注射到C57BL/6小鼠,比较其致瘤性。结果:从BL6F10细胞系中分离出不同CD表型的特征性瘤细胞;在软琼脂培养基上,CD133^+、CD44^+和CD44^+CD133^+细胞克隆形成率分别高于CD133^-、CD44^-和CD44^+CD133^-细胞;CD133^+、CD44^+、CD44^+CD133^+和CD44^+CD133^+CD24+细胞在小鼠体内的致瘤性分别强于CD133^-、CD44^-、CD44^+CD133^-和CD44^+CD133^+CD24^-细胞。结论:CD44^+CD133^+CD24+表型的BL6F10细胞的某些生物学特性与CSC样细胞相似,具有CSC特征,这些实验结果为进一步鉴定BL6F10细胞系中的CSC提供了重要的实验资料。  相似文献   

2.
Lung cancer (LC) with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs) within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs) from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC), large cell carcinoma (LCC), squamous cell carcinoma (SCC) and adenocarcinoma (AC). We identified a small population of cells strongly positive for CD44 (CD44high) and a main population which was either weakly positive or negative for CD44 (CD44low/−). Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44highCD90+ sub-population. Moreover, these CD44highCD90+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44highCD90+ population a good candidate for the lung CSCs. Both CD44highCD90+ and CD44highCD90 cells in the PLCCL derived from SCC formed spheroids, whereas the CD44low/− cells were lacking this potential. These results indicate that CD44highCD90+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44high sub-population.  相似文献   

3.
Both stem cells and cancer cells are thought to be capable of unlimited proliferation. Paradoxically, however, some cancers seem to contain stem-like cells (cancer stem cells). To help resolve this paradox, we investigated whether established malignant cell lines, which have been maintained over years in culture, contain a subpopulation of stem cells. We have shown that four cancer cell lines contain a small side population (SP), which, in many normal tissues, is enriched for stem cells of the tissue. We have also shown that SP cells in C6 glioma cell line, but not non-SP cells, can generate both SP and non-SP cells in culture and are largely responsible for the in vivo malignancy of this cell line. We propose that many cancer cell lines contain a minor subpopulation of stem cells that is enriched in a SP, can be maintained indefinitely in culture, and is crucial for their malignancy.  相似文献   

4.
Cancer stem cells (CSCs) are defined as a subset of slow cycling and undifferentiated cells that divide asymmetrically to generate highly proliferative, invasive, and chemoresistant tumor cells. Therefore, CSCs are an attractive population of cells to target therapeutically. CSCs are predicted to contribute to a number of types of malignancies including those in the blood, brain, lung, gastrointestinal tract, prostate, and ovary. Isolating and enriching a tumor cell population for CSCs will enable researchers to study the properties, genetics, and therapeutic response of CSCs. We generated a protocol that reproducibly enriches for ovarian cancer CSCs from ovarian cancer cell lines (SKOV3 and OVCA429). Cell lines are treated with 20 µM cisplatin for 3 days. Surviving cells are isolated and cultured in a serum-free stem cell media containing cytokines and growth factors. We demonstrate an enrichment of these purified CSCs by analyzing the isolated cells for known stem cell markers Oct4, Nanog, and Prom1 (CD133) and cell surface expression of CD177 and CD133. The CSCs exhibit increased chemoresistance. This method for isolation of CSCs is a useful tool for studying the role of CSCs in chemoresistance and tumor relapse.  相似文献   

5.
Cancer stem cells (CSC) were isolated via a non-adherent neurosphere assay from three glioma cell lines: LI, U87, and U373. Using a clonal assay, two clones (D2 and F11) were selected from spheres derived from LI cells and were characterized for the: expression of stem cell markers (CD133, Nestin, Musashi-1 and Sox2); proliferation; differentiation capability (determined by the expression of GalC, βIII-Tubulin and GFAP); Ca2+ signaling and tumorigenicity in nude mice. Both D2 and F11 clones expressed higher levels of all stem cell markers with respect to the parental cell line. Clones grew more slowly than LI cells with a two-fold increase in duplication time. Markers of differentiation (βIII-Tubulin and GFAP) were expressed at high levels in both LI cells and in neurospheres. The expression of Nestin, Sox2, and βIII-Tubulin was down-regulated in D2 and F11 when cultured in serum-containing medium, whereas Musashi-1 was increased. In this condition, duplication time of D2 and F11 increased without reaching that of LI cells. D2, F11 and parental cells did not express voltage-dependent Ca2+-channels but they exhibited increased intracellular Ca2+ levels in response to ATP. These Ca2+ signals were larger in LI cells and in spheres cultured in serum-containing medium, while they were smaller in serum-free medium. The ATP treatment did not affect cell proliferation. Both D2 and F11 induced the appearance of tumors when ortotopically injected in athymic nude mice at a density 50-fold lower than that of LI cells. All these data indicate that both clones have characteristics of CSC and share the same stemness properties. The findings regarding the expression of differentiation markers and Ca2+-channels show that both clones are unable to reach the terminal differentiation. Both D2 and F11 might represent a good model to improve the knowledge on CSC in glioblastoma and to identify new therapeutic approaches.  相似文献   

6.
There is increasing evidence that many solid tumors are hierarchically organized with the bulk tumor cells having limited replication potential, but are sustained by a stem-like cell that perpetuates the tumor. These cancer stem cells have been hypothesized to originate from transformation of adult tissue stem cells, or through re-acquisition of stem-like properties by progenitor cells. Adenosquamous carcinoma (ASC) is an aggressive type of lung cancer that contains a mixture of cells with squamous (cytokeratin 5+) and adenocarcinoma (cytokeratin 7+) phenotypes. The origin of these mixtures is unclear as squamous carcinomas are thought to arise from basal cells in the upper respiratory tract while adenocarcinomas are believed to form from stem cells in the bronchial alveolar junction. We have isolated and characterized cancer stem-like populations from ASC through application of selective defined culture medium initially used to grow human lung stem cells. Homogeneous cells selected from ASC tumor specimens were stably expanded in vitro. Primary xenografts and metastatic lesions derived from these cells in NSG mice fully recapitulate both the adenocarcinoma and squamous features of the patient tumor. Interestingly, while the CSLC all co-expressed cytokeratins 5 and 7, most xenograft cells expressed either one, or neither, with <10% remaining double positive. We also demonstrated the potential of the CSLC to differentiate to multi-lineage structures with branching lung morphology expressing bronchial, alveolar and neuroendocrine markers in vitro. Taken together the properties of these ASC-derived CSLC suggests that ASC may arise from a primitive lung stem cell distinct from the bronchial-alveolar or basal stem cells.  相似文献   

7.
8.
9.
In the mouse embryo, early hematopoiesis occurs simultaneously in multiple organs, which includes the yolk sac and aorta-gonad-mesonephros region. These regions are crucial in establishing the blood system in the embryos and leads to the eventual movement of stem cells into the fetal liver and then development of adult stem cells in the bonemarrow. Early hematopoietic stem cells can be isolated from these organs through microdissection of the embryo followed by flow cytometric sorting to obtain a more pure population. It remains unclear how these stem cell populations contribute to the fetal and adult stem cell pool. Also, our lab investigates how early stem cells functionally differ from fetal and adult hematopoietic stem cells. Furthermore, our lab sorts different populations of hematopoietic stem cells and test their functional role in the context of a variety of genetic models. In this video, we demonstrate the micro-dissection procedure we commonly use and also show the results of a typical FACS plotfter isolating these rare populations, it is possible to perform a variety of functional assays including: colony assays and bone marrow transplants. Download video file.(227M, mov)  相似文献   

10.
The skin is a rich source of readily accessible stem cells. The level of plasticity afforded by these cells is becoming increasingly important as the potential of stem cells in Cell Therapy and Regenerative Medicine continues to be explored. Several protocols described single type stem cell isolation from skin; however, none of them afforded simultaneous isolation of more than one population. Herein, we describe the simultaneous isolation and characterization of three stem cell populations from the dermis and epidermis of murine skin, namely Epidermal Stem Cells (EpiSCs), Skin-derived Precursors (SKPs) and Mesenchymal Stem Cells (MSCs). The simultaneous isolation was possible through a simple protocol based on culture selection techniques. These cell populations are shown to be capable of generating chondrocytes, adipocytes, osteocytes, terminally differentiated keratinocytes, neurons and glia, rendering this protocol suitable for the isolation of cells for tissue replenishment and cell based therapies. The advantages of this procedure are far-reaching since the skin is not only the largest organ in the body, but also provides an easily accessible source of stem cells for autologous graft.  相似文献   

11.
目的:进一步证明胶质瘤干细胞是广泛存在的,并寻找一种简洁的方法从不同胶质瘤细胞系中提取肿瘤干细胞。方法:将胶质瘤细胞以合适的密度接种于96孔板中,获取胶质瘤干细胞,并通过检测其自我更新能力、多向分化能力、成瘤能力及胶质瘤干细胞标记物的表达情况对其进行鉴定。结果:多种细胞系中均成功获取了胶质瘤干细胞。并且这细胞球表达神经干细胞的标志物,不袁达神经细胞分化标志物,同时又有多向分化的能力,仅5000个细胞就可以在裸鼠颅内成瘤。结论:我们的研究结果表明胶质瘤干细胞是广泛存在的,并为以后进一步研究胶质瘤干细胞的特性及靶向胶质瘤干细胞的药物做铺垫。  相似文献   

12.
目的:进一步证明胶质瘤干细胞是广泛存在的,并寻找一种简洁的方法从不同胶质瘤细胞系中提取肿瘤干细胞。方法:将胶质瘤细胞以合适的密度接种于96孔板中,获取胶质瘤干细胞,并通过检测其自我更新能力、多向分化能力、成瘤能力及胶质瘤干细胞标记物的表达情况对其进行鉴定。结果:多种细胞系中均成功获取了胶质瘤干细胞。并且这细胞球表达神经干细胞的标志物,不表达神经细胞分化标志物,同时又有多向分化的能力,仅5000个细胞就可以在裸鼠颅内成瘤。结论:我们的研究结果表明胶质瘤干细胞是广泛存在的,并为以后进一步研究胶质瘤干细胞的特性及靶向胶质瘤干细胞的药物做铺垫。  相似文献   

13.
Cancer stem cells (CSCs) have been identified in a growing number of malignancies and are functionally defined by their ability to undergo self-renewal and produce differentiated progeny1. These properties allow CSCs to recapitulate the original tumor when injected into immunocompromised mice. CSCs within an epithelial malignancy were first described in breast cancer and found to display specific cell surface antigen expression (CD44+CD24low/-)2. Since then, CSCs have been identified in an increasing number of other human malignancies using CD44 and CD24 as well as a number of other surface antigens. Physiologic properties, including aldehyde dehydrogenase (ALDH) activity, have also been used to isolate CSCs from malignant tissues3-5.Recently, we and others identified CSCs from pancreatic adenocarcinoma based on ALDH activity and the expression of the cell surface antigens CD44 and CD24, and CD1336-8. These highly tumorigenic populations may or may not be overlapping and display other functions. We found that ALDH+ and CD44+CD24+ pancreatic CSCs are similarly tumorigenic, but ALDH+ cells are relatively more invasive8. In this protocol we describe a method to isolate viable pancreatic CSCs from low-passage human xenografts9. Xenografted tumors are harvested from mice and made into a single-cell suspension. Tissue debris and dead cells are separated from live cells and then stained using antibodies against CD44 and CD24 and using the ALDEFLUOR reagent, a fluorescent substrate of ALDH10. CSCs are then isolated by fluorescence activated cell sorting. Isolated CSCs can then be used for analytical or functional assays requiring viable cells.  相似文献   

14.
外胚间充质(ectomesenchyme)是一种胚胎发育早期颅面部出现的多能性结构(multipotentstructure),大多数颅面部结构和组织均由其衍生而来,这提示外胚间充质中存在一种干细胞,即外胚间充质干细胞(ectomesenchymalstemcells,EMSCs)。为了分离和鉴定EMSCs,对E125的SD大鼠颌突组织细胞进行了流式细胞学分析,发现其中的外胚间充质细胞表达多种神经谱系和中胚层谱系的标志,包括p75、CD57和nestin等。根据此特点,采用磁细胞分离技术对p75+的颌突外胚间充质细胞进行了分离和克隆培养。克隆分析表明,单个p75+细胞经过10~14d培养,可以形成由两种或两种以上细胞组成的多潜能性克隆(multipotentclone),提示该群外胚间充质细胞具有多潜能性。同时,亚克隆分析表明,多潜能性子克隆中的单个p75+细胞具有再次形成多潜能性克隆的能力,说明这些细胞在体外具有自我更新的能力。这些结果提示,p75+细胞同时具有多潜能性和自我更新能力,因此是外胚间充质干细胞。该干细胞的分离对于口腔颅面部的起源和发育研究无疑具有重要意义。此外,该干细胞的高度可塑性也预示它可以作为一种新的种子细胞,为组织工程皮肤、肌肉、软骨的研究提供新思路。  相似文献   

15.
16.
旨在分离并鉴定肝癌肿瘤干细胞,并对其异常表达的microRNA进行了初步筛选。首先利用流式细胞术及免疫荧光技术分别在肝癌细胞系及肝癌组织标本中确认了CD90+细胞的存在;随后利用免疫磁珠分选技术从肝癌细胞系MHCC97-H中分离出了CD90+细胞,化疗药物耐药性实验表明,CD90+细胞具有明显的化疗药物耐受能力;两次裸鼠皮下成瘤性实验也表明CD90+细胞具有较强的成瘤能力,而CD90-细胞不具备成瘤能力。上述实验充分说明:CD90+细胞具有肝癌肿瘤干细胞特性。因此利用该细胞模型进行了肝癌肿瘤干细胞CD90+细胞和非肝癌肿瘤干细胞CD90-细胞之间差异表达的microRNA的检测,结果表明,CD90+细胞与CD90-细胞之间共有92个microRNAs的表达存在差异性,其中在CD90+细胞中高表达的microRNAs有52个;在CD90-细胞中高表达的microRNAs有40个。  相似文献   

17.
胎儿肺脏来源间充质干细胞的鉴定与损伤修复的实验研究   总被引:2,自引:0,他引:2  
目的 :为研究胎儿肺脏来源间充质干细胞的生物学性状 ,表型和多向分化能力。方法 :取胎龄为 4~ 5个月水囊引产胎儿 ,将肺脏细胞在SF(含 2 %FBS)培养基中培养。测定生长曲线、利用流式细胞仪对培养细胞进行表型测定 ,细胞周期分析 ,体外诱导分化实验。NOD SCID鼠放射损伤后 ,尾静脉输入经PKH2 6染色的间充质干细胞 ,两个月后检测外源细胞在肺脏的定植情况。结果 :从胎儿肺脏可培养出间充质干细胞 ,并可诱导成骨、软骨和脂肪细胞分化 ;移植两个月后可以检测到外源细胞在肺脏的定植。结论 :从胎儿肺脏可分离培养出间充质干细胞 ,在体外有效扩增且保持其低分化状态 ;间充质干细胞可以在肺脏长时间定植。  相似文献   

18.
The bone marrow is the principal site where HSCs and more mature blood cells lineage progenitors reside and differentiate in an adult organism. HSCs constitute a minute cell population of pluripotent cells capable of generating all blood cell lineages for a life-time1. The molecular dissection of HSCs homeostasis in the bone marrow has important implications in hematopoiesis, oncology and regenerative medicine. We describe the labeling protocol with fluorescent antibodies and the electronic gating procedure in flow cytometry to score hematopoietic progenitor subsets and HSCs distribution in individual mice (Fig. 1). In addition, we describe a method to extensively enrich hematopoietic progenitors as well as long-term (LT) and short term (ST) reconstituting HSCs from pooled bone marrow cell suspensions by magnetic enrichment of cells expressing c-Kit. The resulting cell preparation can be used to sort selected subsets for in vitro and in vivo functional studies (Fig. 2).Both trabecular osteoblasts2,3 and sinusoidal endothelium4 constitute functional niches supporting HSCs in the bone marrow. Several mechanisms in the osteoblastic niche, including a subset of N-cadherin+ osteoblasts3 and interaction of the receptor tyrosine kinase Tie2 expressed in HSCs with its ligand angiopoietin-15 concur in determining HSCs quiescence. "Hibernation" in the bone marrow is crucial to protect HSCs from replication and eventual exhaustion upon excessive cycling activity6. Exogenous stimuli acting on cells of the innate immune system such as Toll-like receptor ligands7 and interferon-α6 can also induce proliferation and differentiation of HSCs into lineage committed progenitors. Recently, a population of dormant mouse HSCs within the lin- c-Kit+ Sca-1+ CD150+ CD48- CD34- population has been described8. Sorting of cells based on CD34 expression from the hematopoietic progenitors-enriched cell suspension as described here allows the isolation of both quiescent self-renewing LT-HSCs and ST-HSCs9. A similar procedure based on depletion of lineage positive cells and sorting of LT-HSC with CD48 and Flk2 antibodies has been previously described10. In the present report we provide a protocol for the phenotypic characterization and ex vivo cell cycle analysis of hematopoietic progenitors, which can be useful for monitoring hematopoiesis in different physiological and pathological conditions. Moreover, we describe a FACS sorting procedure for HSCs, which can be used to define factors and mechanisms regulating their self-renewal, expansion and differentiation in cell biology and signal transduction assays as well as for transplantation.  相似文献   

19.

Introduction

Breast cancer grows, metastasizes and relapses from rare, therapy resistant cells with a stem cell phenotype (cancer stem cells/CSCs). However, there is a lack of studies comparing the functions of CSCs isolated using different phenotypes in order to determine if CSCs are homogeneous or heterogeneous.

Methods

Cells with various stem cell phenotypes were isolated by sorting from Clone 66 murine breast cancer cells that grow orthotopically in immune intact syngeneic mice. These populations were compared by in vitro functional assays for proliferation, growth, sphere and colony formation; and in vivo limiting dilution analysis of tumorigenesis.

Results

The proportion of cells expressing CD44highCD24low/neg, side population (SP) cells, ALDH1+, CD49fhigh, CD133high, and CD34high differed, suggesting heterogeneity. Differences in frequency and size of tumor spheres from these populations were observed. Higher rates of proliferation of non-SP, ALDH1+, CD34low, and CD49fhigh suggested properties of transit amplifying cells. Colony formation was higher from ALDH1 and non-SP cells than ALDH1+ and SP cells suggesting a progenitor phenotype. The frequency of clonal colonies that grew in agar varied and was differentially altered by the presence of Matrigel™. In vivo, fewer cells with a stem cell phenotype were needed for tumor formation than “non-stem” cells. Fewer SP cells were needed to form tumors than ALDH1+ cells suggesting further heterogeneities of cells with stem phenotypes. Different levels of cytokines/chemokines were produced by Clone 66 with RANTES being the highest. Whether the heterogeneity reflects soluble factor production remains to be determined.

Conclusions

These data demonstrate that Clone 66 murine breast cancer cells that express stem cell phenotypes are heterogeneous and exhibit different functional properties, and this may also be the case for human breast cancer stem cells.  相似文献   

20.
Exposure to ionizing radiation was shown to result in an increased risk of breast cancer. There is strong evidence that steroid hormones influence radiosensitivity and breast cancer risk. Tumors may be initiated by a small subpopulation of cancer stem cells (CSCs). In order to assess whether the modulation of radiation-induced breast cancer risk by steroid hormones could involve CSCs, we measured by flow cytometry the proportion of CSCs in irradiated breast cancer cell lines after progesterone and estrogen treatment. Progesterone stimulated the expansion of the CSC compartment both in progesterone receptor (PR)-positive breast cancer cells and in PR-negative normal cells. In MCF10A normal epithelial PR-negative cells, progesterone-treatment and irradiation triggered cancer and stemness-associated microRNA regulations (such as the downregulation of miR-22 and miR-29c expression), which resulted in increased proportions of radiation-resistant tumor-initiating CSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号