共查询到20条相似文献,搜索用时 15 毫秒
1.
The solution electronic and molecular structure for the heme pocket of the cyanomet complex of the isolated alpha-chain of human adult hemoglobin (HbA) has been investigated by homonuclear two-dimensional 1H NMR in order to establish an assignment protocol for the dimeric chain that will guide similar assignments in the intact, heterotetrameric HbA complex, and to compare the structures of the alpha-chain with its subunit in HbA. The target residues are those that exhibit significant (>0.2 ppm) dipolar shifts, as predicted by a "preliminary" set of magnetic axes determined from a small set of easily assigned active site residues. All 97 target residues (approximately 70% of total) were assigned by taking advantage of the temperature dependence predicted by the "preliminary" magnetic axes for the polypeptide backbone; they include all residues proposed to play a significant role in modulating the ligand affinity in the tetramer HbA. Left unassigned are the A-helix, the end of the G-helix and the beginning of the H-helix where dipolar shifts are less than 0.2 ppm. The complete assignments allow the determination of a robust set of orientation and anisotropies of the paramagnetic susceptibility tensor that leads to quantitative interpretation of the dipolar shifts of the alpha-chain in terms of the crystal coordinates of the alpha-subunit in ligated HbA which, in turn, confirms a largely conserved molecular structure of the isolated alpha-chain relative to that in the intact HbA. The major magnetic axis, which is correlated with the tilt of the Fe-CN unit, is tilted approximately 10 degrees from the heme normal so that the Fe-CN unit is tilted toward the beta-meso-H in a fashion remarkably similar to the Fe-CO tilt in HbACO. It is concluded that a set of "preliminary" magnetic axes and the use of variable temperature two-dimensional NMR spectra are crucial to effective assignments in the cyanomet alpha-chain and that this approach should be similarly effective in HbA. 相似文献
2.
The solution molecular structure and the electronic and magnetic properties of the heme pocket of the cyanomet complex of the isolated beta-chain of human adult hemoglobin, HbA, have been investigated by homonuclear 2D (1)H NMR in order to assess the extent of assignments allowed by (1)H NMR of a homo-tetrameric 65-kDa protein, to guide the future assignments of the heterotetrameric complex of HbA, and to compare the structure of the beta-chain to the crystallographically characterized complexes that contains the beta-chain. The target residues are those that exhibit significant (>|0.2| ppm) dipolar shifts, as predicted by a "preliminary" set of magnetic axes determined from a small set of easily assigned active site residues. All 104 target residues ( approximately 70% of total) were assigned by taking advantage of the temperature dependence predicted by the "preliminary" magnetic axes for the polypeptide backbone; they include all residues proposed to play a significant role in modulating the ligand affinity in the tetramer HbA. Left unassigned are the A-helix, the end of the G-helix and the beginning of the H-helix where dipolar shifts are less than |0.2| ppm. These comprehensive assignments allow the determination of a robust set of orientation and anisotropies of the paramagnetic susceptibility tensor that leads to quantitative interpretation of the dipolar shifts of the beta-chain in terms of the crystal coordinates of the beta-subunit in ligated HbA which, in turn, confirms a largely conserved molecular structure of the isolated beta-chain relative to that in the intact R-state HbA. The major magnetic axis, which is correlated with the tilt of the Fe-CN unit, is tilted approximately 10 degrees from the heme normal so that the Fe-CN unit is tilted toward the beta-meso-H in a fashion remarkably similar to the Fe-CO tilt in the beta-subunit of HbCO. It is concluded that a set of "preliminary" magnetic axes and the use of variable temperature 2D NMR spectra are crucial to effective assignments in the tetrameric cyanomet beta-chain and that this approach should be similarly effective in HbA. 相似文献
3.
Z Xia W Zhang B D Nguyen G N Mar A P Kloek D E Goldberg 《The Journal of biological chemistry》1999,274(45):31819-31826
The O(2)-avid hemoglobin from the parasitic nematode Ascaris suum exhibits one of the slowest known O(2) off rates. Solution (1)H NMR has been used to investigate the electronic and molecular structural properties of the active site for the cyano-met derivative of the recombinant first domain of this protein. Assignment of the heme, axial His, and majority of the residues in contact with the heme reveals a molecular structure that is the same as reported in the A. suum HbO(2) crystal structure (Yang, J., Kloek, A., Goldberg, D. E., and Mathews, F. S. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 4224-4228) with the exception that the heme in solution is rotated by 180 degrees about the alpha,gamma-meso axis relative to that in the crystal. The observed dipolar shifts, together with the crystal coordinates of HbO(2), provide the orientation of the magnetic axes in the molecular framework. The major magnetic axis, which correlates with the Fe-CN vector, is found oriented approximately 30 degrees away from the heme normal and indicates significant steric tilt because of interaction with Tyr(30)(B10). The three side chain labile protons for the distal residues Tyr(30)(B10) and Gln(64)(E7) were identified, and their relaxation, dipolar shifts, and nuclear Overhauser effects to adjacent residues used to place them in the distal pocket. It is shown that these two distal residues exhibit the same orientations ideal for H bonding to the ligand and to each other, as found in the A. suum HbO(2) crystal. It is concluded that the ligated cyanide participates in the same distal H bonding network as ligated O(2). The combination of the strong steric tilt of the bound cyanide and slow ring reorientation of the Tyr(30)(B10) side chain supports a crowded and constrained distal pocket. 相似文献
4.
A novel C
2-symmetric ring-fluorinated hemin, 13,17-bis(2-carboxyethyl)-2,8,12,18-tetramethyl-3,7-difluoroporphyrinatoiron(III), has
been synthesized and was incorporated into sperm whale apomyoglobin to investigate protein-induced rhombic perturbations on
the electronic structure of the active site of myoglobin (Mb) using 19F NMR spectroscopy. NMR signals for 19F atoms introduced as substituents on the present heme in ferrous low-spin and high-spin and ferric low-spin complexes have
been observed and their shifts sharply reflect not only the electronic nature of the heme iron, but also in-plane asymmetry
of the heme electronic structure. The two-fold symmetric electronic structure of the ring-fluorinated hemin is clearly manifested
in the 19F and 1H NMR spectra of its dicyano complex. The chemical equivalence of the two fluorine atoms of the heme is removed in the active
site of myoglobin and the splitting of the two 19F NMR signals provides a quantitative probe for characterizing the rhombic perturbation of the heme electronic structure induced
by the heme-protein interaction. The in-plane asymmetry of heme electronic structures in carbonmonoxy and deoxy Mbs have been
analyzed for the first time on the basis of the shift difference between the two 19F NMR signals of the heme and is interpreted in terms of iron-ligand binding and/or the orbital ground state of the heme.
A potential utility of 19F NMR, combined with the use of a symmetric fluorinated hemin, in characterizing the heme electronic structure of myoglobin
in a variety of iron oxidation, spin, and ligation states, is presented.
Received: 23 December 1999 / Accepted: 3 April 2000 相似文献
5.
Weihong Du Zhicheng Xia Sylvia Dewilde Luc Moens Gerd N La Mar 《European journal of biochemistry》2003,270(13):2707-2720
The solution molecular and electronic structures of the active site in the extremely O2-avid hemoglobin from the trematode Paramphistomum epiclitum have been investigated by 1H NMR on the cyanomet form in order to elucidate the distal hydrogen-bonding to a ligated H-bond acceptor ligand. Comparison of the strengths of dipolar interactions in solution with the alternate crystal structures of methemoglobin establish that the solution structure of wild-type Hb more closely resembles the crystal structure of the recombinant wild-type than the true wild-type met-hemoglobin. The distal Tyr66(E7) is found oriented out of the heme pocket in solution as found in both crystal structures. Analysis of dipolar contacts, dipolar shift and paramagnetic relaxation establishes that the Tyr32(B10) hydrogen proton adopts an orientation that allows it to make a strong H-bond to the bound cyanide. The observation of a significant isotope effect on the heme methyl contact shifts confirms a strong contact between the Tyr32(B10) OH and the ligated cyanide. The quantitative determination of the orientation and anisotropies of the paramagnetic susceptibility tensor reveal that the cyanide is tilted approximately 10 degrees from the heme normal so as to avoid van der Waals overlap with the Tyr32(B10) Oeta. The pattern of heme contact shifts with large low-field shifts for 7-CH3 and 18-CH3 is shown to arise not from the 180 degrees rotation about the alpha-gamma-meso axis, but due to the approximately 45 degrees rotation of the axial His imidazole ring, relative to that in mammalian globins. 相似文献
6.
A combined one-dimensional nuclear Overhauser effect, paramagnetic-induced relaxation and two-dimensional sequence-specific 1H n.m.r. assignment of the spectrum of portions of the distal pocket of Aplysia cyano metMyoglobin (metMbCN) has been carried out in order to establish the presence and identity of distal residues in the heme pocket. In the absence of the usual distal E7 His in Aplysia Mb (E7 Val), the sequence-specific assignment of the E7 and E10 residues, together with their hyperfine shift patterns, relaxivities and dipolar connectivities to each other and the remainder of the E helix, reveal that the E10 Arg is turned into the pocket and hydrogen bonds to the bound cyanide group. We have previously found a similar rearrangement of the E10 Arg in Aplysia fluoro metMyoglobin, and the stabilizing effect of this residue was proposed to be responsible for the slow rate of cyanide dissociation from rapidly reduced ferrous Aplysia myoglobin. Based on the similar distal E7 His hydrogen-bonding interaction to the bound ligand in the crystal of sperm whale MbO2 and in solution of its cyano met complex, we propose that the E10 Arg similarly hydrogen bonds to the bound O2 in Aplysia MbO2 and accounts for its strong ligand binding and slow dissociation rate. 相似文献
7.
M Bolognesi A Coda F Frigerio G Gatti P Ascenzi M Brunori 《Journal of molecular biology》1990,213(4):621-625
The X-ray crystal structure of the fluoride derivative of Aplysia limacina ferric myoglobin has been solved and refined at 2.0 A resolution; the crystallographic R-factor is 13.6%. The fluoride ion binds to the sixth co-ordination position of the heme iron, 2.2 A from the metal. Binding of the negatively charged ligand on the distal side of the heme pocket of this myoglobin, which lacks the distal His, is associated with a network of hydrogen bonds that includes the fluoride ion, the residue Arg66 (E10), the heme propionate III, three ordered water molecules and backbone or side-chain atoms from the CD region. A comparison of fluoride and oxygen dissociation rate constants of A. limacina myoglobin, sperm whale (Physeter catodon) myoglobin and Glycera dibranchiata monomeric hemoglobin, suggests that the conformational readjustment of Arg66 (E10) in A. limacina myoglobin may represent the molecular basis for ligand stabilization, in the absence of a hydrogen-bond donor residue at the distal E7 position. 相似文献
8.
Li Y Syvitski RT Chu GC Ikeda-Saito M Mar GN 《The Journal of biological chemistry》2003,278(9):6651-6663
The molecular structure and dynamic properties of the active site environment of HmuO, a heme oxygenase (HO) from the pathogenic bacterium Corynebacterium diphtheriae, have been investigated by (1)H NMR spectroscopy using the human HO (hHO) complex as a homology model. It is demonstrated that not only the spatial contacts among residues and between residues and heme, but the magnetic axes that can be related to the direction and magnitude of the steric tilt of the FeCN unit are strongly conserved in the two HO complexes. The results indicate that very similar contributions of steric blockage of several meso positions and steric tilt of the attacking ligand are operative. A distal H-bond network that involves numerous very strong H-bonds and immobilized water molecules is identified in HmuO that is analogous to that previously identified in hHO (Li, Y., Syvitski, R. T., Auclair, K., Wilks, A., Ortiz de Montellano, P. R., and La Mar, G. N. (2002) J. Biol. Chem. 277, 33018-33031). The NMR results are completely consistent with the very recent crystal structure of the HmuO.substrate complex. The H-bond network/ordered water molecules are proposed to orient the distal water molecule near the catalytically key Asp(136) (Asp(140) in hHO) that stabilizes the hydroperoxy intermediate. The dynamic stability of this H-bond network in HmuO is significantly greater than in hHO and may account for the slower catalytic rate in bacterial HO compared with mammalian HO. 相似文献
9.
Heme oxygenase carries out stereospecific catabolism of protohemin to yield iron, CO and biliverdin. Instability of the physiological oxy complex has necessitated the use of model ligands, of which cyanide and azide are amenable to solution NMR characterization. Since cyanide and azide are contrasting models for bound oxygen, it is of interest to characterize differences in their molecular and/or electronic structures. We report on detailed 2D NMR comparison of the azide and cyanide substrate complexes of heme oxygenase from Neisseria meningitidis, which reveals significant and widespread differences in chemical shifts between the two complexes. To differentiate molecular from electronic structural changes between the two complexes, the anisotropy and orientation of the paramagnetic susceptibility tensor were determined for the azide complex for comparison with those for the cyanide complex. Comparison of the predicted and observed dipolar shifts reveals that shift differences are strongly dominated by differences in electronic structure and do not provide any evidence for detectable differences in molecular structure or hydrogen bonding except in the immediate vicinity of the distal ligand. The readily cleaved C-terminus interacts with the active site and saturation-transfer allows difficult heme assignments in the high-spin aquo complex. 相似文献
10.
Solution (1)H NMR spectroscopy has been carried out to investigate the molecular and electronic structures of the active site in H64Q/V68F double mutant mouse neuroglobin in the cyanomet form. Two heme orientations resulting from a 180 degrees rotation about the alpha-gamma-meso axis were observed with a population ratio about 1:1, and the clearly distinguished B isomer was used to perform the study. Based on the analysis of the dipolar shifts and paramagnetic relaxation constants, the distal Gln(64)(E7) side chain is obtained to adopt an orientation that may produce hydrogen bond between the N(epsilon)H(1) and the Fe-bound cyanide. The side chain of Phe(68)(E11) is oriented out of the heme pocket just like that in triple mutant of cyanide complex of sperm whale myoglobin. A 15 degrees rotation of the imidazole ring in axial His(96) is observed, which is close to the varphi angle determined from the crystal structure of NgbCO. The quantitative determinations of the orientation and anisotropies of the paramagnetic susceptibility tensor reveal that cyanide is tilted by 8 degrees from the heme normal which allows for contact to the Gln(64)(E7) N(epsilon)H(1). The E7 and E11 residues appear to control the direction and the extent of tilt of the bound ligand. Furthermore, the tilt of the ligand has no obvious influence on the heme heterogeneity of cyanide ligation for isomer A/B of the wild type and mutant protein, indicating that factors other than steric effects, such as polarity of heme pocket, impacts on ligand binding affinity. 相似文献
11.
R B Lauffer B C Antanaitis P Aisen L Que 《The Journal of biological chemistry》1983,258(23):14212-14218
Pink (reduced) uteroferrin exhibits well resolved paramagnetic NMR spectra with resonances ranging from 90 ppm downfield to 70 ppm upfield. The intensities of these signals depend on the degree of reduction and correlate well with the intensity of the EPR signals with gave = 1.74. Analyses of chemical shifts and the temperature dependence of the paramagnetically shifted resonances indicate that the Fe(III)-Fe(II) cluster in the reduced protein exhibits weak antiferromagnetic exchange coupling (-J approximately equal to 10 cm-1), in agreement with the estimate derived from the temperature dependence of the EPR signal intensity. Purple (oxidized) uteroferrin, on the other hand, exhibits no discernible paramagnetically shifted resonances, reflecting either strong antiferromagnetic coupling or an unfavorable electron spin-lattice relaxation time. Evans susceptibility comparisons between pink and purple uteroferrin show that the Fe(III)-Fe(III) cluster in the oxidized protein is more strongly coupled (-J greater than 40 cm-1). This value concurs with low temperature magnetic susceptibility measurements on both the porcine and splenic purple acid phosphatases. The isotropically shifted protons of tyrosine coordinated to the cluster are assigned by comparison with synthetic complexes. Tyrosine, earlier implicated as a ligand by resonance Raman spectroscopy, appears to coordinate only to the ferric site in pink uteroferrin. This is consistent with the relatively invariant extinction coefficients of uteroferrin in its oxidized and reduced forms and the ease of reduction of the nonchromophoric iron compared to its chromophoric partner. Other possible ligands to the cluster include histidine, suggested by the presence of downfield-shifted solvent-exchangeable resonances with appropriate isotropic shifts. 相似文献
12.
NMR study of Galeorhinus japonicus myoglobin. 1H-NMR study of molecular structure of the heme cavity
Y Yamamoto K Iwafune N Nanai A Osawa R Ch?j? T Suzuki 《European journal of biochemistry》1991,198(2):299-306
The molecular structure of the active site of myoglobin from the shark, Galeorhinus japonicus, has been studied by 1H-NMR. Some hyperfine-shifted amino acid proton resonances in the met-cyano form of G. japonicus myoglobin have been unambiguously assigned by the combined use of various two-dimensional NMR techniques; they were compared with the corresponding resonances in Physter catodon myoglobin. The orientations of ThrE10 and IleFG5 residues relative to the heme in G. japonicus met-cyano myoglobin were semiquantitatively estimated from the analysis of their shifts using the magnetic susceptibility tensor determined by a method called MATDUHM (magnetic anisotropy tensor determination utilizing heme methyls) [Yamamoto, Y., Nanai, N. & Ch?j?, R. (1990) J. Chem. Soc., Chem. Commun., 1556-1557] and the results were compared with the crystal structure of P. catodon carbonmonoxy myoglobin [Hanson, J. C. & Schoenborn, B. P. (1981) J. Mol. Biol. 153, 117-124]. In spite of a substantial difference in shift between the corresponding amino acid proton resonances for the two proteins, the orientations of these amino acid residues relative to the heme in the active site of both myoglobins were found to be highly alike. 相似文献
13.
Solution 1H nuclear magnetic resonance determination of the distal pocket structure of cyanomet complexes of genetically engineered sperm whale myoglobin His64 (E7)-->Val, Thr67 (E10)-->Arg. The role of distal hydrogen bonding by Arg67 (E10) in modulating ligand tilt. 下载免费PDF全文
J Qin G N La Mar F Cutruzzolá C T Allocatelli A Brancaccio M Brunori 《Biophysical journal》1993,65(5):2178-2190
Sequence-specific 2D methodology has been used to assign the 1H NMR signals for all active site residues in the paramagnetic cyano-met complexes of sperm whale synthetic double mutant His64[E7]-->Val/Thr67[E10]-->Arg (VR-met-MbCN) and triple mutant His64[E7]-->Val/Thr67[E10]-->Arg/Arg45[CD3]-->Asn (VRN-metMbCN). The resulting dipolar shifts for noncoordinated proximal side residues were used to quantitatively determine the orientation of the paramagnetic susceptibility tensor in the molecular framework for the two mutants, which were found indistinguishable but distinct from those of both wild-type and the His64[E7]-->Val single point mutant (V-metMbCN). The observed dipolar shifts for the E helix backbone protons and Phe43[CD1], together with steady-state nuclear Overhauser effect between the E helix and the heme, were analyzed to show that both the E helix and Phe43[CD1] move slightly closer to the iron to minimize the vacancy resulting from the His64[E7]-->Val substitution, as found in V-metMbCN (Rajarathnam, K., J. Qin, G.N. LaMar, M. L. Chiu, and S. G. Sligar. 1993. Biochemistry. 32:5670-5680). The dipolar shifts of the mutated Val64[E7] and Arg67[E10] allow the determination of their orientations relative to the heme, and the latter residue is shown to insert into the pocket and provide a hydrogen bond to the coordinated ligand, as found in the naturally occurring ValE7/ArgE10 genetic variant, Aplysia limacina Mb. The oxy-complex of both A. limacina Mb and VR-Mb, VRN-Mb have been proposed to be stabilized by this hydrogen bonding interaction (Travaglini Allocatelli, C. et al. 1993. Biochemistry. 32:6041-6049). The magnitude of the tilt of the major magnetic axes from the heme normal in VR-metMbCN and VRN-metMbCN, which is related to the tilt of the ligand, is the same as in wild-type or V-metMbCN, but the direction of tilt is altered from that in V-metMbCN. It is concluded that the change in the direction of the ligand tilt in both the double and triple mutants, as compared to WT metMbCN and V-metMbCN single mutant, is due to the attractive hydrogen-bonding between ArgE10 and the bound cyanide. 相似文献
14.
Vasyl Bondarenko Jingtao Wang Heather Kalish Alan L. Balch Gerd N. La Mar 《Journal of biological inorganic chemistry》2005,10(3):283-293
In order to identify the most readily deformable portion of the heme pocket in myoglobin, equine myoglobin was reconstituted with a meso-n-butyl substituent on centrosymmetric etiohemin-I. Solution 1H NMR data for the low-spin iron(III) cyanide complex of oxidized myoglobin that include 2D nuclear Overhauser enhancement spectroscopy contacts, paramagnetic relaxation, and dipolar shifts resulting from magnetic anisotropy show that the heme binds uniquely to the iron in a manner that arranges the methyl and ethyl substituents on a given pyrrole in a clockwise manner when viewed from the proximal side, and with the n-butyl group seated at the canonical -meso position of native protohemin-IX. The butyl group is oriented sharply toward the proximal side and its protein contacts demonstrate that it is oriented largely into the xenon hole in myoglobin. The location of the n-butyl group on the proximal side near the vacancies places it within the region found to be most flexible in molecular dynamics simulation. A small, counterclockwise rotation of the pyrrole N–Fe–N vector of n-butyl-etiohemin-I relative to that for native protohemin, indicated by both the prosthetic group methyl contact shift pattern and the prosthetic group contacts to heme pocket residues, is proposed to allow the xenon hole to accommodate better the n-butyl group. In contrast to previous work, which showed that a bulky polar substituent on etiohemin-I preferentially seats at the canonical -meso position, the nonpolar n-butyl group selects the -meso position.Electronic Supplementary Material Supplementary material is available for this article at . 相似文献
15.
Computational studies are performed to analyze the physical properties of hydrogen bonds donated by Tyr16 and Asp103 to a series of substituted phenolate inhibitors bound in the active site of ketosteroid isomerase (KSI). As the solution pK(a) of the phenolate increases, these hydrogen bond distances decrease, the associated nuclear magnetic resonance (NMR) chemical shifts increase, and the fraction of protonated inhibitor increases, in agreement with prior experiments. The quantum mechanical/molecular mechanical calculations provide insight into the electronic inductive effects along the hydrogen bonding network that includes Tyr16, Tyr57, and Tyr32, as well as insight into hydrogen bond coupling in the active site. The calculations predict that the most-downfield NMR chemical shift observed experimentally corresponds to the Tyr16-phenolate hydrogen bond and that Tyr16 is the proton donor when a bound naphtholate inhibitor is observed to be protonated in electronic absorption experiments. According to these calculations, the electronic inductive effects along the hydrogen bonding network of tyrosines cause the Tyr16 hydroxyl to be more acidic than the Asp103 carboxylic acid moiety, which is immersed in a relatively nonpolar environment. When one of the distal tyrosine residues in the network is mutated to phenylalanine, thereby diminishing this inductive effect, the Tyr16-phenolate hydrogen bond becomes longer and the Asp103-phenolate hydrogen bond shorter, as observed in NMR experiments. Furthermore, the calculations suggest that the differences in the experimental NMR data and electronic absorption spectra for pKSI and tKSI, two homologous bacterial forms of the enzyme, are due predominantly to the third tyrosine that is present in the hydrogen bonding network of pKSI but not tKSI. These studies also provide experimentally testable predictions about the impact of mutating the distal tyrosine residues in this hydrogen bonding network on the NMR chemical shifts and electronic absorption spectra. 相似文献
16.
Wang X Tachikawa H Yi X Manoj KM Hager LP 《The Journal of biological chemistry》2003,278(10):7765-7774
The heme active site structure of chloroperoxidase (CPO), a glycoprotein that displays versatile catalytic activities isolated from the marine mold Caldariomyces fumago, has been characterized by two-dimensional NMR spectroscopic studies. All hyperfine shifted resonances from the heme pocket as well as resonances from catalytically relevant amino acid residues including the heme iron ligand (Cys(29)) attributable to the unique catalytic properties of CPO have been firmly assigned through (a) measurement of nuclear Overhauser effect connectivities, (b) prediction of the Curie intercepts from both one- and two-dimensional variable temperature studies, (c) comparison with assignments made for cyanide derivatives of several well characterized heme proteins such as cytochrome c peroxidase, horseradish peroxidase, and manganese peroxidase, and (d) examination of the crystal structural parameters of CPO. The location of protein modification that differentiates the signatures of the two isozymes of CPO has been postulated. The function of the distal histidine (His(105)) in modulating the catalytic activities of CPO is proposed based on the unique arrangement of this residue within the heme cavity. Contrary to the crystal state, the high affinity Mn(II) binding site in CPO (in solution) is not accessible to externally added Mn(II). The results presented here provide a reasonable explanation for the discrepancies in the literature between spectroscopists and crystallographers concerning the manganese binding site in this unique protein. Our study indicates that results from NMR investigations of the protein in solution can complement the results revealed by x-ray diffraction studies of the crystal form and thus provide a complete and better understanding of the actual structure of the protein. 相似文献
17.
The ferric high-spin form of the myoglobin from the shark Galeorhinus japonicus, which possesses a Gln residue at the distal site instead of the usual His residue, has been studied by 1H-NMR spectroscopy. Using the heme meso-proton (C5H, C10H, C15H and C20H) resonance shift as a diagnostic probe for identifying the coordination system of the iron center in ferric high-spin form of hemoprotein, it has been shown that G. japonicus metmyoglobin (metMb) possesses the pentacoordinated active site. The pH-dependence study of NMR spectra of G. japonicus metMb revealed the appearance of the hydroxyl form of metMb at high pH, indicating that the protein undergoes the transition between the acidic and alkaline forms. The pK value and the rate for this acid-alkaline transition in G. japonicus metMb were found to be approximately 10 and much less than 4 x 10(2) s-1, respectively. Since the pK value of the acid-alkaline transition for the pentacoordinated heme in Aplysia limacina metMb is 7.8 [Giacometti, G.M., Das Ros, A., Antonini, E. & Brunori, M. (1975) Biochemistry 14, 1584-1588] and that of the hexacoordinated heme in sperm whale metMb is 9.1 [Brunori, M., Antonini, E., Fasella, P., Wyman, J. & Rossi-Fanelli, A. (1968) J. Mol. Biol. 34, 497-504], the OH- affinity of the ferric heme iron does not appear to depend on its coordination system. The acid-alkaline transition rate in A. limacina metMb was reported to be much less than 1.5 x 10(2) s-1 [Pande, U., La Mar, G.N., Lecomte, J.T.J., Ascoli, F., Brunori, M., Smith, K.M., Pandey, R.K., Parish, D.W. & Thanabal, V. (1986) Biochemistry 25, 5638-5646] and therefore a slow transition rate may be unique to the pentacoordinated active site of Mb. 相似文献
18.
La Mar GN Asokan A Espiritu B Yeh DC Auclair K Ortiz De Montellano PR 《The Journal of biological chemistry》2001,276(19):15676-15687
The majority of the active site residues of cyanide-inhibited, substrate-bound human heme oxygenase have been assigned on the basis of two-dimensional NMR using the crystal structure of the water-ligated substrate complex as a guide (Schuller, D. J., Wilks, A., Ortiz de Montellano, P. R., and Poulos, T. L. (1999) Nat. Struct. Biol. 6, 860-867). The proximal helix and the N-terminal portion of the distal helix are found to be identical to those in the crystal except that the heme for the major isomer ( approximately 75-80%) in solution is rotated 180 degrees about the alpha-gamma-meso axis relative to the unique orientation in the crystal. The central portion of the distal helix in solution is translated slightly over the heme toward the distal ligand, and a distal four-ring aromatic cluster has moved 1-2 A closer to the heme, which allows for strong hydrogen bonds between the hydroxyls of Tyr-58 and Tyr-137. These latter interactions are proposed to stabilize the closed pocket conducive to the high stereospecificity of the alpha-meso ring opening. The determination of the magnetic axes, for which the major axis is controlled by the Fe-CN orientation, reveals a approximately 20 degrees tilt of the distal ligand from the heme normal in the direction of the alpha-meso bridge, demonstrating that the close placement of the distal helix over the heme exerts control of stereospecificity by both blocking access to the beta, gamma, and delta-meso positions and tilting the axial ligand, a proposed peroxide, toward the alpha-meso position. 相似文献
19.
Phosphatidylinositol-specific phospholipase Cs (PI-PLCs, EC 3.1.4.10) are ubiquitous enzymes that cleave phosphatidylinositol or phosphorylated derivatives, generating second messengers in eukaryotic cells. A catalytic diad at the active site of Bacillus cereus PI-PLC composed of aspartate-274 and histidine-32 was postulated from the crystal structure to form a catalytic triad with the 2-OH group of the substrate [Heinz, D. W., et al. (1995) EMBO J. 14, 3855-3863]. This catalytic diad has been observed directly by proton NMR. The single low-field line in the 1H NMR spectrum is assigned by site-directed mutagenesis: The peak is present in the wild type but absent in the mutants H32A and D274A, and arises from the histidine Hdelta1 forming the Asp274-His32 hydrogen bond. This hydrogen is solvent-accessible, and exchanges slowly with H2O on the NMR time scale. The position of the low-field peak shifts from 16.3 to 13.8 ppm as the pH is varied from 4 to 9, reflecting a pKa of 8.0 at 6 degrees C, which is identified with the pKa of His32. The Hdelta1 signal is modulated by rapid exchange of the Hepsilon2 with the solvent. Estimates of the exchange rate as a function of pH and protection factors are derived from a line shape analysis. The NMR behavior is remarkably similar to that of the serine proteases. The postulated function of the Asp274-His32 diad is to hydrogen-bond with the 2-OH of phosphatidylinositol (PI) substrate to form a catalytic triad analogous to Asp-His-Ser of serine proteases. This is an example of substrate-assisted catalysis where the substrate provides the catalytic nucleophile of the triad. This hydrogen bond becomes shorter as the imidazole is protonated, suggesting it is stronger in the transition state, contributing further to the catalytic efficiency. The hydrogen bond fits the NMR criteria for a short, strong hydrogen bond, i.e., a highly deshielded proton resonance, bond length of 2.64 +/- 0.04 A at pH 6 measured by NMR, a D/H fractionation factor significantly lower than 1.0, and a protection factor > or = 100. 相似文献