首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the preceding paper are described the isolation and physical characterization of seven narrowly disperse fractions of calf thymus DNA in the molecular weight range 0.3 to 1.3 × 106 daltons. Herein, we have determined by light scattering the molecular weights and root mean square radii of these fractions in a solvent comprising 0.2 M NaCl, 2 mM EDTA, 2m MNa-PO4, pH 7. Measurements were made in a modified Wippler—Scheibling photometer to a 20° lower limit of scattering angle on solutions rendered virtually dust-free by procedures described. The optical aniso tropics of the DNA fractions were measured permitting the experimental molecular weights and root mean square radii to be corrected to their true values. From these values, with appropriate polydispersity corrections, we calculate a Kratky—Porod persistence length, a, of 54.0 ± 5.6 nm which is invariant over the molecular weight range examined. From the sedimentation coefficients (preceding paper) and the theory of Yamakawa and Fujii, we calculate a to be 66 nm, a value found to apply equally well to several DNA samples of various origins whose sedimentation rates are known in the molecular weight range from about 4 × 104 to 108 daltons. Similarly, from the intrinsic viscosities and the theory of Yamakawa and Fujii, we calculate a to be 59 nm, which again adequately applies to a number of DNA samples whose viscosities have been measured by other workers in the molecular weight range 3 × 105 to 108 daltons. The Flory—Mandelkern parameter, β, was found to vary with molecular weight in the manner predicted by the theory of Yamakawa and Fujii. The average value of a from the three sets of measurements is 60 ± 6 nm, which we believe applies to double-stranded DNA molecules, independent of chain length, over the whole range of molecular weights for which reliable data exist.  相似文献   

2.
The optical birefringence induced in DNA solutions by both oscillating hydrodynamic fields (flow birefringence) and oscillating electric fields (Kerr effect) is measured over a wide frequency range. The observed frequency response of the birefrigence is compared with theories for rigid ellipsoidal particles and for Gaussian chains. DNA at 6 × 105 molecular weight is found to exhibit rigid particle hydrodynamic behavior, while DNA at 5 × 106 molecular weight behaves like a flexible chain. Characterization of the hydrodynamic relaxation spectra for the DNA's by oscillatory flow birefringence allows precise comparison between theory and the experimental Kerr effect response. The dielectric model for DNA contains both permanent and dispersionless induced dipole moments. The dielectric behavior of DNA has the character of a permanent dipole but with anomalous low-frequency dispersion in the Kerr effect. The existing theories do not adequately describe this dispersion. A fluctuation dipole mechanism with relaxation times comparable to those associated with the hydrodynamic motion could possibly demonstrate the observed polar behavior.  相似文献   

3.
Flow dichroism of DNA: a new apparatus and further studies   总被引:3,自引:0,他引:3  
P R Callis 《Biopolymers》1969,7(3):335-352
A new apparatus for the study of flow dichroism of macromolecules is described. The flow is down a long, narrow channel and an unpolarized light beam propagates along the flow direction. For a molecule such as DNA, in which the transition moments of the chromophores are perpendicular to the axis of orientation, an increase of absorbance is observed during flow. The apparatus is best suited for macromolecules which are readily orientable or at high shear gradients so that the extinction angle is close to 0°. The apparatus has the following advantages: dilute macromolecule solutions can be used; high shear gradients are easily obtained; only small volumes of solution are needed. The flow can be stopped rapidly so that relaxation times for disorientation can be studied. The flow dichorism of native, two-stranded DNA has been measured for the molecular weight range of 0.6 × 106 to 125 × 106, and for the shear gradient range (in aqueous solution at 25°C) from 200 sec?1 to 21000 sec?1. At a fixed gradient the dichroism increases with molecular weight, but the curve is concave downwards. At a given molecular weight the dichroism increases with increasing shear gradient, but the curve is concave downwards. When the solvent viscosity and temperature are varied, the dichroism is a function of η〈G〉/T showing that the orientation is due to hydro-dynamic shear stress and that the flexibility of DNA in a flow field is not due to local denaturation. The Zimm-Rouse theory with no parameters taken from flow optical data predicts the correct order of magnitude of the dichroism but the experimentally observed shear gradient and molecular weight dependence do not fit the theory. This is an expected result, since the theory is believed to be applicable only at small distortions and extensions of the macromolecule.  相似文献   

4.
Real and imaganiry parts of complex dielectric constant of dilute solutions of DNA in 10?3M NaCl with molecular weight ranging from 0.4 × 106 to 4 × 106 were measured at frequencies from 0.2 Hz to 30 kHz. Dielectric increments Δε were obtained from Cole-Cole plots and relaxation times τD from the loss maximum frequency. The τD of all samples agrees well with twice of the maximum viscoelastic relexation time in the Zimm theory, indicating that the low-frequency dielectric relaxiation should be ascribed to be the rotation of DNA. The rms dipole moment, which was obtained from Δε, agree well with that calculated from the counterion fluctuation theory. The dielectric increment was found to be greatly depressed in MgCl2, which is resonably interpreted in terms of a strong binding of Mg++ ions with DNA.  相似文献   

5.
Electro-optic scattering studies on deoxyribonucleic acid   总被引:1,自引:0,他引:1  
B R Jennings  H Plummer 《Biopolymers》1970,9(11):1361-1372
Measurements have been made of the intensity of light scattered from aqueous solutions of calf thymus DNA with and without the application of electric fields. For fields approaching 150 V/cm and frequencies below 2.5 KHz, changes (ΔI) of up to 10% in the residual scattered intensity were observed. In agreement with previous dielectric and electric birefringence measurements, a low frequency dispersion of ΔI was observed, from which a rotary diffusion constant (D) of 1200 s?1 was determined. Interpreting the electric field data in terms of the classical dipolar orientation theory led to values of 2.4 × 10?25 cm (7.4 × 10?14 esu) and 4.3 × 10?25 cm (13 × 10?14 esu) for the permanent dipole moment and the anisotropy of the electric polarisabilities respectively. Furthermore the permanent dipole moment was along the major molecular axis and the particles orientated in the field as rigid entities. The zero field data indicated a molecular shape which was not rodlike but corresponded to the Kratky-Porod “stiffness” parameter of x = 24 for the wormlike coil model. Although curved, the molecules appeared to orientate in low-intensity electric fields as rigid, but not rodlike molecules. The implications of this on recent discrepancies in D determined by two or more dynamic relaxation methods is briefly discussed.  相似文献   

6.
Abstract

The interaction of the cefobiprole drug with calf thymus DNA (ct-DNA) at physiological pH was investigated by UV-visible spectrophotometry, fluorescence measurement, dynamic viscosity measurements, circular dichroism spectroscopy and molecular modeling. The binding constant obtained of UV–visible was 4?×?104 L mol?1. Moreover, the results of circular dichroism (CD) and viscosity measurements displayed that the binding of the cefobiprole to ct-DNA can change the conformation of ct-DNA. Furthermore, thermodynamic parameters indicated that hydrogen bond and van der waals play main roles in the binding of cefobiprole to ct-DNA. Optimal results of docking, it can be concluded that ceftobiprole-DNA docked model is in approximate correlation with our experimental results.  相似文献   

7.
8.
An exchange method is described for producing tritium-labeled native DNA in vitro with minimal physical damage to the DNA. Tritium-labeled calf thymus DNA prepared in this way has a specific activity of about 100 μCi/mmole of nucleotide (i.e., about 2 × 108 dpm/mmole). Sedimentation velocity at neutral and alkaline pH indicate that the product has an average of two single strand breaks per duplex molecule of molecular weight 6 × 106 daltons. The optical and thermal denaturation properties of the product are those of native DNA. The method should be particularly useful for labeling DNA from organisms that cannot be labeled conveniently in vivo.  相似文献   

9.
Physicochemical study of nonhistone protein HMG14 from calf thymus has been undertaken. The protein has a random structure with a molecular weight of approximately 10,000. On interaction with DNA, it behaves like histones and nonhistone protein HMG17. Both circular dichroism and melting absorption technics show that the protein has an ionic interaction with DNA without causing significant changes in DNA structure. In conrast to HMG1 and HMG2 which reduce linking number of circular DNA, nonhistone protein HMG14 and HMG17 do not introduce any changes in topological winding number of DNA.  相似文献   

10.
K S Schmitz  J M Schurr 《Biopolymers》1973,12(7):1543-1564
Correlation functions have been determined for the fluctuating intensity of the depolarized component of forward-scattered laser light from solutions of DNA. The molecular correlation function of calf thymus DNA (mol wt ~15 × 106) appears to exhibit a longest relaxation time (τ25,w, ~ 18 msec) close to what one would predict from the flowdichroism measurements of Callis and Davidson and, in addition, manifests a spectrum of faster times down to tenths of milliseconds. Furthermore, a major fraction of the amplitude of fluctuations in the angular distribution of segment axes is relaxed on a very much shorter time scale (of the order of 20 microseconds) that appears to be relatively insensitive to molecular weight of the DNA, or to near-melting temperatures. The temperature profile of the longest relaxation time has been obtained and found to exhibit a peculiar spike near Tm, which, together with the absence of a corresponding spike in the (high shear) viscosity, has been interpreted as indicative of an increase in the molecular weight of the DNA in a narrow temperature region near Tm. Correlation functions for polarized light scattered at finite angles were obtained in an attempt to determine the temperature dependence of the translational diffusion coefficient. Although the data contain an extremely slow component that does not admit a simple interpretation, there is some indication of a decrease in the translational diffusion coefficient near Tm, thus supporting the notion of an aggregation occurring near Tm. Finally, a “counterion escape” mechanisn is proposed for the apparent aggregation.  相似文献   

11.
M Sakamoto  R Hayakawa  Y Wada 《Biopolymers》1979,18(11):2769-2782
As a continuation of previous papers [Biopolymers (1976) 15 , 879; (1978) 17 , 1508], the low-frequency dielectric relaxation of DNA solutions was studied with a four-electrode cell and the simultaneous two-frequency measurement. Below a critical concentration, the dielectric relaxation time agrees with the rotational relaxation time estimated from the reduced viscosity and is almost independent of DNA concentration Cp, and the dielectric increment is proportional to Cp. The critical concentration is approximately 0.02% of DNA for molecular weight Mr 2 × 106 and 0.2% for Mr 4.5 × 105 in 1 mM NaCl. Dielectric relaxations are compared for samples before and after deproteinization, and the protein contamination is found to have a minor effect on the dipole moment of DNA. The effect of a mixed solvent of water and ethanol on the dielectric relaxation of DNA is well interpreted in terms of changes in viscosity and the dielectric constant of the solvent, assuming that the relaxation arises from rotation of the molecule with a quasi-permanent dipole due to counterion fluctuation.  相似文献   

12.
The present study characterizes the effects of the boric acid binding on calf thymus DNA (ct-DNA) by spectroscopic and calorimetric methods. UV–Vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), isothermal titration calorimetry (ITC), and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize binding properties. Changes in the secondary structure of ct-DNA were determined by CD spectroscopy. Sizes and morphologies of boric acid–DNA complexes were determined by transmission electron microscopy (TEM). The kinetics of boric acid binding to calf thymus DNA (ct-DNA) was investigated by isothermal titration calorimetry (ITC). ITC results revealed that boric acid exhibits a moderate affinity to ct-DNA with a binding constant (K a) of 9.54?×?104 M?1. FT-IR results revealed that boric acid binds to the deoxyribose sugar of DNA without disrupting the B-conformation at tested concentrations.  相似文献   

13.
Electric field pulses induce a substantial increase of the light scattering intensity of double-helical DNA. The relative change of light scattering and also the reciprocal relaxation time constants under electric field pulses increase with increasing nucleotide concentration. These observations, together with a large difference between dichroism orientation time constants and light scattering time constants under electric field pulses, demonstrate that the main part of the light scattering effect is due not to field-induced orientation but to interactions between DNA helices. From the concentration dependence of the light scattering time constants we obtain, according to an isodesmic reaction model, association rate constants in the range 3 × 1010 M?1 helices s?1 for DNA with approx. 300 base-pairs. These values are at the limit of a diffusion-controlled DNA association and do not show any dependence upon the field strength. The dissociation rate constants kd decrease strongly with increasing field strength E and thus demonstrate that the interactions between the helices are induced by the electric field. This conclusion is consistent with independent measurements which do not reveal any DNA association at zero field strength. The observed linear relation between log(kd) and E2 suggests a field-induced reaction driven by dipole changes. According to this interpretation the change of dipole moment should be in the range of approx. 1400 debye. The dissociation rates for DNA helices with approx. 300 to approx. 800 base-pairs strongly increase with increasing sail concentration (measured in the range 1–5 mM ionic strength), whereas the association rate constants remain virtually unchanged. Measurements of the linear dichroism in the same range of DNA chain length demonstrate that for long field pulses of e.g., 40 μs, the amplitude approaches a maximum value and then decreases. The dichroism relaxation curves observed after long field pulses exhibit a component with a positive dichroism and an increased decay time. These observations suggest the formation of a DNA aggregate with an unusual arrangement of the bases.  相似文献   

14.
The interaction of anticancer drug cytarabine with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multispectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove-binding mode, while the binding constant of UV-vis and the number of binding sites were 4.0 ± 0.2 × 104 L mol?1 and 1.39, respectively. The fluorimetric studies showed that the reaction between the drugs with CT-DNA is exothermic. Circular dichroism spectroscopy was employed to measure the conformational change of DNA in the presence of cytarabine. Furthermore, the drug induces detectable changes in its viscosity for DNA interaction. The molecular modeling results illustrated that cytarabine strongly binds to groove of DNA by relative binding energy of docked structure ?20.61 KJ mol?1. This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the interaction of small molecular pollutants and drugs with biomacromolecules for clarifying the molecular mechanism of toxicity or side effect in vivo.  相似文献   

15.
Sonicated calf thymus DNA was fractionated by rate zonal centrifugation into seven fractions with weight average molecular weights ranging from 0.28 to 1.3 × 106 daltons, as determined by sedimentation equilibrium and light scattering measurements (the latter are described in the accompanying paper). Electron microscopy and sedimentation equilibrium analysis revealed these fractions to be narrowly disperse with Mw/Mn ratios averaging about 1.06. Intrinsic viscosities and sedimentation rates were measured and found to vary linearly with molecular weight in double-logarithmic plots in fair agreement with previously published functions relating these parameters for low molecular weight DNA. The average value for β from the Mandelkern— Flory equation was 2.59 × l06, also agreeing with reported estimates of this parameter for short DNA. These data will be used in the second paper of this series to calculate the persistence length of the DNA fragments in each of the seven fractions by light scattering and hydrodynamic theories for the Kratky—Porod worm-like coil.  相似文献   

16.
Abstract

The interaction of the [Mn(mef)2(phen)H2O] complex in which mef is mefenamic acid drug and phen is 1,10 phenanthrolin ligand with calf thymus DNA (ct-DNA) was studied by using different spectroscopic methods, molecular docking and viscometery. The competitive fluorescence and UV–Vis absorption spectroscopy indicated that the complex interacted with ctDNA via intercalating binding mode with the binding constant of 1.16?×?104 Lmol?1. The thermodynamic studies showed that the reaction between the complex and ctDNA is exothermic. Furthermore, the complex induced changes in DNA viscosity. Circular dichroism spectroscopy (CD) was employed to measure the conformational changes of ctDNA in the presence of the complex and verified intercalation binding mode. The molecular modeling results illustrated that the complex interacted via intercalation by relative binding energy of ?28.45?kJ mol?1.  相似文献   

17.
The effects of CPT on the calf thymus Topoisomerase I-mediated DNA breakage-reunion reaction were studied at an enzyme concentration range proper for evidencing, at the same time, both DNA relaxation and DNA cleavage/religation. Some of the requirements and the optimal conditions for the formation and reversal of the CPT-trapped Topoisomerase I-DNA cleavable complex are also characterized. We conclude that:
  1. Calf thymus (100 kDa) Topoisomerase I requires, for maximal DNA cleavage activity, specific and characteristic reaction conditions.
  2. CPT does not affect these optimal conditions, but only stabilizes the normal enzyme-DNA intermediate. In this way, the drug lowers the religation process, becoming responsible for the relaxation inhibition.
  3. The optimum of monovalent salt concentration for cleavable complex formation is found between 30 and 70 mM. These values are lower than those required for the relaxation activity optimum (75–125 mM NaCl).
  4. The addition of 0.5 M monovalent salt causes reversal of the reaction, and shifts the equlibrium distribution between cleavable intermediate and closed relaxed DNA in the direction of DNA resealing. Therefore, it is suggested that salt affects the cleavage but not the religation reaction.
  相似文献   

18.
The intrinsic viscosity of sonicated calf thymus DNA (molecular weight 4–5 × 105) increases and the sedimentation constant decreases, with increasing binding of proflavine at 0. 2 ionic strength and at 25°C. The measurements correspond to a linear increase in length of the almost rodlike DNA molecules with the amount of proflavine bound; independent calculations from viscosity and sedimentation measurements yield almost identical results. Over the range of r (moles of proflavine bound per moles of nucleotides) equal to zero to r = 0.13, the length increases by about 20%. This extension is compatible with the intercalation hypothesis proposed by Lerman. Density increments at various values of r, at constant chemical potential of diffusible solutes, were determined. It was also found that, in addition to the known isosbestic point of DNA-proflavine complexes at 455.5 mμ, an additional isosbestic point exists at 225.5 mμ; this proved extremely useful for the evaluation of binding studies.  相似文献   

19.
Interaction of procarbazine (PCZ) with calf thymus DNA was studied using biophysical and molecular docking studies. Procarbazine was to interact with DNA with a binding constant of 6.52 × 103 M−1 as calculated using ultraviolet‐visible spectroscopy. To find out the binding mode, molecular docking was performed that predicted PCZ to interact with DNA through groove binding mode with binding affinity of −6.7 kcal/mole. To confirm the groove binding nature, different experiments were performed. Dye displacement assays confirmed the non‐intercalative binding mode. Procarbazine displaced Hoechst dye from the minor groove of DNA while it was unable to displace intercalating dyes. There was no increase in the viscosity of DNA solution in presence of PCZ. Also, negligible change in the secondary structure of DNA was observed in presence of PCZ as evident by circular dichroism spectra. Procarbazine caused decrease in the melting temperature of DNA possibly because of decrease in the stability of DNA caused by groove binding interaction of PCZ with DNA.  相似文献   

20.
The binding interaction of lovastatin with calf thymus DNA (ct‐DNA) was studied using UV/Vis absorption spectroscopy, fluorescence emission spectroscopy, circular dichroism (CD), viscosity measurement and molecular docking methods. The experimental results showed that there was an obvious binding interaction of lovastatin with ct‐DNA and the binding constant (Kb) was 5.60 × 103 M–1 at 298 K. In the binding process of lovastatin with ct‐DNA, the enthalpy change (ΔH0) and entropy change (ΔS0) were –24.9 kJ/mol and –12.0 J/mol/K, respectively, indicating that the main binding interaction forces were van der Waal's force and hydrogen bonding. The molecular docking results suggested that lovastatin preferred to bind on the minor groove of different B‐DNA fragments and the conformation change of lovastatin in the lovastatin–DNA complex was obviously observed, implying that the flexibility of lovastatin molecule plays an important role in the formation of the stable lovastatin–ct‐DNA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号