首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J. Nakielski  P. W. Barlow 《Planta》1995,196(1):30-39
The patterns of cell growth and division characteristic of the apex of tomato roots grown in vitro were simulated by computer using a growth tensor (GT). The GT was used to clarify the basis of the altered cell patterns found within apices of roots whose gibberellin levels had been depressed by mutation (at the GIB-1 locus) or through application of the gibberellin-biosynthesis inhibitor, 2S,3S paclobutrazol. At the pole of wild-type roots, where the cell files of the cortex converge, there are commonly only one or two tiers of cortical cells sandwiched between the pole of the stele and the cap initials. By contrast, root apices of the gib-1 mutant contain additional tiers in this region. The development of these additional tiers is suppressed when roots of the mutant are grown in the presence of gibberellic acid (GA3), but could be induced in wild-type roots when they are grown in 2S,3S paclobutrazol. The wild-type cell pattern can be simulated using the GT and by the application of appropriate rules that govern cell growth and division. The induced variations in cell pattern are interpreted as being due to displacements, within the apex, of the principal directions of growth (PDGs), which are represented, in part, by the set of periclines and anticlines seen in the cell wall network; these, in turn, are utilized in the specification of the GT. During normal (wild-type) root growth, the PDGs maintain a stable pattern and the corresponding cell pattern is also stable. However, in order to interpret the cellular behaviour found in wild-type roots grown in 2S, 3S paclobutrazol, simulation using the GT shows that, if the pattern of PDGs is destabilized and displaced distally along the root axis, the cell pattern reorganizes into that typical of gib-1 mutant roots. Conversely, the cell pattern of gib-1 roots, which reverts to wild-type upon exposure to GA3, can be simulated if the PDGs are displaced proximally to the inside of the apex whereupon the number of cortical tiers at the root pole decreases. These results suggest a link between endogenous gibberellin level and the specification of the PDGs in the growing tomato root apex. Furthermore, the evidence of cell patterns from gib-1 roots suggests that, in order to achieve stability of PDGs with concomitant stable cellular patterning, an optimal gibberellin level is necessary. In practice, this can be attained by culturing the mutant roots in medium containing 1 M GA3.Abbreviations GA3 gibberellic acid - GT growth tensor - NCS natural coordinate system - PDG principal direction of growth - QC quiescent centre - RERG relative elemental rate of growth We are grateful to the former Agricultural and Food Research Council for financial support under the International Scientific Interchange Scheme to enable J.N. to work at Long Ashton Research Station, and to K. Kurczyski (Silesian University, Katowice, Poland) for help in writing a computer program for cell proliferation. Preparation of the model for growth and division was supported in part by a grant from the Committee for Scientific Research, Poland.  相似文献   

2.
Hensel W 《Planta》1984,162(5):404-414
When roots of Lepidium sativum L. are immersed in a colchicine solution (10-4 mol l-1), the cortical microtubules of statocytes are affected such that the dense network ofmicrotubules at the distal cell edges, between the endoplasmic reticulum and the plasma membrane, disappears almost completely, whereas the microtubules, lining the anticlinal cell walls are reduced only to a limited extent. Upon inversion of colchicine-pretreated roots, the distal complex of endoplasmic reticulum sinks into the interior of the statocyte. Germination of seeds in the cold (3–4°C) leads to a retardation of statocyte development; the elaborated system of endoplasmic reticulum is lacking, and only a few microtubules are observable, lining the plasma membrane along the anticlinal cell walls. During an additional 4 h at 24°C, groups of microtubules develop near the plasma membrane in the distal one-third of the statocytes, coaligning with newly synthesized cisternae of the endoplasmic reticulum. It is proposed that, particularly at the distal statocyte pole, microtubules in coordination with cross-bridging structures, act in stabilizing the polar arrangement of the distal endoplasmic reticulum and, in turn, facilitate an integrated function of amyloplasts, endoplasmic reticulum and plasma membrane in graviperception.Abbreviations ER endoplasmic reticulum - MT microtubule  相似文献   

3.
Hensel W 《Protoplasma》1984,119(1-2):121-134
Summary Statocytes in root caps ofLepidium sativum L. were examined by means of ultrathin serial sections to evaluate the amount and distribution of cortical microtubules. The microtubules encircle the cell, oriented normal to the root length axis. In the distal cell edges, microtubules form a network, separating the distal complex of endoplasmic reticulum from the plasmalemma. Preprophase bands in meristem cells are observable rarely, structures which can be regarded as nucleating sites for microtubules are lacking. During ageing of the root cap cells, the number of microtubules increases in combination with a decrease of microtubule length. Development of the roots on a horizontal clinostat preserves a younger developmental stage of the microtubule system regarding amount and length of the individual microtubules. Evidence for an involvement of microtubules in graviperception is low, whereas their role in orienting cellulose microfibrils cannot be ruled out. Compression of the distal network of microtubules after centrifugation of the roots indicates that microtubules in statocytes ofLepidium sativum L. roots might function in stabilizing the distal complex of endoplasmic reticulum.  相似文献   

4.
Low doses of microtubule-interacting drugs cause wild-type Arabidopsis thaliana seedling roots to twist in a left-handed helical direction. We here report molecular characterization of an A. thaliana tubulin mutant whose roots twist in a right-handed direction and have shallow left-handed cortical microtubule arrays when challenged with low doses of microtubule drugs. In the absence of the drug, growth and development of the mutant was apparently normal. In this conditional twisting mutant, Cys213 of α-tubulin6 was exchanged with Tyr. The mutant tubulin was incorporated into the microtubule polymer with wild-type tubulins, and thus acted as a dominant-negative mutation. These results suggest that compromised microtubules in wild-type and mutant roots are qualitatively distinct and affect skewing direction differently.  相似文献   

5.
Immunofluorescence labeling of cortical microtubules (MTs) was used to investigate the relationship between MT arrangement and changes in growth rate of the upper and lower sides of horizontally placed roots of maize (Zea mays L. cv. Merit). Cap cells and cells of the elongation zone of roots grown vertically in light or darkness showed MT arrangements that were transverse (perpendicular) to the growth direction. Microtubules of cells basal to the elongation zone typically showed oblique orientation. Two hours after horizontal reorientation, cap cells of gravicompetent, light-grown and curving roots contained MTs parallel to the gravity vector. The MT arrangement on the upper side of the elongation zone remained transverse but the MTs of the outer four to five layers of cortical cells along the lower side of the elongation zone showed reorientation parallel to the axis of the root. The MTs of the lower epidermis retained their transverse orientation. Dark-grown roots did not curve and did not show reorientation of MTs in cells of the root cap or elongation zone. The data indicate that MT depolymerization and reorientation is correlated with reduction in growth rate, and that MT reorientation is one of the steps of growth control of graviresponding roots.Abbreviations MT microtubule - QC quiescent center This work was supported by National Science Foundation grant IBN-9118094.  相似文献   

6.
Busch MB  Sievers A 《Planta》1990,181(3):358-364
Treatment of cress (Lepidium sativum L.) roots with phytohormones (4.3 x 10(-5) M gibberellic acid plus 4.3 x 10(-5) M kinetin, 30 h; T.H. Iversen, 1969, Physiol. Plant. 22, 1251-1262) caused not only complete destarching of amyloplasts but also destruction of the polar arrangement of cell organelles in statocytes. The nucleus was not positioned exclusively near the proximal cell pole as in the controls but was also found near the distal cell pole. The endoplasmic reticulum (ER) was no longer organized in parallel sheets at the distal cell pole but instead the ER-cisternae were randomly distributed. Additionally, the statocytes from hormone-treated roots contained a large central vacuole instead of numerous small ones as in the controls. The starch-free plastids had a reduced volume and an amoeboid shape. They did not sediment but were randomly distributed in the statocytes. The loss of structural polarity was accompanied by loss of graviresponsiveness although root growth still occurred. Twenty-two hours after removal of the hormones, structural polarity was restored and starch was resynthesized. The newly formed starch grains were smaller and more numerous per amyloplast compared to the controls. It is concluded that loss of gravisensitivity of roots after hormone treatment cannot be solely attributed to the loss of amyloplastic starch because there is a concomitant loss in the polar organisation of the statocyte.  相似文献   

7.
Hensel W 《Planta》1986,169(3):293-303
The development of the structural polarity of statocytes from cress roots (Lepidium sativum L.) was studied in a time- and stage-dependent manner. Outgrowing radicles had statocytes with abundant lipid droplets, sparsely developed endoplasmic reticulum (ER) and nuclei located at the proximal cell poles. During differentiation, coincidentally the lipid droplets disappeared, while rough ER increased in length. The ER was translocated into the distal cell pole to establish a complex of stacked ER. Microtubules occurred first at the distal cell edges. As a second step, ER was produced in the vicinity of the nucleus and was also translocated distally. By application of the antimicrotubular agents heavy water (90%), colchicine (10-4 mol·l-1) and triethyl lead chloride (20 mol·l-1), the involvement of microtubules in these events was studied. Triethyl lead chloride led to a complete cessation of differentiation; root-cap cells remained at a stage without polar arrangement of the ER. Colchicine affected the development of structural polarity slightly, as shown by a higher density of cortical ER cisternae. Heavy water inhibited the translocation of ER almost completely and yielded ER located also in the cell center. All anti-microtubular agents inhibited cell division and the differentiation of the distal cell layer of the dermatocalyptrogen into statocytes. It is hypothesized that microtubules serve as anchoring sites for microfilaments, which actually mediate the translocation of the ER. Hence, an intact system of microtubules and microfilaments is necessary for the expression of structural polarity.Abbreviations DC dermatocalyptrogen - ER endoplasmic reticulum - M meristem cell layer - MT microtubule - pI prospective story I - TrEl triethyl lead chloride  相似文献   

8.
The role of gibberellins in regulating the growth of tomatoroots was investigated by comparing various cellular parametersin cultured roots of the gibberellin-deficient mutant gib-l/gib-lwith those in roots of the near-isogenic wild-type. In addition,wild-type roots treated with 0?1 µM 2S,3S paclobutrazol,an inhibitor of gibberellin biosynthesis, and mutant roots treatedwith 0?1 µM GA3 were also compared: the former roots constitutea phenocopy of the mutant, whereas the latter roots appear tobe ‘normalized’ and similar to wild-type. The elongationof mutant and phenocopied roots were similar, their maximumelongation rates being about half or two-thirds that of wild-typeor GA3-treated mutant roots, respectively. These rates wereinterpreted in terms of the numbers and lengths of cells withinthe meristematic and non-meristematic portions of the elongationzone. Mean meristem length tended to be shorter in both themutant and the 2S,3S paclobutrazol-treated wild-type roots thanin the other two types of root. A major difference between thetwo pairs of mutant and normal roots was their mean final celllengths: mean lengths of cortical cells of the mutant and 2S,3Spaclobutrazol-treated roots were, respectively, 39% and 25%shorter than the mean length of wild-type roots. Final celllength in the GA3-treated mutant roots were similar to wild-type.By contrast, the diameters of mature cortical cells of the mutantand phenocopy were about 20% greater than the diameters of equivalentwild-type or ‘normalized’ mutant cells. The meanvolumes of cortical cells in all four types of roots showedno significant differences. Knowledge of the distribution ofcortical cell lengths, widths and volumes along the root axis,together with information about the rate of root elongation,permitted comparisons of the relative elemental growth ratesof each of these three cellular parameters. The available evidence suggests that the level of endogenousgibberellins in mutant roots is lower than in wild-type roots.The present results, therefore, suggest that endogenous gibberellinsare necessary for normal growth of cultured tomato roots andthat they regulate the relative amounts of growth at the longitudinaland transverse walls of the cells which, in turn, affects theshape of the elongating cells. Key words: Cell growth, cultured roots, gibberellin, gib-l mutant, Lycopersicon esculentum, 2S,3S paclobutrazol, relative elemental growth rate, root meristem  相似文献   

9.
Cell polarity genes have important functions in photoreceptor morphogenesis. Based on recent discovery of stabilized microtubule cytoskeleton in developing photoreceptors and its role in photoreceptor cell polarity, microtubule associated proteins might have important roles in controlling cell polarity proteins' localizations in developing photoreceptors. Here, Tau, a microtubule associated protein, was analyzed to find its potential role in photoreceptor cell polarity. Tau colocalizes with acetylated/stabilized microtubules in developing pupal photoreceptors. Although it is known that tau mutant photoreceptor has no defects in early eye differentiation and development, it shows dramatic disruptions of cell polarity proteins, adherens junctions, and the stable microtubules in developing pupal photoreceptors. This role of Tau in cell polarity proteins' localization in photoreceptor cells during the photoreceptor morphogenesis was further supported by Tau's overexpression studies. Tau overexpression caused dramatic expansions of apical membrane domains where the polarity proteins localize in the developing pupal photoreceptors. It is also found that Tau's role in photoreceptor cell polarity depends on Par‐1 kinase. Furthermore, a strong genetic interaction between tau and crumbs was found. It is found that Tau has a crucial role in cell polarity protein localization during pupal photoreceptor morphogenesis stage, but not in early eye development including eye cell differentiation.  相似文献   

10.
The development of sensitive and specific solid-phase enzyme immunoassays for gibberellic acid and gibberellins A4 and A7 is reported. The use of antisera of high apparent affinity (Ka over 1010 l mol-1) in conjunction with alkaline phosphatase-labeled gibberellins allows, with minimum procedural effort, the quantitative determination of sub-picogram amounts of these gibberellins. The assays reported here are applicable to most gibberellins and can be set up with 1–1.5 mg of starting material. They represent the most sensitive methods for gibberellin determination known.Abbreviations GA gibberellin - GA3 gibberellic acid - TLC thin-layer-chromatography  相似文献   

11.
Summary The polarity of a growing pollen tube is clearly reflected by a distinct zonation of the cytoplasmic content. The vegetative nucleus and the generative cell (GC) are located in the tip region of the tube, and the basal cytoplasmic portion is highly vacuolated. Using pollen tubes ofNicotiana sylvestris Spegazz. & Comes grown in vitro, we examined the effects of varying concentrations of the microtubule inhibitors colchicine and propham. The depolymerization of the cortical microtubules by 25 M colchicine led to a disorganization of the cytoplasm, i.e., vacuolization of the tip region, and to a deranged position of both the vegetative nucleus and the generative cell. The same concentration of colchicine inhibited tube growth by 10–20% of the control. Mitosis of the GC was not affected. Only from concentrations of 200 M the configuration of the GC's microtubules was altered and an inhibition of mitosis was observed. At this concentration the disorganization of the cytoplasm was always reversible, but neither inhibition of mitosis nor derangement of the nuclear positioning was. At 1,800 M colchicine, pollen tube growth was inhibited by 50% of the control. Using propham, the same three steps of action were observed, although propham proved to be about a hundred times more effective than colchicine. We conclude that the cortical microtubules of the pollen tube are involved in maintaining cellular polarity, probably as a part of a heterogeneous cytoskeletal network including also microfilaments and membranous elements. Nuclear positioning seems to be dependent on both, the tube's cortical and the GC's microtubules. A possible involvement of the extracellular matrix in maintaining intracytoplasmic polarity is suggested.Abbreviations DAPI 4,6-diamidino-2-phenylindole - EGTA ethyleneglycol-bis-(aminoethyl ether) tetraacetic acid - GC generative cell - MF microfilament - MT microtubule - PEM-buffer 50 mM PIPES, 1 mM EGTA, 2 mM MgSO4, pH 6.9 - PBS phosphate buffered saline - PIPES piperazine-bis-ethanesulphonic acid - PTG-test pollen tube growth test - VN vegetative nucleus Dedicated to Professor Peter Sitte on the occasion of his 65th birthday  相似文献   

12.
Tomato (Lycopersicon esculentum Mill.) plants homozygous for the mutant pro gene, exhibiting the distinctive procera phenotype, appeared virtually identical to gibberellic acid (GA3)-treated isogenic normal plants. The pro gene and GA3 caused analogous increases in internode length, and in the length and number of cells in the outer cell layers of each internode. Internode number was also increased by pro and GA3 over the period of the experiment. Despite their greater length, the internodes of GA3-treated and pro plants reached their final size within a time period similar to that of internodes of untreated normal plants. The pro mutant itself was responsive to GA3, especially in the seedling stage, but the proportional increase in height seen in the later stages of growth was less than that of normal plants.Abbreviations GA gibberellin - GA3 gibberellic acid - LSD least significant difference  相似文献   

13.
The imidazole fungicides imazalil, prochloraz, and triflumizole and the triazole growth retardant paclobutrazol strongly enhanced the shoot-inducing effect of 6-benzyladenine in Spathiphyllum floribundum Petite Schott. Numerous small shoots and shoot meristems appeared at the basal part of the plant. This effect was confirmed when such widely different cytokinins as zeatin, meta-topolin, and thidiazuron were combined with imazalil. Neither these fungicides nor paclobutrazol showed cytokinin effects on cytokinin-free medium. The number of roots per explant could be augmented using particular concentrations, depending on the fungicide used. The combination prochloraz and 6-benzyladenine had a similar effect on Anthurium andreanum, which suggests that Araceae are especially sensitive to this interaction.Abbreviations BA 6-benzyladenine - BMA basal medium Anthurium - BMS basal medium Spathiphyllum - f.m. fresh mass - GA gibberellin - GA3 gibberellic acid - IMA imazalil - mT 6-(3-hydroxybenzyl)adenine - NFT Nutrient Film Technique - PAR Photosynthetic Active Radiation - PBZ paclobutrazol - PRO prochloraz - TDZ thidiazuron - TRI triflumizole - Z zeatin  相似文献   

14.
 To understand the role of microtubules in the regulation of cell elongation, we characterized microtubule patterns in fass, a cell shape mutant of Arabidopsis thaliana (L.) Heynh. Examining microtubule patterns via immunocytochemistry, we found that fass cells were able to organize their microtubules into mitotic spindles and phragmoplasts. During interphase or preprophase, fass cells had cortical microtubules, verified by transmission electron microscopy, but these microtubules were not organized into the cortical array or preprophase band. Using chromatin condensation and tubulin localization on the nuclear envelope as preprophase stage markers, we found that although fass cells lacked the preprophase band and cortical array, their cell division cycle appeared normal. To pinpoint the defect in fass cells, we delineated the sequential events leading to cortical array formation in Arabidopsis cells and found that fass cells initiated and recolonized cortical microtubules in the same manner as wild-type cells, but failed to order them into the cortical array. Taken together, these results suggest fass cells are impaired in a component of the microtubule organizing center(s) required for the proper ordering of cortical microtubules at the plasma membrane. Received: 23 August 1996 / Accepted: 25 September 1996  相似文献   

15.
The involvement of gibberellins (GAs) and ethylene in the process of root radial expansion was studied in young seedlings of Carrizo citrange [Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.]. The GA inhibitors cycocel, paclobutrazol, and tetcyclacis enhanced radial expansion of the root tip (up to 2.3-fold) as a result of increases in stele diameter and inner cortex width. The GA deficiency increased cell number and width, and changed the polarity of growth, generating wider and shorter cortical cells in the elongation zone. In the presence or absence of GA inhibitors, GA3 decreased root tip width and reduced all parameters related to radial expansion. The ethylene inhibitors (aminooxyacetic acid; cobalt ions, CoCl2; silver thiosulfate) suppressed swelling induced by GA deficiency, generating thinner cells just as GA3 did. In contrast to GA3, ethylene inhibitors produced longer cells strongly resembling those of the untreated seedlings. Ethylene released by ethephon did not modify root tip width in control plants, while root diameter behind the root tip was increased. In the presence of low and ineffective concentrations of cycocel, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid increased radial expansion of root tips (1.3-fold) and changed the polarity of growth, producing wider and shorter inner cortical cells as GA inhibitors did. These observations imply, first, that ethylene is the hormonal effector of the process of root radial expansion and, second, that the endogenous GAs modulate the promotive response of ethylene. Received: 4 October 1996 / Accepted: 25 December 1996  相似文献   

16.
We have studied the relationship between pH banding and the organization of cortical microtubules in the alga Chara corallina Klein ex Willd. Microtubules were visualized by immunofluorescence and also by imunogold-silver enhancement to allow immediate comparison of microtubule arrangement with visible structural cell features. In cells that are nearing growth completion, microtubule number and alignment change between acidic and alkaline bands over a distance of a few micrometres. Thus, it appears that the still unknown mechanisms for microtubule organization respond to the localized differences in membrane properties. Band formation was not prevented when microtubules were depolymerized with the herbicide oryzalin, demonstrating that microtubules are not necessary for pH bands to develop in these cells.Abbreviations DMSO dimethylsulfoxide - MT microtubule We thank Frank Gubler for helpful advice on immunogold-silver enhancement procedures, Brian Gunning for tuition in confocal microscopy, Ann Cork for assistance with photography and Dean Price for helpful discussions. G.O.W. gratefully acknowledges the receipt of a National Research Fellowship and a Queen Elizabeth II Fellowship from the Australian Research Council.  相似文献   

17.
Red light controls cell elongation in seedlings of rice (Oryza sativa L.) in a far-red-reversible manner (Nick and Furuya, 1993, Plant Growth Regul. 12, 195–206). The role of gibberellins and microtubules in the transduction of this response was investigated in the rice cultivars Nihon Masari (japonica type) and Kasarath (indica type). The dose dependence of mesocotyl elongation on applied gibberellic acid (GA3) was shifted by red light, and this shift was reversed by far-red light. In contrast, coleoptile elongation was found to be independent of exogenous GA3. Nevertheless, it was inhibited by red light, and this inhibition was reversed by far-red light. The content of the active gibberellin species GA1 and GA4 was estimated by radio-immunoassay. In the mesocotyl, the gibberellin content per cell was found to increase after irradiation with red light, and this increase was far-red reversible. Conversely, the cellular gibberellin content in japonica-type coleoptiles did not exhibit any significant light response. Microtubules reoriented from transverse to longitudinal arrays in response to red light and this reorientation could be reversed by subsequent far-red light in both the coleoptile and the mesocotyl. This movement was accompanied by changes in cell-wall birefringence, indicating parallel reorientations of cellulose deposition. The data indicate that phytochrome regulates the sensitivity of the tissue towards gibberellins, that gibberellin synthesis is controlled in a negative-feedback loop dependent on gibberellin effectiveness, and that at least two hormone-triggered signal chains are linked to the cytoskeleton in rice.Abbreviations D darkness - FR far-red light - GA3 gibberellic acid - GC-SIM gas chromatography-selected ion monitoring - R red light This work was supported by a grant of the Human Frontier Science Organization to P.N. Advice and organizational support by Prof. M. Furuya (Hitachi Advanced Research Laboratory, Hatoyama, Japan) and Prof. N. Murofushi (Department of Agricultural Chemistry, University of Tokyo, Japan) is gratefully acknowledged. Seeds of both rice cultivars were kindly provided by Dr. O. Yatou (Institute for Radiation Breeding, Hitachi-Ohmiya, Japan), and the antiGA1 Me-antiserum for the radio-immunoassays by Dr. I. Yamaguchi (Department of Agricultural Chemistry, University of Tokyo, Japan).  相似文献   

18.
The germination of Amaranthus paniculatus seeds was inhibited by applying paclobutrazol, a specific inhibitor of gibberellin biosynthesis. This inhibition was markedly counteracted by gibberellin A3 (GA3), suggesting that endogenous gibberellins are required for germination in this species. The inhibitory effect of paclobutrazol was also overcome by ethephon (2-chloroethylphosphonic acid) or the precursor of ethylene biosynthesis, ACC (1-aminocyclopropane-l-carboxylic acid). Thus the physiological effect of gibberellin can be mimicked by ethylene released from ethephon or synthesised from exogenous ACC. It is suggested, that endogenous gibberellins are involved in germination of Amaranthus paniculatus seeds and that action of GA3 can be substituted by ethylene.Abbreviations ACC 1-aminocyclopropane-l-carboxylic acid - AMO-1618 (2-isopropyl-5methyl-4-trimethylammoniumchloride)-phenyl-l-piperidinium-carboxylate - ancymidol -cyclopropyl--(4-methoxyphenyl)-5-pyrimidine methanol - chloromequat chloride (2-chloroethyl)trimethylammoniumchloride - ethephon 2-chloroethylphosphonic acid - GA gibberellin A3 - paclobutrazol (2RS, 3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-lyl)pentan-3-ol - Phosphon D 2,4,dichlorobenzyl-tributhylphosphoniumchloride - tetcyclacis 5,(4-chlorophenyl)-3,4,5,9,10-pentaaza-tetracyclo)5,4,1,0,Z,6,08,11 dodeca-3,9-diene  相似文献   

19.
Maize (Zea mays L.) Dwarf8-1 (D8-1) is an andromonoecious dwarf mutant proposed to be involved in gibberellin (GA) reception (Fujioka et al. 1988b; Harberd and Freeling 1989). The mutant D8-1 is dominant and GA-nonresponsive (Phinney 1956). We show by map position and similarity of phenotype that five additional dwarf mutants are D8 alleles. We show by map position and similarity of phenotype that a second andromonoecious dwarf mutant, D9-1, defines a duplicate gene. Maize D9-1 and each dominant D8 allele specify a different plant stature, from very mild to very severe dwarfism. Plants of D9-1 and all dominant D8 alleles, except D8-1591, were GA-nonresponsive when treated with 7500 nmol GA3. The behavior of the mild dwarf D8-1591 was unique in that a small but significant growth response was detected (37% for D8-1591 vs. 130% for the wild type) when treated with 7500 nmol GA3. These results establish that all dwarf genotypes, except D8-1591, in one dose set a maximum limit on plant growth and block the normal response to GA. When treated with the GA-synthesis inhibitor paclobutrazol, plants of all dwarf genotypes and wild-type siblings were severely dwarfed. Plants of all dwarf genotypes treated with the GA-synthesis inhibitor paclobutrazol and GA3 were returned to their normal dwarf phenotype. Dominant dwarfing, delayed flowering, increased tillering, and anther development in the ear are characteristic features of D9-1 and all D8 alleles. The GA-synthesis-deficient dwarfs also have these characteristic features. We discuss the function of the wild-type gene product in the context of the observed results.Abbreviations D8 Dwarf8 - D9 Dwarf9 - GA(n) gibberellin A(n) - GA3 gibberellic acid - MNL Maize Genetics Cooperation Newsletter - NIL near-isogenic lines - RFLP restriction fragment length polymorphism - WT wild type This work was supported, in part, by a National Science Foundation Plant Postdoctoral Fellowship to R.G.W., by grants from NIH and ICI Seeds to M.F., the NSF Center for Plant Developmental Biology and the California Agriculture Experiment Station. Much of the work was done in the laboratory of Tim Helentjaris and was supported by a grant from Pioneer Hi-Bred Int'l. The generous gifts of the dominant dwarfing mutants from M.G. Neuffer and O.E. Nelson Jr. are gratefully acknowledged.  相似文献   

20.
Exogenous gibberellin removes the genetical suppression of mesocotyl elongation in dark-grown seedlings of the rice cultivar Nihon Masari (japonica type). This gibberellin effect can be cancelled by light. All light effects can be accounted for by phytochrome. Dose-response and fluence-response studies show that phytochrome induces a reduction of the sensitivity to exogenous gibberellins. A cytological analysis of cell elongation and cortical microtubules led to a model where gibberellin and red light regulate mesocotyl elongation by controlling microtubule orientation in the epidermis of the mesocotyl. This causes corresponding changes of cellular extension growth, which can account for a large part of the observed growth responses. Comparative studies involving antimicrotubular drugs and gibberellin-synthesis inhibitors in the rice cultivar Kasarath (indica type) and a hybrid cultivar suggest that some of the differences between the cultivars are due to differences in gibberellin-sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号