首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
高CO2浓度对大平不同叶位叶片叶绿体淀粉粒积累的效应   总被引:3,自引:0,他引:3  
对高CO2浓度下生长的大豆不同叶位的叶片进行电镜观察,揭示出大豆不同叶位叶片的叶绿体对倍增的CO2浓度反应不一。其显的超微结构差异特征是:1.叶位居中的叶片叶绿体积累的淀粉粒不仅很大,而且最多,有的叶绿体中的分粒可达20个,几种充满着叶绿体的基质空间。2.下位叶叶绿体的淀粉粒积累较多,通常为2 ̄5个;3.上位叶叶绿体所含淀粉粒既小又少,虽然有的叶绿体中也积累有3 ̄4个淀粉粒,但大多叶绿体中所含淀  相似文献   

2.
多胞质玉米胚乳淀粉粒性状的扫描电镜观察   总被引:8,自引:0,他引:8  
李敬玲  贾敬鸾 《遗传学报》1999,26(3):249-253
11种多胞质系玉米胚乳淀粉粒的扫描电镜观察表明:不同的细胞质对细胞核有不同程度的互作,3种甜质胞质玉米的胚乳淀粉粒多呈球形,排列紧密,存在一定的共性;4种雄性不育胞质玉米的胚乳淀粉粒多呈不规则形,除(T)Mo17外,排列疏松。这11种玉米胚乳淀粉粒的平均直径为9.78μm ̄14.69μm,通过玉米胚乳淀粉粒形态特征的观察,在玉米淀粉性状和玉米籽粒的商品价值关系上进行一定程度探索,为玉米的进一步发展  相似文献   

3.
利用高碘酸-锡夫试剂(PAS)—萘酚黄S对染法对四合木扦插不定根发生发育过程中淀粉粒和蛋白质分布的动态变化进行观察分析,为进一步揭示四合木不定根发生、发育机理提供解剖学依据。结果表明:(1)扦插后,淀粉粒在茎的木栓层和维管形成层之间的薄壁细胞内积累,至愈伤组织发育初期达到高峰,随着愈伤组织的继续发育,淀粉粒逐渐减少;(2)蛋白质在茎的木栓层和维管形成层之间的薄壁细胞内逐渐减少,至愈伤组织形成后,细胞内含少量蛋白质;(3)淀粉粒和蛋白质主要分布在分裂旺盛的胚性细胞、不定根原基细胞、不定根细胞及其附近细胞内。研究认为,蛋白质和淀粉粒为四合木不定根的形成和发育提供了物质和能量。  相似文献   

4.
为揭示厚竹(Phyllostachys edulis ‘Pachyloen’)快速高生长的物质基础,进一步探究厚竹快速高生长的物质代谢机理。该研究采用常规石蜡切片结合光学显微技术,研究厚竹高生长过程中竹秆淀粉粒的时空动态变化规律。结果表明:(1)淀粉粒随着竹秆的高生长逐渐减少,且同一节间的不同部位淀粉粒的含量存在差异;在轴向上,同一节间从上至下淀粉粒含量升高,节间基部的淀粉粒最多,且节部的淀粉粒含量始终高于节间;高生长停止后,在节部的长、短细胞中仍有淀粉粒分布。(2)在径向上,从外至内,淀粉粒逐渐减少,且维管束周围淀粉粒明显多于其他部位。(3)节隔缺失的异常节间和节部的淀粉粒含量较正常的多,且节间各部位淀粉粒含量相似。研究发现,淀粉粒的时空动态变化与厚竹高生长过程中节间细胞的发育规律一致,节部可能主要通过控制物质运输来调控竹子的高生长。  相似文献   

5.
对高CO_2浓度下生长的大豆(Glycine max(L.)Merr.)不同叶位的叶片进行了电镜观察,揭示出大豆不同叶位叶片的叶绿体对倍增的CO_2浓度反应不一。其显著的超微结构差异特征是:1.叶位居中的叶片叶绿体积累的淀粉粒不仅很大,而且最多,有的叶绿体中的淀粉粒可达20个,几乎充满着叶绿体的基质空间。2.下位叶叶绿体的淀粉粒积累较多,通常为2~5个;3.上位叶叶绿体所含淀粉粒既小又少,虽然有的叶绿体中也积累有3~4个淀粉粒,但大多数叶绿体中所含淀粉粒仅有1~2个。以上结果联系到大豆中位叶的光合作用速率较高及对籽粒产量起作用最大来讨论是很有意义的。  相似文献   

6.
淹涝胁迫对水稻叶鞘和叶片中淀粉粒分布的影响   总被引:6,自引:0,他引:6  
淹涝是世界上当前所面临的最严重自然灾害之一,尤其是近几年来,淹涝给我国的农业生产带来了巨大损失,全国平均每年受涝面积814万hm2,其中成灾面积448万hm2,损失粮食约28亿kg〔1〕。水稻是我国的主要粮食作物,并且分布于淹涝易发生的南方多雨潮湿地区和北方低洼地带,淹涝对水稻产量影响极大,因此,研究淹涝胁迫对水稻的伤害及水稻的耐淹机制越来越受到人们的重视〔2〕。淹涝对植物的伤害并非是因为水分过多而造成的直接伤害,而是由于淹涝造成的次生胁迫,其中最严重的是缺氧。在缺氧条件下,细胞中的碳水化合物代谢途径改变,对植物的生长和发育…  相似文献   

7.
郭尚敬  李加瑞  乔卫华  张宪省 《遗传学报》2006,33(11):1014-1019
淀粉是玉米种子的主要组成成分,它包括直链淀粉和支链淀粉。支链淀粉的合成需要淀粉合成酶、分支酶和脱支酶的共同作用,而直链淀粉的合成则是在颗粒结合型淀粉合成酶的作用下进行的。颗粒结合型淀粉合成酶基因的突变造成玉米种子的腊质(糯性)表型。与支链淀粉合成的分子机制的研究相比,目前对玉米种子中直链淀粉合成的分子机制了解相对较少。以野生型黄早4玉米自交系和突变体糯玉米为实验材料,研究了种子不同发育时期直链淀粉的积累规律。通过碘染色的方法,观察了玉米种子发育过程中淀粉积累的形态变化。定量分析表明,从授粉后10d至25d,黄早4种子中直链淀粉的含量逐渐增加,同时颗粒结合型淀粉合成酶(GBSS)的活性逐渐提高;而在糯玉米中,直链淀粉和GBSS活性均未检测到。进而,通过RT-PCR方法,从黄早4种子中分离出编码GBSSI的cDNA片段。在授粉后10d至25d的玉米胚乳中均可检测到GBSSI的表达,而在胚中直到授粉后25d才检测到该基因表达的微弱信号。在糯玉米种子中没有检测到该基因的表达。研究结果表明,在玉米种子发育过程中,GBSSI基因的表达通过控制GBSS的合成,最终控制直链淀粉的合成。研究工作为理解玉米种子中直链淀粉合成的分子机制提供了重要信息。  相似文献   

8.
不同活力玉米种子胚萌发过程中蛋白质的变化   总被引:24,自引:0,他引:24  
从不同人工老化处理中筛选出3组分别代表不同活力的玉米种子。萌发期间,中、低活力种子胚蛋白的降解比高活力对照种子慢,萌发前期胚蛋白合成能力也较低。吸胀24h,不同活力胚的蛋白合成能力差异显著,可以作为衡量种子活力的指标。  相似文献   

9.
Hg浸种对玉米种子萌发过程中几种酶活性的影响   总被引:16,自引:0,他引:16  
1 引  言Hg是环境污染的重要因素,有关Hg对植物生长发育的影响及危害机制已有报导[1,3],但Hg对玉米种子萌发作用尚未见报道.种子萌发依靠自身储存的淀粉、脂肪和蛋白质的分解来提供物质和能量,合成新的生命物质.因此环境对种子萌发的影响首先表现在对这些大物质分解代谢的影  相似文献   

10.
冠果草种子萌发过程的组织化学动态   总被引:5,自引:1,他引:5  
冠果草的种子中没有胚乳,营养物质贮藏在胚中,其成分主要是淀粉和蛋白质。胚各部分的物质积累情况差异较大,子叶和下胚轴细胞中的淀粉粒、蛋白体数目多、体积大,胚芽和胚根分生细胞中则只贮藏少量的淀粉粒、蛋白体。在种子萌发过程中,胚各部分的淀粉粒逐渐解体,至二叶幼苗期全部消失。蛋白体的降解有严格顺序,远离胚芽的细胞中蛋白体降解较早,胚芽附近细胞中的降解较晚,而且胚芽细胞中还有新的蛋白体形成。单个蛋白体的降解  相似文献   

11.
Acid phosphatase activity (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) increased during the first 24 h of maize (Zea mays) seed germination. The enzyme displayed a pH optimum of 4.5-5.5. Catalytic activity in vitro displayed a linear time course (60 min) and reached its half maximum value at 0.47 mM p-nitrophenyl phosphate (pNPP). Phosphatase activity towards phosphoamino acids was greatest for phosphotyrosine. The phosphatase activity was strongly inhibited by ammonium molybdate, vanadate and NaF and did not require divalent cations for the catalysis. The temperature optimum for pNPP hydrolysis was 37 degrees C. Under the same conditions, no enzyme activity was detected with phytic acid as substrate. Western blotting of total homogenates during seed germination revealed proteins/polypeptides that were phosphorylated on tyrosine residues; a protein of approximately 14 kDa is potentially a major biological substrate for the phosphatase activity. The results presented in this study suggest that the acid phosphatase characterized under the tested conditions is a member of the phosphotyrosine phosphatase family.  相似文献   

12.
Time course of starch production and the key enzyme activities in the grains of four maize inbred lines (two high-starch and two low-starch lines) were studied. Accumulation of grain starch and its components in four maize inbred lines rose continuously after pollination and increased as a sigmoid curve during grain filling. The accumulation rates showed single-peak curves. The accumulation rates of starch and its components reached their peaks on 25–32 days after pollination (DAP), respectively. Activities of adenosine diphosphoglucose pyrophosphorylase (AGPPase) and starch synthase in the grains of four lines followed single-peak curves with the peaks on 24–31 DAP. The highest activity of the starch-branching enzyme (Q-enzyme) in the grains of both high-starch lines appeared on 23 DAP, but that of both low-starch inbred lines showed double-peak curves, the peaks being at 15–20 DAP and 30–35 DAP. There was significant positive correlation between AGPPase, soluble starch synthase (SSS), and starch granule-bound synthase (GBSS) activities. The results indicated the Q-enzyme had different expression patterns in the high-and the low-starch maize inbred lines, and that AGPPase, SSS, and GBSS activities were significantly and positively correlated with amylose, amylopectin, and starch accumulation rates in all lines. This text was submitted by the authors in English  相似文献   

13.
A maize (Zea mays) senescence-associated legumain gene, See2beta, was characterized at the physiological and molecular levels to determine its role in senescence and resource allocation. A reverse-genetics screen of a maize Mutator (Mu) population identified a Mu insertion in See2beta. Maize plants homozygous for the insertion were produced. These See2 mutant and sibling wild-type plants were grown under high or low quantities of nitrogen (N). The early development of both genotypes was similar; however, tassel tip and collar emergence occurred earlier in the mutant. Senescence of the mutant leaves followed a similar pattern to that of wild-type leaves, but at later sampling points mutant plants contained more chlorophyll than wild-type plants and showed a small extension in photosynthetic activity. Total plant weight was higher in the wild-type than in the mutant, and there was a genotype x N interaction. Mutant plants under low N maintained cob weight, in contrast to wild-type plants under the same treatment. It is concluded, on the basis of transposon mutagenesis, that See2beta has an important role in N-use and resource allocation under N-limited conditions, and a minor but significant function in the later stages of senescence.  相似文献   

14.
BACKGROUND AND AIMS: In maize (Zea mays), early flowering date, which is a valuable trait for several cropping systems, is associated with the number of leaves per plant and the leaf appearance rate. Final leaf number depends upon the rate and duration of leaf initiation. The aims of this study were to analyse the genotypic variation in the response to temperature of leaf appearance rate and leaf initiation rate, and to investigate the co-ordination between these processes under field conditions. METHODS: Sixteen hybrids of different origins were grown under six contrasting environmental conditions. The number of appeared leaves was measured twice a week to estimate leaf appearance rate (leaves d(-1)). Plants were dissected at four sampling dates to determine the number of initiated leaves and estimate leaf initiation rate (leaves d(-1)). A co-ordination model was fitted between the number of initiated leaves and the number of appeared leaves. This model was validated using two independent data sets. KEY RESULTS: Significant (P < 0.05) differences were found among hybrids in the response to temperature of leaf initiation rate (plastochron) and leaf appearance rate (phyllochron). Plastochron ranged between 24.3 and 36.4 degree days (degrees Cd), with a base temperature (Tb) between 4.0 and 8.2 degrees C. Phyllochron ranged between 48.6 and 65.5 degrees Cd, with a Tb between 2.9 and 5.0 degrees C. A single co-ordination model was fitted between the two processes for all hybrids and environments (r2= 0.96, P < 0.0001), and was successfully validated (coefficient of variation < 9 %). CONCLUSIONS: This work has established the existence of genotypic variability in leaf initiation rate and leaf appearance rate in response to temperature, which is a promising result for maize breeding; and the interdependence between these processes from seedling emergence up to floral initiation.  相似文献   

15.
Magnetic seed treatment is one of the physical pre-sowing seed treatments to enhance the performance of crop plants. In our earlier experiment, we found significant increase in germination and vigour characteristics of maize (Zea mays L.) seeds subjected to magnetic fields. Among various combinations of magnetic field (MF) strength and duration, best results were obtained with MF of 100 mT for 2 h and 200 mT for 1 h exposure. The quicker germination in magnetically-exposed seeds might be due to greater activities of germination related enzymes, early hydration of membranes as well as greater molecular mobility of bulk and hydration water fractions. Thus, in the present study, changes in water uptake during imbibition and its distribution and activities of germinating enzymes during germination were investigated in maize seeds exposed to static magnetic fields of 100 and 200 mT for 2 and 1 h respectively by nuclear magnetic resonance (NMR) spectroscopy. The magnetically-exposed seed showed higher water uptake in phase II and III than unexposed seed. The longitudinal relaxation time T1 of seed water showed significantly higher values and hence greater molecular mobility of cellular water in magnetically-exposed seeds as compared to unexposed. Component analysis of T2 relaxation times revealed the early appearance of hydration water with least mobility and higher values of relaxation times of cytoplasmic bulk water and hydration water in magnetically-exposed over unexposed seeds. Activities of alpha-amylase, dehydorgenase and protease during germination were higher in magnetically-exposed seeds as compared to unexposed. The quicker germination in magnetically-exposed seeds might be due to greater activities of germination related enzymes, early hydration of membranes as well as greater molecular mobility of bulk and hydration water fractions.  相似文献   

16.
17.
Although considerable evidence has accumulated on the defensive activity of plant volatile organic compounds against pathogens and insect herbivores, less is known about the significance of volatile organic compounds emitted by plants under abiotic stress. Here, we report that green leaf volatiles (GLVs), which were previously shown to prime plant defences against insect herbivore attack, also protect plants against cold stress (4 °C). We show that the expression levels of several cold stress‐related genes are significantly up‐regulated in maize (Zea mays) seedlings treated with physiological concentrations of the GLV, (Z)‐3‐hexen‐1‐yl acetate (Z‐3‐HAC), and that seedlings primed with Z‐3‐HAC exhibit increased growth and reduced damage after cold stress relative to unprimed seedlings. Together, these data demonstrate the protective and priming effect of GLVs against cold stress and suggest an activity of GLVs beyond the activation of typical plant defence responses against herbivores and pathogens.  相似文献   

18.
Zinc deficiency decreased pollen viability in maize (Zea mays L. cv. G2) grown in sand culture. On restoring normal zinc supply to zinc-deficient plants before the pollen mother cell stage of anther development, the vegetative yield of plants and pollen fertility could be recovered to a large extent, but the recovery treatment was not effective when given after the release of microspores from the tetrads. If zinc deficiency was induced prior to microsporogenesis it did not significantly affect vegetative yield and ovule fertility, but decreased the fertility of pollen grains, even of those which visibly appeared normal. If the deficiency was induced after the release of microspores from the tetrads, not only vegetative yield and ovule fertility but pollen fertility also remained unaffected.  相似文献   

19.
In maize (Zea mays L.), GSp1, the predominant GS isozyme of the developing kernel, is abundant in the pedicel and pericarp, but absent from the endosperm and embryo. Determinations of GSp1 tissue distribution in vegetative tissues have been limited thus far to root and leaves, where the isozyme is absent. However, the promoter from the gene encoding GSp1 has been shown to drive reporter gene expression not only in the maternal seed-associated tissues in transgenic maize plants, but also in the anthers, husks and pollen (Muhitch et al. 2002, Plant Sci 163: 865-872). Here we report chromatographic evidence that GSp1 resides in immature tassels, dehiscing anthers, kernel glumes, ear husks, cobs and stalks of maize plants, but not in mature, shedding pollen grains. RNA blot analysis confirmed these biochemical data. In stalks, GSp1 increased in the later stages of ear development, suggesting that it plays a role in nitrogen remobilization during grain fill.  相似文献   

20.
This study evaluates the effects of different row arrangements on incidence and severity of Cercospora leaf spot (CLS) and Alternaria leaf blight (ALB) diseases and seed health of sesame intercropped with maize. Row arrangements were: sesame intercropped with maize in alternate pair of rows (2:2), two rows of sesame intercropped with one row of maize (2:1), sesame intercropped with maize in single alternate rows (1:1) with sole sesame as control. Intercropping maize with sesame reduced the incidence and severity of diseases. Sesame intercropped with maize in a (1:1) ration recorded a significantly lower number of infected leaves by CLS and ALB incidence than other row arrangements. ALB lesion number was between 17 and 20 in the (1:1) arrangement relative to 65–104 and 28–43 in the sole crop and other row arrangements, respectively. ALB lesion size was also reduced in the (1:1) than other row arrangements. Fungal infection of harvested sesame seeds was significantly reduced in the intercrop relative to the sole crop. CLS incidence was significant and negatively correlated with seed weight while defoliation was significant and positively correlated with ALB or CLS incidence. Rainfall was significant and positively correlated with CLS or ALB incidence while intercropping induced microclimatic effects that influenced disease incidence. Grain yield, weight of 1000-seed, number of capsules/plant and weight of seed/plant were significantly higher in the (1:1) row arrangement than the sole crop or other row arrangements. The study demonstrates that intercropping sesame with maize in a single alternate row (1:1) arrangement can be used to reduce foliar diseases of sesame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号