首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibitory serine phosphorylation is a potential molecular mechanism for insulin resistance. We have developed a new variant of the yeast two-hybrid method, referred to as disruptive yeast tri-hybrid (Y3H), to identify inhibitory kinases and sites of phosphorylation in insulin receptors (IR) and IR substrates, IRS-1. Using IR and IRS-1 as bait and prey, respectively, and c-Jun NH(2)-terminal kinase (JNK1) as the disruptor, we now show that phosphorylation of IRS-1 Ser-307, a previously identified site, is necessary but not sufficient for JNK1-mediated disruption of IR/IRS-1 binding. We further identify a new phosphorylation site, Ser-302, and show that this too is necessary for JNK1-mediated disruption. Seven additional kinases potentially linked to insulin resistance similarly block IR/IRS-1 binding in the disruptive Y3H, but through distinct Ser-302- and Ser-307-independent mechanisms. Phosphospecific antibodies that recognize sequences surrounding Ser(P)-302 or Ser(P)-307 were used to determine whether the sites were phosphorylated under relevant conditions. Phosphorylation was promoted at both sites in Fao hepatoma cells by reagents known to promote Ser/Thr phosphorylation, including the phorbol ester phorbol 12-myristate 13-acetate, anisomycin, calyculin A, and insulin. The antibodies further showed that Ser(P)-302 and Ser(P)-307 are increased in animal models of obesity and insulin resistance, including genetically obese ob/ob mice, diet-induced obesity, and upon induction of hyperinsulinemia. These findings demonstrate that phosphorylation at both Ser-302 and Ser-307 is necessary for JNK1-mediated inhibition of the IR/IRS-1 interaction and that Ser-302 and Ser-307 are phosphorylated in parallel in cultured cells and in vivo under conditions that lead to insulin resistance.  相似文献   

2.
Phosphorylation of insulin receptor substrate (IRS) proteins on serine residues is an important posttranslational modification that is linked to insulin resistance. Several phosphoserine sites on IRS1 have been identified; the majority are located proximal to the phosphotryosine-binding domain or near key receptor tyrosine kinase substrate- and/or Src-homology 2 domain-binding sites. Here we report on the characterization of a serine phosphorylation site in the N-terminal pleckstrin homology (PH) domain of IRS1. Bioinformatic tools identify serine 24 (Ser24) as a putative substrate site for the protein kinase C (PKC) family of serine kinases. We demonstrate that this site is indeed a bona fide substrate for conventional PKC. In vivo, IRS-1 is also phosphorylated on Ser24 after phorbol 12-myristate 13-acetate treatment of cells, and isoform-selective inhibitor studies suggest the involvement of PKCalpha. By comparing the pharmacological characteristics of phorbol 12-myristate 13-acetate-stimulated Ser24 phosphorylation with phosphorylation at two other sites previously linked to PKC activity (Ser307 and Ser612), we show that PKCalpha is likely to be directly involved in Ser24 phosphorylation, but indirectly involved in Ser307 and Ser612 phosphorylation. Using Ser24Asp IRS-1 mutants to mimic the phosphorylated residue, we demonstrate that the phosphorylation status of Ser24 does play an important role in regulating phosphoinositide binding to, and the intracellular localization of, the IRS1-PH domain, which can ultimately impinge on insulin-stimulated glucose uptake. Hence we provide evidence that IRS1-PH domain function is important for normal insulin signaling and is regulated by serine phosphorylation in a manner that could contribute to insulin resistance.  相似文献   

3.
Insulin receptor substrate (IRS) has been suggested as a molecular target of free fatty acids (FFAs) for insulin resistance. However, the signaling pathways by which FFAs lead to the inhibition of IRS function remain to be established. In this study, we explored the FFA-signaling pathway that contributes to serine phosphorylation and degradation of IRS-1 in adipocytes and in dietary obese mice. Linoleic acid, an FFA used in this study, resulted in a reduction in insulin-induced glucose uptake in 3T3-L1 adipocytes. This mimics insulin resistance induced by high-fat diet in C57BL/6J mice. The reduction in glucose uptake is associated with a decrease in IRS-1, but not IRS-2 or GLUT4 protein abundance. Decrease in IRS-1 protein was proceeded by IRS-1 (serine 307) phosphorylation that was catalyzed by serine kinases inhibitor kappaB kinase (IKK) and c-JUN NH2-terminal kinase (JNK). IKK and JNK were activated by linoleic acid and inhibition of the two kinases led to prevention of IRS-1 reduction. We demonstrate that protein kinase C (PKC) theta is expressed in adipocytes. In 3T3-L1 adipocytes and fat tissue, PKCtheta was activated by fatty acids as indicated by its phosphorylation status, and by its protein level, respectively. Activation of PKCtheta contributes to IKK and JNK activation as inhibition of PKCtheta by calphostin C blocked activation of the latter kinases. Inhibition of either PKCtheta or IKK plus JNK by chemical inhibitors resulted in protection of IRS-1 function and insulin sensitivity in 3T3-L1 adipocytes. These data suggest that: 1) activation of PKCtheta contributes to IKK and JNK activation by FFAs; 2) IKK and JNK mediate PKCtheta signals for IRS-1 serine phosphorylation and degradation; and 3) this molecular mechanism may be responsible for insulin resistance associated with hyperlipidemia.  相似文献   

4.
c-Jun NH(2)-terminal kinase (JNK) has been shown to negatively regulate insulin signaling through serine phosphorylation of residue 307 within the insulin receptor substrate-1 (IRS-1) in adipose and liver tissue. Using a rat hindlimb suspension model for muscle disuse atrophy, we found that JNK activity was significantly elevated in atrophic soleus muscle and that IRS-1 was phosphorylated on Ser(307) prior to the degradation of the IRS-1 protein. Moreover, we observed a corresponding reduction in Akt activity, providing biochemical evidence for the development of insulin resistance in atrophic skeletal muscle.  相似文献   

5.
Caffeine decreases insulin sensitivity and insulin-stimulated glucose transport in skeletal muscle; however, the precise mechanism responsible for this deleterious effect is not understood fully. We investigated the effects of incubation with caffeine on insulin signaling in rat epitrochlearis muscle. Caffeine (≥1 mM, ≥15 min) suppressed insulin-stimulated insulin receptor substrate (IRS)-1 Tyr(612) phosphorylation in a dose- and time-dependent manner. These responses were associated with inhibition of the insulin-stimulated phosphorylation of phosphatidylinositol 3-kinase (PI3K) Tyr(458), Akt Ser(473), and glycogen synthase kinase-3β Ser(9) and with inhibition of insulin-stimulated 3-O-methyl-d-glucose (3MG) transport but not with inhibition of the phosphorylation of insulin receptor-β Tyr(1158/62/63). Furthermore, caffeine enhanced phosphorylation of IRS-1 Ser(307) and an IRS-1 Ser(307) kinase, inhibitor-κB kinase (IKK)-α/β Ser(176/180). Blockade of IKK/IRS-1 Ser(307) by caffeic acid ameliorated the caffeine-induced downregulation of IRS-1 Tyr(612) phosphorylation and 3MG transport. Caffeine also increased the phosphorylation of IRS-1 Ser(789) and an IRS-1 Ser(789) kinase, 5'-AMP-activated protein kinase (AMPK). However, inhibition of IRS-1 Ser(789) and AMPK phosphorylation by dantrolene did not rescue the caffeine-induced downregulation of IRS-1 Tyr(612) phosphorylation or 3MG transport. In addition, caffeine suppressed the phosphorylation of insulin-stimulated IRS-1 Ser(636/639) and upstream kinases, including the mammalian target of rapamycin and p70S6 kinase. Intravenous injection of caffeine at a physiological dose (5 mg/kg) in rats inhibited the phosphorylation of insulin-stimulated IRS-1 Tyr(612) and Akt Ser(473) in epitrochlearis muscle. Our results indicate that caffeine inhibits insulin signaling partly through the IKK/IRS-1 Ser(307) pathway, via a Ca(2+)- and AMPK-independent mechanism in skeletal muscle.  相似文献   

6.
Insulin stimulation produced a reliable 3-fold increase in glucose uptake in primary neonatal rat myotubes, which was accompanied by a similar effect on GLUT4 translocation to plasma membrane. Tumor necrosis factor (TNF)-alpha caused insulin resistance on glucose uptake and GLUT4 translocation by impairing insulin stimulation of insulin receptor (IR) and IR substrate (IRS)-1 and IRS-2 tyrosine phosphorylation, IRS-associated phosphatidylinositol 3-kinase activation, and Akt phosphorylation. Because this cytokine produced sustained activation of stress and proinflammatory kinases, we have explored the hypothesis that insulin resistance by TNF-alpha could be mediated by these pathways. In this study we demonstrate that pretreatment with PD169316 or SB203580, inhibitors of p38 MAPK, restored insulin signaling and normalized insulin-induced glucose uptake in the presence of TNF-alpha. However, in the presence of PD98059 or SP600125, inhibitors of p42/p44 MAPK or JNK, respectively, insulin resistance by TNF-alpha was still produced. Moreover, TNF-alpha produced inhibitor kappaB kinase (IKK)-beta activation and inhibitor kappaB-beta and -alpha degradation in a p38 MAPK-dependent manner, and treatment with salicylate (an inhibitor of IKK) completely restored insulin signaling. Furthermore, TNF-alpha produced serine phosphorylation of IR and IRS-1 (total and on Ser(307) residue), and these effects were completely precluded by pretreatment with either PD169316 or salicylate. Consequently, TNF-alpha, through activation of p38 MAPK and IKK, produces serine phosphorylation of IR and IRS-1, impairing its tyrosine phosphorylation by insulin and the corresponding activation of phosphatidylinositol 3-kinase and Akt, leading to insulin resistance on glucose uptake and GLUT4 translocation.  相似文献   

7.
Serine phosphorylation of insulin receptor substrate-1 (IRS-1) inhibits insulin signal transduction in a variety of cell backgrounds, which might contribute to peripheral insulin resistance. However, because of the large number of potential phosphorylation sites, the mechanism of inhibition has been difficult to determine. One serine residue located near the phosphotyrosine-binding (PTB) domain in IRS-1 (Ser(307) in rat IRS-1 or Ser(312) in human IRS-1) is phosphorylated via several mechanisms, including insulin-stimulated kinases or stress-activated kinases like JNK1. During a yeast tri-hybrid assay, phosphorylation of Ser(307) by JNK1 disrupted the interaction between the catalytic domain of the insulin receptor and the PTB domain of IRS-1. In 32D myeloid progenitor cells, phosphorylation of Ser(307) inhibited insulin stimulation of the phosphatidylinositol 3-kinase and MAPK cascades. These results suggest that inhibition of PTB domain function in IRS-1 by phosphorylation of Ser(307) (Ser(312) in human IRS-1) might be a general mechanism to regulate insulin signaling.  相似文献   

8.
Insulin resistance contributes importantly to the pathophysiology of type 2 diabetes mellitus. One mechanism mediating insulin resistance may involve the phosphorylation of serine residues in insulin receptor substrate-1 (IRS-1), leading to impairment in the ability of IRS-1 to activate downstream phosphatidylinositol 3-kinase-dependent pathways. Insulin-resistant states and serine phosphorylation of IRS-1 are associated with the activation of the inhibitor kappaB kinase (IKK) complex. However, the precise molecular mechanisms by which IKK may contribute to the development of insulin resistance are not well understood. In this study, using phosphospecific antibodies against rat IRS-1 phosphorylated at Ser(307) (equivalent to Ser(312) in human IRS-1), we observed serine phosphorylation of IRS-1 in response to TNF-alpha or calyculin A treatment that paralleled surrogate markers for IKK activation. The phosphorylation of human IRS-1 at Ser(312) in response to tumor necrosis factor-alpha was significantly reduced in cells pretreated with the IKK inhibitor 15 deoxy-prostaglandin J(2) as well as in cells derived from IKK knock-out mice. We observed interactions between endogenous IRS-1 and IKK in intact cells using a co-immunoprecipitation approach. Moreover, this interaction between IRS-1 and IKK in the basal state was reduced upon IKK activation and increased serine phosphorylation of IRS-1. Data from in vitro kinase assays using recombinant IRS-1 as a substrate were consistent with the ability of IRS-1 to function as a direct substrate for IKK with multiple serine phosphorylation sites in addition to Ser(312). Taken together, our data suggest that IRS-1 is a novel direct substrate for IKK and that phosphorylation of IRS-1 at Ser(312) (and other sites) by IKK may contribute to the insulin resistance mediated by activation of inflammatory pathways.  相似文献   

9.
Tumor necrosis factor-alpha (TNF-alpha) signaling through the IkappaB kinase (IKK) complex attenuates insulin action via the phosphorylation of insulin receptor substrate 1 (IRS-1) at Ser307. However, the precise molecular mechanism by which the IKK complex phosphorylates IRS-1 is unknown. In this study, we report nuclear factor kappaB essential modulator (NEMO)/IKK-gamma subunit accumulation in membrane ruffles followed by an interaction with IRS-1. This intracellular trafficking of NEMO requires insulin, an intact actin cytoskeletal network, and the motor protein Myo1c. Increased Myo1c expression enhanced the NEMO-IRS-1 interaction, which is essential for TNF-alpha- induced phosphorylation of Ser307-IRS-1. In contrast, dominant inhibitory Myo1c cargo domain expression diminished this interaction and inhibited IRS-1 phosphorylation. NEMO expression also enhanced TNF-alpha-induced Ser307-IRS-1 phosphorylation and inhibited glucose uptake. In contrast, a deletion mutant of NEMO lacking the IKK-beta-binding domain or silencing NEMO blocked the TNF-alpha signal. Thus, motor protein Myo1c and its receptor protein NEMO act cooperatively to form the IKK-IRS-1 complex and function in TNF-alpha-induced insulin resistance.  相似文献   

10.
Angiotensin II (ANG II) has been implicated in the pathogenesis of diabetic micro- and macrovascular disease. In vascular smooth muscle cells (VSMCs), ANG II phosphorylates and degrades insulin receptor substrate-1 (IRS-1). While the pathway responsible for IRS-1 degradation in this system is unknown, c-Jun NH(2)-terminal kinase (JNK) has been linked with serine phosphorylation of IRS-1 and insulin resistance. We investigated the role of JNK in ANG II-induced IRS-1 phosphorylation, degradation, Akt activation, glucose uptake, and hypertrophic signaling, focusing on three IRS-1 phosphorylation sites: Ser302, Ser307, and Ser632. Maximal IRS-1 phosphorylation on Ser632 occurred at 5 min, on Ser307 at 30 min, and on Ser302 at 60 min. The JNK inhibitor SP600125 reduced ANG II-induced IRS-1 Ser307 phosphorylation (by 80%), IRS-1 Ser302 phosphorylation (by 70%), and IRS-1 Ser632 phosphorylation (by 50%). However, JNK inhibition had no effect on ANG II-mediated IRS-1 degradation, nor did it reverse the ANG II-induced decrease in Akt phosphorylation or glucose uptake. Transfection of VSMCs with mutants S307A, S302A, or S632A of IRS-1 did not block ANG II-mediated IRS-1 degradation. In contrast, JNK inhibition attenuated insulin-induced upregulation of collagen and smooth muscle α-actin in ANG II-pretreated cells. We conclude that phosphorylation of Ser307, Ser302, and Ser632 of IRS-1 is not involved in ANG II-mediated IRS-1 degradation, and that JNK alone does not mediate ANG II-stimulated IRS-1 degradation, but rather is responsible for the hypertrophic effects of insulin on smooth muscle.  相似文献   

11.
The function of insulin receptor substrate-1 (IRS-1), a key molecule of insulin signaling, is modulated by phosphorylation at multiple serine/threonine residues. Phorbol ester stimulation of cells induces phosphorylation of two inhibitory serine residues in IRS-1, i.e. Ser-307 and Ser-318, suggesting that both sites may be targets of protein kinase C (PKC) isoforms. However, in an in vitro system using a broad spectrum of PKC isoforms (alpha, beta1, beta2, delta, epsilon, eta, mu), we detected only Ser-318, but not Ser-307 phosphorylation, suggesting that phorbol ester-induced phosphorylation of this site in intact cells requires additional signaling elements and serine kinases that link PKC activation to Ser-307 phosphorylation. As we have observed recently that the tyrosine phosphatase Shp2, a negative regulator of insulin signaling, is a substrate of PKC, we studied the role of Shp2 in this context. We found that phorbol ester-induced Ser-307 phosphorylation is reduced markedly in Shp2-deficient mouse embryonic fibroblasts (Shp2-/-) whereas Ser-318 phosphorylation is unaltered. The Ser-307 phosphorylation was rescued by transfection of mouse embryonic fibroblasts with wild-type Shp2 or with a phosphatase-inactive Shp2 mutant, respectively. In this cell model, tumor necrosis factor-alpha-induced Ser-307 phosphorylation as well depended on the presence of Shp2. Furthermore, Shp2-dependent phorbol ester effects on Ser-307 were blocked by wortmannin, rapamycin, and the c-Jun NH2-terminal kinase (JNK) inhibitor SP600125. This suggests an involvement of the phosphatidylinositol 3-kinase/mammalian target of rapamycin cascade and of JNK in this signaling pathway resulting in IRS-1 Ser-307 phosphorylation. Because the activation of these kinases does not depend on Shp2, it is concluded that the function of Shp2 is to direct these activated kinases to IRS-1.  相似文献   

12.
Increased serine/threonine phosphorylation of insulin receptor substrate-1 (IRS-1) is associated with cellular insulin resistance. We have recently identified serine 318 (Ser318) as a novel protein kinase C-zeta (PKC-zeta)-dependent phosphorylation site within IRS-1. As other kinases may phosphorylate at this serine residue as well, we aimed to identify such kinases in the present study. In C2C12 myotubes, exposure to insulin or phorbol ester markedly increased Ser318 phosphorylation. In contrast, high glucose, tumor necrosis factor-alpha, and free fatty acids did not provoke Ser318 phosphorylation. JNK and the PI 3-kinase/mTOR pathway were found to be implicated in insulin-induced Ser318 phosphorylation, but not in TPA-stimulated phosphorylation that was, at least partly, mediated by classical or novel PKC. In conclusion, with JNK and the PI 3-kinase/mTOR pathway as mediators of insulin-induced Ser318 phosphorylation, we have identified kinases that have previously been reported to play key roles in phosphorylation of other serine residues in IRS-1.  相似文献   

13.
S6K1 (p70S6K) is a serine kinase downstream from Akt in the insulin signaling pathway that is involved in negative feedback regulation of insulin action. S6K1 is also activated by TNF-alpha, a pro-inflammatory cytokine. However, its role remains to be characterized. In the current study, we elucidated a mechanism for S6K1 to mediate TNF-alpha-induced insulin resistance in adipocytes and hepatocytes. S6K1 was phosphorylated at Thr-389 in response to TNF-alpha. This led to phosphorylation of IRS-1 by S6K1 at multiple serine residues including Ser-270, Ser-307, Ser-636, and Ser-1101 in human IRS-1 (Ser-265, Ser-302, Ser-632, and Ser-1097, in rodent IRS-1). Direct phosphorylation of these sites by S6K1 was observed in an in vitro kinase assay using purified IRS-1 and S6K1. Phosphorylation of all these serines was increased in the adipose tissue of obese mice. RNAi knockdown demonstrated an important role for S6K1 in mediating TNF-alpha-induced IRS-1 inhibition that led to impaired insulin-stimulated glucose uptake in adipocytes. A point mutant of IRS-1 (S270A) impaired association of IRS-1 with S6K1 resulting in diminished phosphorylation of IRS-1 at three other S6K1 phosphorylation sites (Ser-307, Ser-636, and Ser-1101). Expression of a dominant negative S6K1 mutant prevented TNF-induced Ser-270 phosphorylation and IRS-1 protein degradation. Moreover, in IKK2 (but not IKK1)-null cells, TNF-alpha treatment did not result in Thr-389 phosphorylation of S6K1. We present a new mechanism for TNF-alpha to induce insulin resistance that involves activation of S6K by an IKK2-dependent pathway. S6K directly phosphorylates IRS-1 on multiple serine residues to inhibit insulin signaling.  相似文献   

14.
In 3T3-L1 adipocytes, insulin or anisomycin stimulated phosphorylation of IRS-1 at Ser(307) and Ser(636/639), both of which were partially reduced by the mTOR inhibitor, rapamycin, or the JNK inhibitor, SP600125, and were further inhibited by a combination of them. Interestingly, anisomycin-induced p70(S6K) phosphorylation was reduced by SP600125, while insulin-induced p70(S6K) phosphorylation was not. Furthermore, unlike insulin, anisomycin failed to elicit translocation or degradation of IRS-1. These results indicate that mTOR and JNK play roles in phosphorylating IRS-1 serine residues, and that insulin and anisomycin are different in terms of the relationship of activation between mTOR and JNK, and the effects on IRS-1 localization and stability.  相似文献   

15.
In the present study, we examined the effects of free fatty acids (FFAs) on insulin sensitivity and signaling cascades in the C2C12 skeletal muscle cell culture system. Our data clearly manifested that the inhibitory effects of PKC on insulin signaling may at least in part be explained by the serine/threonine phosphorylation of IRS-1. Both oleate and palmitate treatment were able to increase the Serine307 phosphorylation of IRS-1. IRS-1 Serine307 phosphorylation is inducible which causes the inhibition of IRS-1 tyrosine phosphorylation by either IκB-kinase (IKK) or c-jun N-terminal kinase (JNK) as seen in our proteomic kinases screen. Furthermore, our proteomic data have also manifested that the two FFAs activate the IKKα/β, the stress kinases S6 kinase p70 (p70SK), stress-activated protein kinase (SAPK), JNK, as well as p38 MAP kinase (p38MAPK). On the other hand, the antioxidant, Taurine at 10 mM concentrations was capable of reversing the oleate-induced insulin resistance in myocytes as manifested from the glucose uptake data. Our current data point out the importance of FFA-induced insulin resistance via multiple signaling mechanisms.  相似文献   

16.
The Insulin Receptor Substrate (IRS) proteins are key players in insulin signal transduction and are the best studied targets of the insulin receptor. Ser/Thr phosphorylation of IRS proteins negatively modulates insulin signaling; therefore, the identification of IRS kinases and their target Ser phosphorylation sites is of physiological importance. Here we show that in Fao rat hepatoma cells, the IkappaB kinase beta (IKKbeta) is an IRS-1 kinase activated by selected inducers of insulin resistance, including sphingomyelinase, ceramide, and free fatty acids. Moreover, IKKbeta shares a repertoire of seven potential target sites on IRS-1 with protein kinase C zeta (PKCzeta), an IRS-1 kinase activated both by insulin and by inducers of insulin resistance. We further show that mutation of these seven sites (Ser-265, Ser-302, Ser-325, Ser-336, Ser-358, Ser-407, and Ser-408) confers protection from the action of IKKbeta and PKCzeta when they are overexpressed in Fao cells or primary hepatocytes. This enables the mutated IRS proteins to better propagate insulin signaling. These findings suggest that insulin-stimulated IRS kinases such as PKCzeta overlap with IRS kinases triggered by inducers of insulin resistance, such as IKKbeta, to phosphorylate IRS-1 on common Ser sites.  相似文献   

17.
Proinflammatory cytokines are recently reported to inhibit insulin signaling causing insulin resistance. IL-1alpha is also one of the proinflammatory cytokines; however, it has not been clarified whether IL-1alpha may also cause insulin resistance. Here, we investigated the effects of IL-1alpha treatment on insulin signaling in 3T3-L1 adipocytes. IL-1alpha treatment up to 4 h did not alter insulin-stimulated insulin receptor tyrosine phosphorylation, whereas tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and the association with phosphatidylinositol 3-kinase were partially inhibited with the maximal inhibition in around 15 min. IRS-1 was transiently phosphorylated on some serine residues around 15 min after IL-1alpha stimulation, when several serine kinases, IkappaB kinase, c-Jun-N-terminal kinase, ERK, and p70S6K were activated. Chemical inhibitors for these kinases inhibited IL-1alpha-induced serine phosphorylation of IRS-1. Tyrosine phosphorylation of IRS-1 was recovered only by the IKK inhibitor or JNK inhibitor, suggesting specific involvement of these two kinases. Insulin-stimulated Akt phosphorylation and 2-deoxyglucose uptake were not inhibited only by IL-1alpha. Interestingly, Akt phosphorylation was synergistically inhibited by IL-1alpha in the presence of IL-6. Taken together, short-term IL-1alpha treatment transiently causes insulin resistance at IRS-1 level with its serine phosphorylation. IL-1alpha may suppress insulin signaling downstream of IRS-1 in the presence of other cytokines, such as IL-6.  相似文献   

18.
Insulin signaling can be negatively regulated by phosphorylation of serine 307 of the insulin receptor substrate (IRS)-1. Rapamycin, an inhibitor of the kinase mTOR, can prevent serine 307 phosphorylation and the development of insulin resistance. We further investigated the role of mTOR in regulating serine 307 phosphorylation, demonstrating that serine 307 phosphorylation in response to insulin, anisomycin, or tumor necrosis factor was quantitatively and temporally associated with activation of mTOR and could be inhibited by rapamycin. Amino acid stimulation activated mTOR and resulted in IRS-1 serine 307 phosphorylation without activating PKB or JNK. Okadaic acid, an inhibitor of the phosphatase PP2A, activated mTOR and stimulated the phosphorylation of serine 307 in a rapamycin-sensitive manner, indicating serine 307 phosphorylation requires mTOR activity but not PP2A, suggesting that mTOR itself may be responsible for phosphorylating serine 307. Finally, we demonstrated that serine 307 phosphorylated IRS-1 is detected primarily in the cytosolic fraction.  相似文献   

19.
Whole body insulin resistance has been demonstrated in septic patients and in infected animals. In this study, we demonstrate that sepsis induces insulin resistance and that pretreatment with aspirin inhibits sepsis-induced insulin resistance. Sepsis was observed to lead to serine phosphorylation of IRS-1, a phenomenon which was reversed by aspirin in muscle and WAT, in parallel with a reduction in JNK activity. In addition, our data show an impairment of insulin activation of IR and IRS-1 tyrosine phosphorylation in septic rats and, consistent with the reduction of IRS-1 serine phosphorylation observed in septic animals pretreated with aspirin, there was an increase in IRS-1 protein levels and tyrosine phosphorylation in muscle and WAT. Overall, these results provide important new insights into the mechanism of sepsis-induced insulin resistance.  相似文献   

20.
Hyperglycemia and insulin resistance induced by acute injuries or critical illness are associated with increased mortality and morbidity, as well as later development of type 2 diabetes. The molecular mechanisms underlying the acute onset of insulin resistance following critical illness remain poorly understood. In the present studies, the roles of serine kinases, inhibitory κB kinase (IKK) and c-Jun NH(2)-terminal kinase (JNK), in the acute development of hepatic insulin resistance were investigated. In our animal model of critical illness diabetes, activation of hepatic IKK and JNK was observed as early as 15 min, concomitant with the rapid impairment of hepatic insulin signaling and increased serine phosphorylation of insulin receptor substrate 1. Inhibition of IKKα or IKKβ, or both, by adenovirus vector-mediated expression of dominant-negative IKKα or IKKβ in liver partially restored insulin signaling. Similarly, inhibition of JNK1 kinase by expression of dominant-negative JNK1 also resulted in improved hepatic insulin signaling, indicating that IKK and JNK1 kinases contribute to critical illness-induced insulin resistance in liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号