首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Summary Strains of Escherichia coli K-12 possessing only one of the three genes coding for acetolactate synthetase activity present either in the wild type or in its ilv0603 derivative were prepared and analyzed. Extracts prepared from these strains show different values of acetolactate synthase specific activity and different sensitivity to valine inhibition. These strains show a unique pattern of growth inhibition by different substances.Temperature sensitive (ts) mutations in the ilvB and ilvG genes, have been isolated and characterized. Extracts of these strains were found to have an acetolactate synthase activity more heat labile than that of a strain containing the corresponding wild type allele. We conclude that ilvB and ilvG are the structural genes for two different forms of acetolactate synthase activity, most likely two isoenzymes. Moreover, since the strains containing a ts mutation show a temperature sensitive auxotrophy for isoleucine and valine, these two acetolactate synthases participate in isoleucine and valine biosynthesis. Similar evidence for a third acetolactate synthase, the product of the ilvHI genes, has been reported previously.We propose the following names for the acetolactate synthase isoenzymes: acetolactate synthase I (AHAS I), the product of the ilvB gene; acetolactate synthase II (AHAS II), the product of ilvG gene; and acetolactate synthase III (AHAS III), the product of the ilvHI genes.  相似文献   

2.
The ability of a wide range of bacteriophage-resistant mutants to act as recipients in conjugation with F'lac pro and R100-1 donors has been studied. A number of mutant types defective in recipient ability with F'lac pro, as well as mutants which were hyperrecptive with R100-1, have been detected.  相似文献   

3.
Previous reports have demonstrated the incorporation of glucose from ADP-glucose into methanol-insoluble and TCA-insoluble fractions in cell extracts of Escherichia coli in the absence of added primer α-glucan. This activity is reduced 6- to 76-fold in cell extracts of three independently isolated glycogen synthase-deficient mutants of E. coli B. Homogeneous preparations of E. coli B glycogen synthase catalyze incorporation of glucose into both methanol- and TCA-insoluble fractions in the absence of added primer. Since glycogen synthase catalyzes these reactions, it is not necessary to propose a protein acceptor glucose or a unique ADP-glucose-glycosyl transferase to catalyze formation of the glucoprotein in E. coli cell extracts to explain glucose incorporation into TCA-insoluble material (R. Barengo et al. (1975) FEBS Lett.53, 274–278). The incorporation of glucose into methanol-and TCA-insoluble fractions is stimulated by 0.25 m citrate and by branching enzyme. Citrate reduces the Km for the primer, glycogen, about 11- to 15-fold. Branching enzyme can also reduce the concentration of primer required for incorporation of glucose into methanol-insoluble material. The simultaneous presence of both 0.25 m citrate and branching enzyme enables the glycogen synthase reaction rate to proceed at 30% the maximal velocity at a primer concentration of 1 μg/ml. Incorporation of glucose into methanol- or TCA-insoluble material in the absence of primer is completely inhibited by adding α-amylase. Furthermore, incorporation into methanol- or TCA-insoluble material is reduced 13- to 16-fold relative to the reaction occurring in the presence of primer when glycogen synthase is pretreated with glucoamylase and α-amylase. Previous results show that homogeneous preparations of glycogen synthase contain glucan. Heat-denatured glucogen synthase can act as a primer for the glycogen phosphorylase and glycogen synthase reactions. Both the TCA- and methanol-insoluble products form I2-glucan complexes with wavelength maxima of about 580–590 nm and 610–615 nm, respectively, suggesting that they are mainly linear chain glucans. The products are completely solubilized with α-amylase. The TCA-insoluble product is not solubilized by pronase treatment. The above results strongly suggest that previous reports on formation of glucoprotein primer for glycogen synthesis or on de novo glycogen synthesis in various similar systems is due to endogenous glucan associated with glycogen synthase rather than formation of glucoprotein which then acts as primer for glycogen synthesis.  相似文献   

4.
A systematic and comprehensive gene-disrupted mutant collection of E. coli K-12 was used to identify genes whose deletions affect glycogen accumulation. Of the 3985 non-essential gene mutants of the collection, 35 displayed a glycogen-excess phenotype, whereas 30 displayed either glycogen-less or glycogen-deficient phenotypes. The genes whose deletions affect glycogen accumulation were classified into various functional categories, including energy production, envelope composition and integrity, protein translation and stability, transport of inorganic ions and nucleotides, and metabolism of carbohydrates and amino acids. The overall data indicate that glycogen metabolism is highly interconnected with a wide variety of cellular processes in E. coli.  相似文献   

5.
6.
Two valine-sensitive acetohydroxy acid synthase activities were separable from Escherichiacoli K-12 cells by virtue of their different affinities for DEAE-cellulose eluted with a KC1 gradient. These activities appeared to be independent from a valine-resistant cryptic component expressed only in ilvO regulatory mutants. The properties of the first and second activity were coincident to those of extracts of ilvB and ilvHI mutants, respectively. These data prove that the ilvB and ilvHI gene products exist in the cell as physically distinct acetohydroxy acid synthase isoenzymes.  相似文献   

7.
We extended the study of Escherichia coli mutants defective in conjugation and showed that the mutants with altered lipopolysaccharide, which are defective as recipients with F-like donors, are also defective with the I-like plasmid R64-11. However, the extent of reduction in recipient ability for I-like donors does not correlate either with the effect on recipient ability for F-like donors or with the degree of alteration to the lipopolysaccharide.  相似文献   

8.
Summary Genetic mapping experiments have established that two recently isolated valine-resistant mutants of the K-12 strain of Escherichia coli have lesions lying between ilvE and rbs. These lesions allowed expression of the ilvG gene, specifying the valine-insensitive acetohydroxy acid synthase (synthase II) and an increased expression of the ilvEDA operon. In this respect, they resembled an earlier described ilvO lesion that was reported to lie between ilvA and ilvC. All three lesions were cis-dominant in cis-trans tests. Reexamination of the earlier studied ilvO lesion revealed that it, too, lies between ilvE and rbs. Valine-sensitive derivatives with lesions presumed to be in ilvG were selected from each of the valine-resistant strains. In two of the valine-resistant strains, the ilvG mutations were on the rbs side of ilvO, indicating a gene order rbs-ilvG-ilvO-ilvE-ilvD-ilvA-ilvC. In one of the recently isolated valine-resistant stocks, however, the apparent ilvG mutation was found to be between ilvE and the aline resistance marker. This finding suggests that either ilvO and ilvG mutations are interspersed or there is another locus, ilvR, that behaves phenotypically like ilvO and which lies between ilvG and rbs.  相似文献   

9.
Glucose administered either intravenously or orally causes liver glycogen synthase activation independent of a rise in circulating insulin. In vitro, physiological concentrations of glucose stimulate synthase phosphatase activity but only in the presence of a second effector which reduced the A0.5 for glucose. Caffeine and certain methylxanthines have been in vitro models for a putative natural effector. The present study demonstrates that, in vitro, ADP also reduced the A0.5 for glucose comparable to the effect of caffeine. The maximum stimulation by glucose in the presence of caffeine or ADP was comparable. The effect of ADP was specific among the major nucleoside diphosphates. However, the A0.5 for ADP was greater than the normal liver concentration which does not change in response to either glucose or insulin administration. The effect of ADP appeared distinct from that of the methylxanthines since it was observed that at near saturating concentrations of ADP and of glucose, stimulation was increased by addition of theophylline. Similarly, addition of adenosine, a natural cell constituent, caused increased stimulation. Subsequently, it was shown that adenosine reduced the A0.5 for ADP to a nearly physiological concentration. Thus, while ADP is not the inducible putative effector which has been predicted it may be part of an intracellular amplification system for glycogen synthase activation which increases the sensitivity to an induced effector. The present work suggests that the effective concentration of the natural ligand may be less than originally anticipated. This work also suggests that the putative effector could be structurally related to adenosine. Phosphorylase phosphatase activity known to be stimulated by ADP and glucose is further stimulated by the combination which may be acting in synergy.  相似文献   

10.
Acetohydroxyacid synthase I from Escherichia coli K-12 has been purified to near homogeneity. Analysis of the purified enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the presence of two polypeptides, one with a molecular weight of 60,000 and one with a molecular weight of 9,500. These two polypeptides were present in constant proportion to each other and to enzyme activity. The molar ratio of the two polypeptides (Mr 9,500:60,000), estimated from stained polyacrylamide gels, was 1. Antisera raised against the 60,000 Mr polypeptide precipitated both the 60,000 and the 9,500 Mr polypeptides from extracts of cells labeled with [35S]methionine. The addition of sodium dodecyl sulfate before immunoprecipitation eliminated the smaller polypeptide, and only the larger one was recovered. The hydrodynamic properties of the native enzyme confirmed a previous report that the largest enzymatically active species has a molecular weight of about 200,000; this species contains both the 60,000- and 9,500-molecular-weight polypeptides.  相似文献   

11.
Thiolactomycin [(4S)(2E,5E)-2,4,6-trimethyl-3-hydroxy-2,5,7-octatriene- 4-thiolide] (TLM) is a unique antibiotic structure that inhibits dissociated type II fatty acid synthase systems but not the multifunctional type I fatty acid synthases found in mammals. We screened an Escherichia coli genomic library for recombinant plasmids that impart TLM resistance to a TLM-sensitive strain of E. coli K-12. Nine independent plasmids were isolated, and all possessed a functional beta-ketoacyl-acyl carrier protein synthase I gene (fabB) based on their restriction enzyme maps and complementation of the temperature-sensitive growth of a fabB15(Ts) mutant. A plasmid (pJTB3) was constructed that contained only the fabB open reading frame. This plasmid conferred TLM resistance, complemented the fabB(Ts) mutation, and directed the overproduction of synthase I activity. TLM selectively inhibited unsaturated fatty acid synthesis in vivo; however, synthase I was not the only TLM target, since supplementation with oleate to circumvent the cellular requirement for an active synthase I did not confer TLM resistance. Overproduction of the FabB protein resulted in TLM-resistant fatty acid biosynthesis in vivo and in vitro. These data show that beta-ketoacyl-acyl carrier protein synthase I is a major target for TLM and that increased expression of this condensing enzyme is one mechanism for acquiring TLM resistance. However, extracts from a TLM-resistant mutant (strain CDM5) contained normal levels of TLM-sensitive synthase I activity, illustrating that there are other mechanisms of TLM resistance.  相似文献   

12.
The folded chromosome or nucleoid of Escherichia coli was analyzed by low-speed sedimentation in neutral sucrose gradients after in vivo heat treatment. Heat treatment of cultures at 50 degree C for 15, 30, and 60 min resulted in in vivo association of the nucleoids with cellular protein. Structural changes, determined by the increase in speed dependence of the nucleoids from heated cells, also occurred. These changes were most likely due to the unfolding of the typical compact nucleoid structure. The nucleoids from heated cells also had notably higher sedimentation coefficients (3,000 to 4,500S) than nucleoids from control cells (1,800S). These nucleoids did not contain greater than normal amounts of membrane phospholipids or ribonucleic acid. We propose that the protein associated with the nucleoids from heated cells causes the observed sedimentation coefficient increases.  相似文献   

13.
Effects of increased biosynthesis of the membrane-bound ATP synthase of Escherichia coli K-12 were analysed at the physiological and morphological level. Overproduction of the enzyme complex was achieved by molecular cloning of the structural genes into plasmid pBR322. A series of plasmids resulting in 2-fold, 4- to 5-fold and 10- to 12-fold overproduction, respectively, was constructed. The ATP synthase was calculated to represent 3%, 6-7% and 18-23%, respectively, of total protein in cells with these plasmids. In wild-type cells ATP synthase represents 1.5-2% of total protein equivalent to approximately 3000 enzyme complexes per average cell. While 2- or 4- to 5-fold wild-type levels of the ATP synthase had only minor effects it was found that 10- to 12-fold overproduction resulted in pronounced inhibition of cell division and growth and in formation of membrane cisterns and vesicles within the cells. Inclusion bodies, probably representing deposits of excess ATP synthase, were also observed in these cells.  相似文献   

14.
Kinetics of methylation in Escherichia coli K-12.   总被引:15,自引:5,他引:10       下载免费PDF全文
Newly synthesized DNA is undermethylated in E. coli K-12. The amount of N6-methyl deoxyadenylic acid in labeled DNA varied from 0.3 mol% of total adenine for a 2-min pulse to 1.7 mol% for DNA that was labeled for more than two generations.  相似文献   

15.
Examination of the ilvF locus at 54 min on the Escherichia coli K-12 chromosome revealed that it is a cryptic gene for expression of a valine-resistant acetohydroxy acid synthase (acetolactate synthase; EC 4.1.3.18) distinct from previously reported isozymes. A spontaneous mutation, ilvF663, yielded IlvF+ enzyme activity that was multivalently repressed by all three branched-chain amino acids, was completely insensitive to feedback inhibition, was highly stable at elevated temperatures, and expressed optimal activity at 50 degrees C. The IlvF+ enzyme activity was expressed in strains in which isozyme II was inactive because of the ilvG frameshift in the wild-type strain K-12 and isozymes I and III were inactivated by point mutations or deletions. Tn5 insertional mutagenesis yielded two IlvF- mutants, with the insertion in ilvF663 in each case. These observations suggest that the ilvF663 locus may be a coding region for a unique acetohydroxy acid synthase activity.  相似文献   

16.
17.
Exponentially growing derivatives of Escherichia coli K-12 were immobilized onto the surfaces of nitrocellulose membrane filters which had been coated with poly-D-lysine. The cells attached firmly to the surfaces, and when flushed with culture medium, the immobilized cells continued to divide and newborn cells were released into the effluent. Cell cycle parameters were examined with the technique, and it was found that K-12 derivatives possessed differing values for interdivision times, C, D, and average cell sizes when grown in the same culture media. It was also found that the cells released from immobilized populations of one culture consisted of two predominant size classes: newborn cells of unit size with single nucleoids and newborn cells of double this unit size. The results demonstrated that K-12 derivatives can be used in the baby machine culture technique to examine all aspects of the cell cycle of this organism. Furthermore, the yield of newborn cells was about fivefold greater than that obtained previously with cultures of strain B/r immobilized onto uncoated membranes.  相似文献   

18.
19.
The purification and kinetic characteristics of two phosphofructokinases are described. Aerobic cultures of Escherichia coli exhibit two types of phosphofructokinase. Both types are dimers of mol. wt 150,000 (subunit mol. wt 73,000), whereas the anaerobic culture of E. coli revealed only one type, which is a tetramer of mol. wt 350,000 (subunit mol. wt 90,000). Type 1 of the aerobic enzyme, representing approximately 70% of the total enzyme activity, is ATP-insensitive, whereas type II and the anaerobic enzyme are ATP-sensitive. The addition of AMP stimulates the tetramer, relieving ATP inhibition, and also the type II dimer, which is, however, inhibited at concentrations higher than 0.5 mM AMP. No effect was observed on the type I dimer of the aerobic preparation. ADP stimulates the tetramer and inhibits type I more strongly than type II of the aerobic dimer. The kinetic characteristics together with the effect of metabolites on these phosphofructokinase types are described and discussed in the light of their importance for the regulatory mechanism of the Pasteur effect.  相似文献   

20.
Escherichia coli cells showed maximum activity of gamma-glutamyltranspeptidase (EC 2.3.2.2) when they were grown at 20 degrees C, 14% of maximum activity at 37 degrees C, and none at 43 degrees C. The enzyme activity of intact cells grown at 20 degrees C was stably maintained after the temperature was changed to 45 degrees C. The activity increased during the exponential phase, and maximum activity was found at stationary phase. Its intracellular localization in the periplasmic space was confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号