首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The chromosomal ntrPR operon of Sinorhizobium meliloti encodes a protein pair that forms a toxin-antitoxin (TA) module, the first characterized functional TA system in Rhizobiaceae. Similarly to other bacterial TA systems, the toxin gene ntrR is preceded by and partially overlaps with the antitoxin gene ntrP. Based on protein homologies, the ntrPR operon belongs to the vapBC family of TA systems. The operon is negatively autoregulated by the NtrPNtrR complex. Promoter binding by NtrP is weak; stable complex formation also requires the presence of NtrR. The N-terminal part of NtrP is responsible for the interaction with promoter DNA, whereas the C-terminal part is required for protein-protein interactions. In the promoter region, a direct repeat sequence was identified as the binding site of the NtrPNtrR complex. NtrR expression resulted in the inhibition of cell growth and colony formation; this effect was counteracted by the presence of the antitoxin NtrP. These results and our earlier observations demonstrating a less effective downregulation of a wide range of symbiotic and metabolic functions in the ntrR mutant under microoxic conditions and an increased symbiotic efficiency with the host plant alfalfa suggest that the ntrPR module contributes to adjusting metabolic levels under symbiosis and other stressful conditions.  相似文献   

3.
4.
5.
6.
Extremophiles - Toxin–antitoxin (TA) system is bacterial or archaeal genetic module consisting of toxin and antitoxin gene that be organized as a bicistronic operon. TA system could elicit...  相似文献   

7.
8.
9.
VapC-1 of nontypeable Haemophilus influenzae is a ribonuclease   总被引:1,自引:0,他引:1       下载免费PDF全文
Nontypeable Haemophilus influenzae (NTHi) organisms are obligate parasites of the human upper respiratory tract that can exist as commensals or pathogens. Toxin-antitoxin (TA) loci are highly conserved gene pairs that encode both a toxin and antitoxin moiety. Seven TA gene families have been identified to date, and NTHi carries two alleles of the vapBC family. Here, we have characterized the function of one of the NTHi alleles, vapBC-1. The gene pair is transcribed as an operon in two NTHi clinical isolates, and promoter fusions display an inverse relationship to culture density. The antitoxin VapB-1 forms homomultimers both in vitro and in vivo. The expression of the toxin VapC-1 conferred growth inhibition to an Escherichia coli expression strain and was successfully purified only when cloned in tandem with its cognate antitoxin. Using total RNA isolated from both E. coli and NTHi, we show for the first time that VapC-1 is an RNase that is active on free RNA but does not degrade DNA in vitro. Preincubation of the purified toxin and antitoxin together results in the formation of a protein complex that abrogates the activity of the toxin. We conclude that the NTHi vapBC-1 gene pair functions as a classical TA locus and that the induction of VapC-1 RNase activity leads to growth inhibition via the mechanism of mRNA cleavage.  相似文献   

10.
Bacterial toxin-antitoxin (TA) systems are operons that code for a stable toxic protein and a labile antitoxin. TA modules are widespread on the chromosomes of free-living Bacteria and Archaea, where they presumably act as stress response elements. The chromosome of Escherichia coli K-12 encodes four known TA pairs, as well as the dinJ-yafQ operon, which is hypothesized to be a TA module based on operon organization similar to known TA genes. Induction of YafQ inhibited cell growth, but its toxicity was counteracted by coexpression of dinJ cloned on a separate plasmid. YafQ(His)(6) and DinJ proteins coeluted in Ni(2+)-affinity and gel filtration chromatography, implying the formation of a specific and stable YafQ-DinJ protein complex with an estimated molecular mass of c. 37.3 kDa. Induction of YafQ reduced protein synthesis up to 40% as judged by incorporation of [(35)S]-methionine, but did not influence the rates of DNA and RNA synthesis. Structure modelling of E. coli YafQ revealed its structural relationship with bacterial toxins of known structure suggesting that it might act as a sequence-specific mRNA endoribonuclease.  相似文献   

11.
Zhao L  Zhang J 《FEBS letters》2008,582(5):710-714
In the present paper, we report the biochemical characterization of a chromosomal toxin-antitoxin (TA) system in Mycobacterium tuberculosis, consisting of the Rv1991c gene and its upstream open reading frame (ORF) termed Rv1991a. Rv1991c was characterized as a toxin with ribonuclease activity and Rv1991a as the antitoxin against Rv1991c. Rv1991a interacted with Rv1991c to form a complex. A promoter located immediately upstream of Rv1991a was identified. Both Rv1991a and the Rv1991a-Rv1991c complex were able to bind to the promoter region of the Rv1991a-Rv1991c operon, indicating that the expression of the Rv1991a-Rv1991c operon can be autoregulated.  相似文献   

12.
13.
14.
【背景】副溶血弧菌是一种重要的食源性病原菌,给公众健康带来严重危害。毒素-抗毒素系统广泛存在于细菌和古生菌基因组中,具有重要的生物学功能。【目的】在副溶血弧菌中鉴定新的毒素-抗毒素系统,为从毒素-抗毒素系统角度探讨该菌致病性和耐药性的分子机制奠定基础。【方法】通过在线工具预测副溶血弧菌染色体上的假定II型毒素-抗毒素系统;通过生长曲线分析和稀释点板实验检测假定毒素对大肠杆菌的毒性作用及相应抗毒素的抗毒性作用;通过反转录PCR确定毒素和抗毒素基因是否共转录;通过生物信息学分析确定新鉴定毒素-抗毒素系统的同源蛋白;通过LacZ报告实验确定抗毒素及毒素-抗毒素复合物对自身启动子的调控作用。【结果】副溶血弧菌染色体中编码6个假定II型毒素-抗毒素系统;基因vp1820的表达产物(VP1820)对大肠杆菌具有杀菌活性,vp1821的表达产物(VP1821)能中和VP1820的毒性;基因vp1821和vp1820共转录;vp1821-vp1820编码YefM-YoeB毒素-抗毒素系统;抗毒素YefM正调控启动子,YefM-YoeB复合物负调控启动子。【结论】在副溶血弧菌中鉴定了一个新的II型毒素-抗毒素系统,即YefM-YoeB,为进一步研究该系统对副溶血弧菌致病性和耐药性的影响奠定了基础。  相似文献   

15.
16.
Toxin–antitoxin (TA) complexes play an important role in stress responses and programmed cell death in bacteria. The RelB-RelE toxin antitoxin system is well studied in Escherichia coli. In this study, we used combined in silico and in vitro approaches to study a novel Xn-RelT toxin from Xenorhabdus nematophila bearing its own antitoxin Xn-RelAT—a RelB homolog of E. coli. The structure for this toxin–antitoxin pair is yet unknown. We generated homology-based models of X. nematophila RelT toxin and antitoxin. The deduced models were further characterized for protein–nucleic acid, protein–protein interactions and gene ontology. A detrimental effect of recombinant Xn-RelT on host E. coli was determined through endogenous toxicity assay. When expressed from a isopropyl β-d-1-thiogalactopyranoside-regulated LacZ promoter, Xn-RelT toxin showed a toxic effect on E. coli cells. These observations imply that the conditional cooperativity governing the Xn-RelT TA operon in X. nematophila plays an important role in stress management and programmed cell death.  相似文献   

17.
18.
19.
Type II chromosomal toxin-antitoxin (TA) modules consist of a pair of genes that encode two components: a stable toxin and a labile antitoxin interfering with the lethal action of the toxin through protein complex formation. Bioinformatic analysis of Streptococcus mutans UA159 genome identified a pair of linked genes encoding a MazEF-like TA. Our results show that S. mutans mazEF genes form a bicistronic operon that is cotranscribed from a σ70-like promoter. Overproduction of S. mutans MazF toxin had a toxic effect on S. mutans which can be neutralized by coexpression of its cognate antitoxin, S. mutans MazE. Although mazF expression inhibited cell growth, no cell lysis of S. mutans cultures was observed under the conditions tested. The MazEF TA is also functional in E. coli, where S. mutans MazF did not kill the cells but rather caused reversible cell growth arrest. Recombinant S. mutans MazE and MazF proteins were purified and were shown to interact with each other in vivo, confirming the nature of this TA as a type II addiction system. Our data indicate that MazF is a toxic nuclease arresting cell growth through the mechanism of RNA cleavage and that MazE inhibits the RNase activity of MazF by forming a complex. Our results suggest that the MazEF TA module might represent a cell growth modulator facilitating the persistence of S. mutans under the harsh conditions of the oral cavity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号