首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
In MCF-7 breast tumor cells, ionizing radiation promoted autophagy that was cytoprotective; pharmacological or genetic interference with autophagy induced by radiation resulted in growth suppression and/or cell killing (primarily by apoptosis). The hormonally active form of vitamin D, 1,25D 3, also promoted autophagy in irradiated MCF-7 cells, sensitized the cells to radiation and suppressed the proliferative recovery that occurs after radiation alone. 1,25D 3 enhanced radiosensitivity and promoted autophagy in MCF-7 cells that overexpress Her-2/neu as well as in p53 mutant Hs578t breast tumor cells. In contrast, 1,25D 3 failed to alter radiosensitivity or promote autophagy in the BT474 breast tumor cell line with low-level expression of the vitamin D receptor. Enhancement of MCF-7 cell sensitivity to radiation by 1,25D 3 was not attenuated by a genetic block to autophagy due largely to the promotion of apoptosis via the collateral suppression of protective autophagy. However, MCF-7 cells were protected from the combination of 1,25D 3 with radiation using a concentration of chloroquine that produced minimal sensitization to radiation alone. The current studies are consistent with the premise that while autophagy mediates a cytoprotective function in irradiated breast tumor cells, promotion of autophagy can also confer radiosensitivity by vitamin D (1,25D 3). As both cytoprotective and cytotoxic autophagy can apparently be expressed in the same experimental system in response to radiation, this type of model could be utilized to distinguish biochemical, molecular and/or functional differences in these dual functions of autophagy.  相似文献   

3.
We report that transfection of insulin-like growth factor-binding protein-3 (IGFBP-3) cDNA in human breast cancer cell lines expressing either mutant p53 (T47D) or wild-type p53 (MCF-7) induces apoptosis. IGFBP-3 also increases the ratio of pro-apoptotic to anti-apoptotic members of the Bcl-2 family. In MCF-7, an increase in Bad and Bax protein expression and a decrease in Bcl-x(L) protein and Bcl-2 protein and mRNA were observed. In T47D, Bax and Bad proteins were up-regulated; Bcl-2 protein is undetectable in these cells. As T47D expresses mutant p53 protein, these modulations of pro-apoptotic proteins and induction of apoptosis are independent of p53. The effect of IGFBP-3 on the response of T47D to ionizing radiation (IR) was examined. These cells do not G(1) arrest in response to IR and are relatively radioresistant. Transfection of IGFBP-3 increased the radiosensitivity of T47D and increased IR-induced apoptosis but did not effect a rapid G(1) arrest. IR also caused a much greater increase in Bax protein in IGFBP-3 transfectants compared with vector controls. Thus, IGFBP-3 increases the expression of pro-apoptotic proteins and apoptosis both basally and in response to IR, suggesting it may be a p53-independent effector of apoptosis in breast cancer cells via its modulation of the Bax:Bcl-2 protein ratio.  相似文献   

4.
We previously found that there was up-regulation of APMCF1 expression in apoptotic MCF-7 cells. Moreover, bioinformatics analysis has found that APMCF1 molecules had similar size and structure with molecules which belong to small G-protein superfamily. We presume that APMCF1 plays certain biological role in the regulation of cell proliferation and apoptosis. In this study, we first detected the expression pattern of APMCF1 in human hepatocellular carcinoma cell line and find no expression in Human Hepatocellular carcinoma cells (HHCC) and enhanced expression in HepG2 cells. Expression of liposome-mediated ectogenic APMCF1 induced inhibition of HHCC growth and cell cycle, and RNAi inhibited APMCF1 expression and promoted HepG2 cell growth. Results of cell cycle gene chips analysis showed up-regulation of p21 expression and down-regulation of TIMP3 in HHCC cells expressing ectogenic APMCF1, indicating that APMCF1 participates at least partially in cell cycle regulation through regulating genes such as p21 and TIMP3.  相似文献   

5.
The p53 protein has been a subject of intense research interest since its discovery as about 50% of human cancers carry p53 mutations. Mutations in the p53 gene are the most frequent genetic lesions in breast cancers suggesting a critical role of p53 in breast cancer development, growth and chemosensitivity. This report describes the derivation and characterization of MCF-7As53, an isogenic cell line derived from MCF-7 breast carcinoma cells in which p53 was abrogated by antisense p53 cDNA. Similar to MCF-7 and simultaneously selected hygromycin resistant MCF-7H cells, MCF-7As53 cells have consistent basal epithelial phenotype, morphology, and estrogen receptor expression levels at normal growth conditions. Present work documents investigation of molecular variations, growth kinetics, and cell cycle related studies in relation to absence of wild-type p53 protein and its transactivation potential as well. Even though wild-type tumor suppressor p53 is an activator of cell growth arrest and apoptosis-mediator genes such as p21, Bax, and GADD45 in MCF-7As53 cells, no alterations in expression levels of these genes were detected. The doubling time of these cells decreased due to depletion of G0/G1 cell phase because of constitutive activation of Akt and increase in cyclin D1 protein levels. This proliferative property was abrogated by wortmannin, an inhibitor of PI3-K/Akt signaling pathway. Therefore this p53 null cell line indicates that p53 is an indispensable component of cellular signaling system which is regulated by caveolin-1 expression, involving Akt activation and increase in cyclin D1, thereby promoting proliferation of breast cancer cells.  相似文献   

6.
《Autophagy》2013,9(5):739-753
In MCF-7 breast tumor cells, ionizing radiation promoted autophagy that was cytoprotective; pharmacological or genetic interference with autophagy induced by radiation resulted in growth suppression and/or cell killing (primarily by apoptosis). The hormonally active form of vitamin D, 1,25D3, also promoted autophagy in irradiated MCF-7 cells, sensitized the cells to radiation and suppressed the proliferative recovery that occurs after radiation alone. 1,25D3 enhanced radiosensitivity and promoted autophagy in MCF-7 cells that overexpress Her-2/neu as well as in p53 mutant Hs578t breast tumor cells. In contrast, 1,25D3 failed to alter radiosensitivity or promote autophagy in the BT474 breast tumor cell line with low-level expression of the vitamin D receptor. Enhancement of MCF-7 cell sensitivity to radiation by 1,25D3 was not attenuated by a genetic block to autophagy due largely to the promotion of apoptosis via the collateral suppression of protective autophagy. However, MCF-7 cells were protected from the combination of 1,25D3 with radiation using a concentration of chloroquine that produced minimal sensitization to radiation alone. The current studies are consistent with the premise that while autophagy mediates a cytoprotective function in irradiated breast tumor cells, promotion of autophagy can also confer radiosensitivity by vitamin D (1,25D3). As both cytoprotective and cytotoxic autophagy can apparently be expressed in the same experimental system in response to radiation, this type of model could be utilized to distinguish biochemical, molecular and/or functional differences in these dual functions of autophagy.  相似文献   

7.
The association between consumption of genistein-containing soybean products and lower risk of breast cancer suggests a cancer chemopreventive role for genistein. Consistent with this suggestion, exposing cultured human breast cancer cells to genistein inhibits cell proliferation, although this is not completely understood. To better understand how genistein works, the ability of genistein to induce apoptosis was compared in phenotypically dissimilar MCF-7 and MDA-MB-231 human breast cancer cells that express the wild-type and mutant p53 gene, respectively. After 6 days of incubation with 50 microM genistein, MCF-7 but not MDA-MB-231 cells, showed morphological signs of apoptosis. Marginal proteolytic cleavage of poly-(ADP-ribose)-polymerase and significant DNA fragmentation were also detected in MCF-7 cells. In elucidating these findings, it was determined that after 2 days of incubation with genistein, MCF-7 but not MDA-MB-231 cells, had significantly higher levels of p53. Accordingly, the expression of certain proteins modulated by p53 was studied next. Levels of p21 increased in both of the genistein-treated cell lines, suggesting that p21 gene expression was activated but in a p53-independent manner, whereas no significant changes in levels of the pro-apoptotic protein, Bax, were found. In MCF-7 cells, levels of the anti-apoptotic protein, Bcl-2, decreased slightly at 18-24 h but then increased considerably after 48 h. Hence, the Bax:Bcl-2 ratio initially increased but later decreased. These data suggest that at the genistein concentration tested, MCF-7 cells in contrast to MDA-MB-231 cells were sensitive to the induction of apoptosis by genistein, but Bax and Bcl-2 did not play clear roles.  相似文献   

8.
Silibinin is a natural polyphenol with high antioxidant and anticancer properties, which causes cell cycle arrest and apoptosis in most cancer cell types including breast cancer, but the in-line mechanisms, are still unknown. Silibinin significantly downregulated oncomiR miR-21 expression in breast cancer cells. Here the effect of anti-miR-21 on cell viability, apoptotic induction, cell cycle distribution, and the expression levels of downstream targets of miR-21 were investigated in MCF-7 and T47D cells. MiR-21 mimic transfection was also applied in silibinin treated samples to evaluate functional role of miR-21downregulation on silibinin effects. It was found that after anti-miR-21 transfection, no significant changes were detected in cell viability, apoptosis (except early apoptosis), and cell cycle in MCF-7 and T47D cells. Compared to silibinin, miR-21 mimic transfection in combination with silibinin caused a slight modulation in some of the examined silibinin effects including apoptosis, Bcl2 mRNA and PTEN mRNA and protein levels. Silibinin slightly changed luciferase activity from reporters containing the miR-21 recognition elements from PTEN-3′UTR and Bcl2-3′UTR in both cell lines. Together these data demonstrated negligible cancer-progression impact of miR-21 and limited roles of miR-21 downregulation in examined silibinin effects, and strengthened the anti-cancer pathways of silibinin other than miR-21downregulation in MCF-7 and T47D cells.  相似文献   

9.
Herbal plants are enriched with compounds with a wide range of biological activities. Furanodiene is a sesquiterpene isolated from Rhizoma Curcumae. Growing evidence shows furanodiene exhibits diversified activities of hepatoprotection, anti-inflammation, anti-angiogenesis, and anti-tumor. However, its biological activities against breast cancer have not been deeply understood, and its potential as an anti-breast cancer agent combined with tamoxifen (TAM) has not been evaluated so far. This study describes the combined effects of furanodiene and TAM in human breast cancer cells in vitro. The results showed that ERa-negative MDA-MB-231 cells were much more sensitive than ERa-positive MCF-7 cells to the growth inhibition due to furanodiene. Combined administration of furanodiene and TAM led to marked increase in growth inhibition, cell cycle arrest and pro-apoptotic activity in ERa-positive cells compared to individual agent, and enhanced the down-regulation of p-cyclin D1, cyclin D1, CDK2, CDK6, p-Rb, Rb and p-p44, and the up-regulation of p27, Bax and Bad, but did not show increased cytotoxicity in ERa-negative MCF-10A non-tumorigenic breast epithelial cells. Co-incubation induced the typical PARP cleavage or caspase 9 cleavages compared to individual agent. In addition, PPARγ activity inhibition by its antagonist T0070907 did not significantly reverse the enhanced effect of furanodiene and TAM suggesting that anti-cancer properties of combination were PPARγ independent. Our data indicated that furanodiene could enhance the growth inhibitory and pro-apoptotic activity of TAM by inducing cell cycle arrest and cell apoptosis via CDKs-cyclins and mitochondria-caspases-dependent, and PPARγ-independent signaling pathways in breast cancer cells, without contributions to the cytotoxicity of TAM.  相似文献   

10.
曲古抑菌素A (trichostatin A, TSA) 作为组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitor, HDACi),是近年来发现的一类新型抗肿瘤药物,对多种实体瘤及血液系统肿瘤具有显著抗肿瘤作用.体外实验及动物模型显示,TSA对于乳腺癌也有一定杀伤作用.目前认为,TSA可以通过抑制组蛋白去乙酰化作用而影响细胞内基因转录,但其抗肿瘤作用的分子机理尚不清楚.本文通过MTT法检测不同剂量的TSA对乳腺癌细胞生长的影响,发现TSA可以剂量依赖地抑制乳腺癌细胞MCF-7的生长.膜联蛋白(annexin)-Ⅴ/PI双染法和PAPR水解检测证实TSA同时促进MCF-7细胞凋亡.Western 印迹分析表明,在分子水平上,TSA诱导MCF-7细胞中的周期抑制蛋白p21表达,同时使得抗凋亡因子Bcl-2的表达水平降低,表明TSA可能通过调控p21和Bcl-2的表达来实现抑制乳腺癌细胞生长并促使其凋亡,从而发挥抗肿瘤作用.  相似文献   

11.
Previous study has confirmed that hsa_circ_0092276 is highly expressed in doxorubicin (DOX)-resistant breast cancer cells, indicating that hsa_circ_0092276 may be involved in regulating the chemotherapy resistance of breast cancer. Here we attempted to investigate the biological role of hsa_circ_0092276 in breast cancer. We first constructed DOX-resistant breast cancer cells (MCF-7/DOX and MDA-MB-468/DOX). The 50% inhibiting concentration of MCF-7/DOX and MDA-MB-468/DOX cells was significantly higher than that of their parental breast cancer cells, MCF-7 and MDA-MB-46. MCF-7/DOX and MDA-MB-468/DOX cells also exhibited an up-regulation of drug resistance-related protein MDR1. Compared with MCF-7 and MDA-MB-46 cells, hsa_circ_0092276 was highly expressed in MCF-7/DOX and MDA-MB-468/DOX cells. Hsa_circ_0092276 overexpression enhanced proliferation and the expression of LC3-II/LC3-I and Beclin-1, and repressed apoptosis of breast cancer cells. The effect of hsa_circ_0092276 up-regulation on breast cancer cells was abolished by 3-methyladenine (autophagy inhibitor). Hsa_circ_0092276 modulated autophagy-related gene 7 (ATG7) expression via sponging miR-384. Hsa_circ_0092276 up-regulation promoted autophagy and proliferation, and repressed apoptosis of breast cancer cells, which was abolished by miR-384 overexpression or ATG7 knockdown. In addition, LV-circ_0092276 transfected MCF-7 cell transplantation promoted autophagy and tumor growth of breast cancer in mice. In conclusion, our data demonstrate that hsa_circ_0092276 promotes autophagy and DOX resistance in breast cancer by regulating miR-348/ATG7 axis. Thus, this article highlights a novel competing endogenous RNA circuitry involved in DOX resistance in breast cancer.  相似文献   

12.
Selenadiazole derivative is one kind of synthetic organoselenium compounds with potent and broad-spectrum antitumor activity. In this study, we showed that anthrax [1,2-c] [1,2,5] selenadiazolo-6,11-dione (ASDO), an novel selenadiazole derivative, induced time- and dose-dependent apoptotic cell death in MCF-7 human breast carcinoma cells, as indicated by accumulation of sub-G1 cell population, DNA fragmentation, nuclear condensation, caspase activation and PARP cleavage. ASDO-induced apoptosis was significantly inhibited by a general caspase inhibitor z-VAD-fmk, demonstrating the important role of caspases in ASDO-induced apoptotic pathway. Treatment of MCF-7 cells with ASDO resulted in a rapid depletion of mitochondrial membrane potential and release of cytochrome c and Smac/Diablo through up-regulation of Bax, Bad and PUMA expression and down-regulation of Bcl-xl expression. Moreover, ASDO treatment up-regulated the expression levels of total p53 and its target gene p21Waf1. Silencing of p53 activation with RNA interference effectively blocked the ASDO-induced cell PARP cleavage, DNA fragmentation and caspase activation. Furthermore, ASDO-induced apoptosis was interestingly found to be independent of reactive oxygen species production. Taken together, we conclude that ASDO induces MCF-7 cell apoptosis through a p53-dependent and mitochondria-mediated pathway.  相似文献   

13.
Growth of human breast adenocarcinoma MCF-7 cells as a tumor on nude mice is dependent on estrogen. It has been shown that estrogen withdrawal (EW) induces a partial regression of the tumor via an inhibition of cell proliferation and an induction of apoptosis. We investigated in this in vivo model the underlying molecular mechanisms of the hormone-dependent regulation of cell cycle machinery and apoptosis. We found that, 2 days after EW, the tumor protein levels of p21 rose, whereas those of Rb proteins decreased in parallel with the decrease in the proportion of tumor cells in S phase and the increase of the tumor apoptotic index. Between 3 and 7 days after EW, apoptosis was inhibited and tumor proliferation returned to the control value. There was a concomitant decline in p21 and an elevation of Rb tumor protein content. Slight variations of cyclin D protein level were observed in MCF-7 tumors over the time course following EW treatment. Bcl-2 overexpression not only inhibited apoptosis induced by EW but also modulated hormone-dependent cell cycle regulation. First, the analysis of phosphorylation status of Rb protein and the measurement of the proportion of tumor cells in S phase indicated that Bcl-2 overexpression results in a decrease of DNA synthesis induced by estradiol. Furthermore, after EW, Bcl-2-induced inhibition of hormone-dependent apoptosis was associated with an inhibition of Rb protein downregulation, a sustained level of p21 protein, and a prolonged inhibition of cell cycle progression. These results suggest that, in human hormone-dependent breast cancers, cross-talk exists between the signaling pathways which lead to regulation of cell cycle progression and apoptosis.  相似文献   

14.
Aberrant expression of CXCR4 in human breast cancer correlates with metastasis to tissues secreting CXCL12. To understand the mechanism by which CXCR4 mediates breast cancer metastasis, MCF-7 breast carcinoma cells were transduced to express wild-type CXCR4 (CXCR4WT) or constitutively active CXCR4 (CXCR4ΔCTD) and analyzed in two-dimensional (2D) cultures, three-dimensional reconstituted basement membrane (3D rBM) cultures, and mice using intravital imaging. Two-dimensional cultures of MCF-7 CXCR4ΔCTD cells, but not CXCR4WT, exhibited an epithelial-to-mesenchymal transition (EMT) characterized by up-regulation of zinc finger E box–binding homeobox 1, loss of E-cadherin, up-regulation of cadherin 11, p120 isoform switching, activation of extracellular signal-regulated kinase 1/2, and matrix metalloproteinase-2. In contrast to the 2D environment, MCF-7 CXCR4WT cells cultured in 3D rBM exhibited an EMT phenotype, accompanied by expression of CXCR2, CXCR7, CXCL1, CXCL8, CCL2, interleukin-6, and granulocyte–macrophage colony stimulating factor. Dual inhibition of CXCR2 with CXCR4, or inhibition of either receptor with inhibitors of mitogen-activated protein kinase 1 or phosphatidylinositol 3-kinase, reversed the aggressive phenotype of MCF-7 CXCR4-expressing or MDA-MB-231 cells in 3D rBM. Intravital imaging of CXCR4-expressing MCF-7 cells revealed that tumor cells migrate toward blood vessels and metastasize to lymph nodes. Thus CXCR4 can drive EMT along with an up-regulation of chemokine receptors and cytokines important in cell migration, lymphatic invasion, and tumor metastasis.  相似文献   

15.
p14(ARF), the alternative product from the human INK4a/ARF locus, is one of the major targets for alterations in the development of human cancers. Overexpression of p14(ARF) results in cell cycle arrest and apoptosis. To examine the potential therapeutic role of re-expressing p14(ARF) gene product in human breast cancer, a recombinant adenovirus expressing the human p14(ARF) cDNA (Adp14(ARF)) was constructed and used to infect breast cancer cells. Five days after infection, Adp14(ARF) had considerable cytotoxicity on p53-wild-type MCF-7 cells. A time-course study showed that Adp14(ARF) infection of MCF-7 cells at 100pfu/cell increased the number of cells in G0/G1 phase and decreased that in S and G2/M phases. The presence of apoptotic cells was confirmed using the TUNEL assay. Adp14(ARF)-mediated expression of p14(ARF) also resulted in a considerable increase in the amounts of p53 and its target proteins, p21(WAF1) and MDM2. Furthermore, the combination treatment of MCF-7 cells with Adp14(ARF) and cisplatin resulted in a significantly greater cell death. Together, we conclude that p14(ARF) plays an important role in the induction of cell cycle arrest and apoptosis in breast cancer cells and recombinant adenovirus-mediated p14(ARF) expression greatly increases the sensitivity of these cells to cisplatin. These results demonstrate that the proper combination of Adp14(ARF) with conventional chemotherapeutic drug(s) could have potential benefits in treating breast cancer that carries wild-type p53 gene.  相似文献   

16.
17.
Epidemiological studies suggest that exposure to power frequency magnetic fields may be a risk factor for breast cancer in humans. To study the relationship between exposure to 60-Hz magnetic fields (MFs) and breast cancer, cell cycle distribution, apoptosis, and the expression of related proteins (p21, Bax, and Bcl-2) were determined in MCF-7 cells following exposure to magnetic fields (60 Hz, 5 mT) alone or in combination with X rays. It was found that exposure of MCF-7 cells to 60-Hz MFs for 4, 8, and 24 h had no effect on cell cycle distribution. Furthermore, 60-Hz MFs failed to affect cell growth arrest and p21 expression induced by X rays (4 Gy). Similarly, 60-Hz MFs did not induce apoptosis or the expression of Bax and Bcl-2, two proteins related to apoptosis. However, exposure of cells to 60-Hz MFs for 24 h after irradiation by X rays (12 Gy) significantly decreased apoptosis and Bax expression but increased Bcl-2 expression. The effects of exposure to 60-Hz MFs on X-ray-induced apoptosis and Bax and Bcl-2 expressions were not observed at 72 h. These data suggest that exposure to 60-Hz MFs has no effects on the growth of MCF-7 cells, but it might transiently suppress X-ray-induced apoptosis through increasing the Bcl-2/Bax ratio.  相似文献   

18.
19.
BACKGROUND: Breast cancer is an increasingly common malignancy. Several vitamins such as retinoic acid (RA), ascorbic acid (AA), vitamin D and vitamin E are known to prevent the development and progression of breast cancer. OBJECTIVE: We sought to determine whether RA and AA together (RA+AA) acted synergistically in blocking the proliferation of human breast cancer cells. To elucidate the mechanism by which RA+AA inhibited breast carcinoma proliferation, we then evaluated the gene expression profiles of the treated and untreated cells by radioactive cDNA microarray analysis. METHODS: We cultured the human breast cancer cell line MCF-7 for 3 days with 100 nM RA and/or 1 mM AA, counted the cell numbers and harvested the total RNAs for cDNA microarray analysis. RESULTS: RA, AA and RA+AA reduced MCF-7 cell proliferation by 20.7%, 23.3% and 75.7% relative to the untreated cell proliferation, respectively. The synergistic ratio of RA and AA was 1.72. The MCF-7 gene expression profiles showed that 29 genes were up-regulated and 38 genes were down-regulated after RA+AA treatment. The nature of these genes suggests that the mechanism by which RA and AA act synergistically in inhibiting human breast cancer cell proliferation may involve the expression of genes that induce differentiation and block proliferation, and the up-regulation of antioxidant enzymes and proteins involved in apoptosis, cell cycle regulation and DNA repair. CONCLUSION: Combined treatment with RA and AA inhibits the proliferation of human breast cancer cells by altering their gene expression related to antioxidation processes as well as the proliferation inhibitory pathway.  相似文献   

20.
Transcriptional activation of p53 by Pitx1   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号