首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 160 毫秒
1.
B B Olwin  C H Keller  D R Storm 《Biochemistry》1982,21(22):5669-5675
Rabbit skeletal muscle troponin I was covalently labeled with N-dansylaziridine, resulting in a fluorescent labeled protein. This derivative (DANZTnI) and native troponin I (TnI) inhibited calmodulin (CaM) stimulation of bovine heart Ca2+-sensitive cyclic nucleodite phosphodiesterase with identical inhibition constants. Association of DANZTnI with calmodulin was monitored directly by changes in flourescence intensity in the presence of Ca2+ and by changes in fluorescence anisotropy in the absence of Ca2+. Quantitation of the affinity of calmodulin for calmodulin-binding proteins in both the presence and absence of Ca2+ is necessary for prediction of the extent of interaction of both Ca2+ and calmodulin-binding proteins with calmodulin in vivo. The dissociation constants for the DANZTnI-calmodulin-l4Ca2+ and DANZTnI-calmodulin complexes were 20 nM and 70 micrometers, respectively. These dissociation constants define a free energy coupling of-4.84 kcal/mol of troponin I for binding of Ca2+ and troponin I to calmodulin. The Ca2+ dependence for troponin I-calmodulin complex formation predicted from these experimentally determined parameters was closely approximated by the Ca2+ dependence for complex formation between troponin I and fluorescent 5-[[[(iodoacetyl)amino]ethyl]-amino]-1-napthalenesulfonic acid derivatized calmodulin as determined by fluorescence anisotropy. Complex formation occurred over a relatively narrow range of Ca2+ concentration, indicative of positive heterotropic cooperativity for Ca2+ and troponin I binding to calmodulin.  相似文献   

2.
The different conformations induced by the binding of Mg2+ or Ca2+ to troponin C (TnC) and calmodulin (CaM) results in the exposure of various interfaces with potential to bind target compounds. The interaction of TnC or CaM with three affinity columns with ligands of either the synthetic peptide of troponin I (TnI) inhibitory region (residues 104-115), mastoparan (a wasp venom peptide), or fluphenazine (a phenothiazine drug) were investigated in the presence of Mg2+ or Ca2+. TnC and CaM in the presence of either Ca2+ or Mg2+ bound to the TnI peptide 104-115. The cation specificity for this interaction firmly establishes that the TnI inhibitory region binds to the high affinity sites of TnC (most likely the N-terminal helix of site III) and presumably the homologous region of CaM. Mastoparan interacted strongly with both proteins in the presence of Ca2+ but, in the presence of Mg2+, did not bind to TnC and only bound weakly to CaM. Fluphenazine bound to TnC and CaM only in the presence of Ca2+. When the ligands interacted with either proteins there was an increase in cation affinity, such that TnC and CaM were eluted from the TnI peptide or mastoparan affinity column with 0.1 M EDTA compared with the 0.01 M EDTA required to elute the proteins from the fluphenazine column. The interaction of these ligands with their receptor sites on TnC and CaM require a specific and spatially correct alignment of hydrophobic and negatively charged residues on these proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
H C Cheung  C K Wang  N A Malik 《Biochemistry》1987,26(18):5904-5907
We have determined the free energy of formation of the binary complexes formed between skeletal troponin C and troponin T (TnC.TnT) and between troponin T and troponin I (TnT.TnI). This was accomplished by using TnC fluorescently modified at Cys-98 with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine for the first complex and TnI labeled at Cys-133 with the same probe for the other complex. The free energy of the ternary complex formed between troponin C and the binary complex TnT.TnI [TnC.(TnT.TnI)] was also measured by monitoring the emission of 5-(iodoacetamido)eosin attached to Cys-133 of the troponin I in TnT.TnI. The free energies were -9.0 kcal.mol-1 for TnC.TnT, -9.2 kcal.mol-1 for TnT.TnI, and -8.7 kcal.mol-1 for TnC.(TnT.TnI). In the presence of Mg2+ the free energies of TnC.TnT and TnC.(TnT.TnI) were -10.3 and -10.9 kcal.mol-1, respectively; in the presence of Ca2+ the corresponding free energies were -10.6 and -13.5 kcal.mol-1. Mg2+ and Ca2+ had negligible effect on the free energy of TnT.TnI. From these results the free energies of the formation of troponin from the three subunits were found to be -16.8 kcal.mol-1, -18.9 kcal.mol-1, and -21.6 kcal.mol-1 in the presence of EGTA, Mg2+, and Ca2+, respectively. Most of the free energy decrease caused by Ca2+ binding to the Ca2+-specific sites is derived from stabilization of the TnI-TnC linkage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Cardiac muscle contraction is regulated by Ca(2+) through the troponin complex consisting of three subunits: troponin C (TnC), troponin T (TnT), and troponin I (TnI). We reported previously that the abnormal splicing of cardiac TnT in turkeys with dilated cardiomyopathy resulted in a greater binding affinity to TnI. In the present study, we characterized a polymorphism of cardiac TnI in the heart of wild turkeys. cDNA cloning and sequencing of the novel turkey cardiac TnI revealed a single amino acid substitution, R111C. Arg(111) in avian cardiac TnI corresponds to a Lys in mammals. This residue is conserved in cardiac and skeletal muscle TnIs across the vertebrate phylum, implying a functional importance. In the partial crystal structure of cardiac troponin, this amino acid resides in an alpha-helix that directly contacts with TnT. Structural modeling indicates that the substitution of Cys for Arg or Lys at this position would not disrupt the global structure of troponin. To evaluate the functional significance of the different size and charge between the Arg and Cys side chains, protein-binding assays using purified turkey cardiac TnI expressed in Escherichia coli were performed. The results show that the R111C substitution lowered binding affinity to TnT, which is potentially compensatory to the increased TnI-binding affinity of the cardiomyopathy-related cardiac TnT splicing variant. Therefore, the fixation of the cardiac TnI Cys(111) allele in the wild turkey population and the corresponding functional effect reflect an increased fitness value, suggesting a novel target for the treatment of TnT myopathies.  相似文献   

5.
R H Ingraham  R S Hodges 《Biochemistry》1988,27(16):5891-5898
Rabbit and bovine cardiac troponin (Tn) subunits and complexes were labeled with iodo[14C]acetamide in the presence and absence of Ca2+ to determine the effect of tertiary and quaternary structure on exposure of Cys SH groups. This procedure serves both to map regions of subunit interaction and the effects of Ca2+-induced conformational change and to indicate which Cys residues should be useful attachment sites for spectroscopic or cross-linking probes. After being labeled, Tn subunits were purified by using reversed-phase HPLC and subjected to tryptic cleavage with or without prior citraconylation. Cys-containing fragments were isolated by RP-HPLC, and the percent labeling was determined. Cys-75 and -92 of TnI were completely accessible to iodoacetamide both when TnI was labeled alone or when in the TnC-TnI complex. Both residues were largely inaccessible when Tn or the TnI-TnT complex was labeled, suggesting burial in the TnI-TnT interface. In contrast, the Cys from the N-terminal region of bovine TnT was stoichiometrically labeled when TnT was labeled alone, in native Tn or in a troponin-tropomyosin complex. Cys-35 and -84 of TnC are located in the nonfunctional Ca2+ binding loop I of cardiac TnC and helix D, respectively. For TnC alone, the percent labelings of Cys-35 and -84 were 11% and 26%, respectively (minus Ca2+), and 16% and 63%, respectively (plus Ca2+). For TnC labeled within Tn, the percent labelings of Cys-35 and -84 were 20% and 52%, respectively (minus Ca2+), and 20% and 78%, respectively (plus Ca2+).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Striated muscle contraction is regulated by Ca2+ binding to troponin, which has a globular domain and an elongated tail attributable to the NH2-terminal portion of the bovine cardiac troponin T (TnT) subunit. Truncation of the bovine cardiac troponin tail was investigated using recombinant TnT fragments and subunits TnI and TnC. Progressive truncation of the troponin tail caused progressively weaker binding of troponin-tropomyosin to actin and of troponin to actin-tropomyosin. A sharp drop-off in affinity occurred with NH2-terminal deletion of 119 rather than 94 residues. Deletion of 94 residues had no effect on Ca2+-activation of the myosin subfragment 1-thin filament MgATPase rate and did not eliminate cooperative effects of Ca2+ binding. Troponin tail peptide TnT1-153 strongly promoted tropomyosin binding to actin in the absence of TnI or TnC. The results show that the anchoring function of the troponin tail involves interactions with actin as well as with tropomyosin and has comparable importance in the presence or absence of Ca2+. Residues 95-153 are particularly important for anchoring, and residues 95-119 are crucial for function or local folding. Because striated muscle regulation involves switching among the conformational states of the thin filament, regulatory significance for the troponin tail may arise from its prominent contribution to the protein-protein interactions within these conformations.  相似文献   

7.
Kobayashi T  Zhao X  Wade R  Collins JH 《Biochemistry》1999,38(17):5386-5391
We have mutated eight conserved, charged amino acid residues in the N-terminal, regulatory domain of troponin C (TnC) so we could investigate their role in troponin-linked Ca2+ regulation of muscle contraction. These residues surround a hydrophobic pocket in the N-terminal domain of TnC which, when Ca2+ binds to regulatory sites in this domain, is exposed and interacts with the inhibitory region of troponin I (TnI). We constructed three double mutants (E53A/E54A, E60A/E61A, and E85A/D86A) and two single mutants (R44A and R81A) of rabbit fast skeletal muscle troponin C (TnC) in which the charged residues were replaced with neutral alanines. All five of these mutants retained TnC's ability to bind TnI in a Ca2+-dependent manner, to neutralize TnI's inhibition of actomyosin S1 ATPase activity, and to form a ternary complex with TnI and troponin T (TnT). Ternary complexes formed with TnC(R44A) or TnC(R81A) regulated actomyosin S1 ATPase activity normally, with TnI-based inhibition in the absence of Ca2+ and TnT-based activation in the presence of Ca2+. TnC(E53A/E54A) and TnC(E85A/D86A) interacted weakly with TnT, as judged by native gel electrophoresis. Ternary complexes formed with these mutants inhibited actomyosin S1 ATPase activity in both the presence and absence of Ca2+, and did not undergo Ca2+-dependent structural changes in TnI which can be detected by limited chymotryptic digestion. TnC(E60A/E61A) interacted normally with TnT. Its ternary complex showed Ca2+-dependent structural changes in TnI, inhibited actomyosin S1 ATPase in the absence of Ca2+, but did not activate ATPase in the presence of Ca2+. This is the first demonstration that selective mutation of TnC can abolish the activating effect of troponin while its inhibitory function is retained. Our results suggest the existence of an elaborate network of protein-protein interactions formed by TnI, TnT, and the N-terminal domain of TnC, all of which are important in the Ca2+-dependent regulation of muscle contraction.  相似文献   

8.
The interactions between troponin subunits have been studied by intrinsic fluorescence and electron spin resonance (ESR) spectroscopy. The tryptophan fluorescence of troponin T (TnT) and troponin I (TnI) when complexed with troponin C (TnC) undergoes a Ca2+-dependent transition. The midpoints of such spectral changes occur at pCa approximately equal to 6, suggesting that the conformational change of TnT and TnI is induced by Ca2+ binding to the low-affinity sites of TnC. When TnC is labelled at Cys-98 with a maleimide spin probe (MSL), the spin signal is sensitive to Ca2+ binding to both the high and the low-affinity sites of TnC in the presence of either or both of the other two troponin subunits. Since Cys-98 is located in the vicinity of one of the high-affinity sites, these results are indicative of a long-range interaction between the two halves of the TnC molecule. Our earlier kinetic studies [Wang, C.-L. A., Leavis, P. C. & Gergely, J. (1983) J. Biol. Chem. 258, 9175-9177] have shown such interactions in TnC alone. Since the ESR spectral change associated with metal binding to the low-affinity sites is only observed when MSL-TnC is complexed with TnT and/or TnI, this long-range interaction within TnC appears to be mediated through the other troponin subunits.  相似文献   

9.
Y Luo  J L Wu  J Gergely    T Tao 《Biophysical journal》1998,74(6):3111-3119
We have used the technique of resonance energy transfer in conjunction with distance geometry analysis to localize Cys133 of troponin-I (TnI) with respect to troponin-C (TnC) in the ternary troponin complex and the binary TnC.TnI complex in the presence and absence of Ca2+. Cys133 of TnI was chosen because our previous work has shown that the region of TnI containing this residue undergoes Ca2+-dependent movements between actin and TnC, and may play an important role in the regulatory function of troponin. For this purpose, a TnI mutant with a single Cys at position 133, and TnC mutants, each with a single Cys at positions 5, 12, 21, 41, 49, 89, 98, 133, and 158, were constructed by site-directed mutagenesis. The distances between TnI Cys133 and each of the nine residues in TnC were then measured. Using a least-squares minimization procedure, we determined the position of TnI Cys133 in the coordinate system of the crystal structure of TnC. Our results show that in the presence of Ca2+, TnI Cys133 is located near residue 12 beneath the N-terminal lobe of TnC, and moves away by 12.6 A upon the removal of Ca2+. TnI Cys133 and the region of TnC that undergoes major change in conformation in response to Ca2+ are located roughly on opposite sides of TnC's central helix. This suggests that the region in TnI that undergoes Ca2+-dependent interaction with TnC is distinct from that interacting with actin.  相似文献   

10.
Troponin I (TnI) is the inhibitory component of the striated muscle Ca2+ regulatory protein troponin (Tn). The other two components of Tn are troponin C (TnC), the Ca2+-binding component, and troponin T (TnT), the tropomyosin-binding component. We have used limited chymotryptic digestion to probe the local conformation of TnI in the free state, the binary TnC*TnI complex, the ternary TnC*. TnI*TnT (Tn) complex, and in the reconstituted Tn*tropomyosin*F-actin filament. The digestion of TnI alone or in the TnC*TnI complex produced initially two major fragments via a cleavage of the peptide bond between Phe100 and Asp101 in the so-called inhibitory region. In the ternary Tn complex cleavage occurred at a new site between Leu140 and Lys141. In the absence of Ca2+ this was followed by digestion of the 1-140 fragment at Leu122 and Met116. In the reconstituted thin filament the same fragments as in the case of the ternary complex were produced, but the rate of digestion was slower in the absence than in the presence of Ca2+. These results indicate firstly that in both free TnI and TnI complexed with TnC there is an exposed and flexible site in the inhibitory region. Secondly, TnT affects the conformation of TnI in the inhibitory region and also in the region that contains the 140-141 bond. Thirdly, the 140-141 region of TnI is likely to interact with actin in the reconstituted thin filament when Ca2+ is absent. These findings are discussed in terms of the role of TnI in the mechanism of thin filament regulation, and in light of our previous results [Y. Luo, J.-L. Wu, J. Gergely, T. Tao, Biochemistry 36 (1997) 13449-13454] on the global conformation of TnI.  相似文献   

11.
Troponin is a Ca2+-sensitive switch that regulates the contraction of vertebrate striated muscle by participating in a series of conformational events within the actin-based thin filament. Troponin is a heterotrimeric complex consisting of a Ca2+-binding subunit (TnC), an inhibitory subunit (TnI), and a tropomyosin-binding subunit (TnT). Ternary troponin complexes have been produced by assembling recombinant chicken skeletal muscle TnC, TnI and the C-terminal portion of TnT known as TnT2. A full set of small-angle neutron scattering data has been collected from TnC-TnI-TnT2 ternary complexes, in which all possible combinations of the subunits have been deuterated, in both the +Ca2+ and -Ca2+ states. Small-angle X-ray scattering data were also collected from the same troponin TnC-TnI-TnT2 complex. Guinier analysis shows that the complex is monomeric in solution and that there is a large change in the radius of gyration of TnI when it goes from the +Ca2+ to the -Ca2+ state. Starting with a model based on the human cardiac troponin crystal structure, a rigid-body Monte Carlo optimization procedure was used to yield models of chicken skeletal muscle troponin, in solution, in the presence and in the absence of regulatory calcium. The optimization was carried out simultaneously against all of the scattering data sets. The optimized models show significant differences when compared to the cardiac troponin crystal structure in the +Ca2+ state and provide a structural model for the switch between +Ca2+ and -Ca2+ states. A key feature is that TnC adopts a dumbbell conformation in both the +Ca2+ and -Ca2+ states. More importantly, the data for the -Ca2+ state suggest a long extension of the troponin IT arm, consisting mainly of TnI. Thus, the troponin complex undergoes a large structural change triggered by Ca2+ binding.  相似文献   

12.
Troponin and tropomyosin on actin filaments constitute a Ca2+-sensitive switch that regulates the contraction of vertebrate striated muscle through a series of conformational changes within the actin-based thin filament. Troponin consists of three subunits: an inhibitory subunit (TnI), a Ca2+-binding subunit (TnC), and a tropomyosin-binding subunit (TnT). Ca2+-binding to TnC is believed to weaken interactions between troponin and actin, and triggers a large conformational change of the troponin complex. However, the atomic details of the actin-binding sites of troponin have not been determined. Ternary troponin complexes have been reconstituted from recombinant chicken skeletal TnI, TnC, and TnT2 (the C-terminal region of TnT), among which only TnI was uniformly labelled with 15N and/or 13C. By applying NMR spectroscopy, the solution structures of a "mobile" actin-binding domain (approximately 6.1 kDa) in the troponin ternary complex (approximately 52 kDa) were determined. The mobile domain appears to tumble independently of the core domain of troponin. Ca2+-induced changes in the chemical shift and line shape suggested that its tumbling was more restricted at high Ca2+ concentrations. The atomic details of interactions between actin and the mobile domain of troponin were defined by docking the mobile domain into the cryo-electron microscopy (cryo-EM) density map of thin filament at low [Ca2+]. This allowed the determination of the 3D position of residue 133 of TnI, which has been an important landmark to incorporate the available information. This enabled unique docking of the entire globular head region of troponin into the thin filament cryo-EM map at a low Ca2+ concentration. The resultant atomic model suggests that troponin interacted electrostatically with actin and caused the shift of tropomyosin to achieve muscle relaxation. An important feature is that the coiled-coil region of troponin pushed tropomyosin at a low Ca2+ concentration. Moreover, the relationship between myosin and the mobile domain on actin filaments suggests that the latter works as a fail-safe latch.  相似文献   

13.
Recent structural studies of the troponin (Tn) core complex have shown that the regulatory head containing the N-lobe of TnC is connected to the IT arm by a flexible linker of TnC. The IT arm is a long coiled-coil formed by alpha-helices of TnI and TnT, plus the C-lobe of TnC. The TnT is thought to play a pivotal role in the linking of Ca(2+) -triggered conformational changes in thin filament regulatory proteins to the activation of cross-bridge cycling. However, a functional domain at the C-terminus of TnT is missing from the Tn core complex. In this study, we intended to determine the proximity relationship between the central helix of TnC and the TnT C-terminus in the binary and the ternary complex with and without Ca2+ by using pyrene excimer fluorescence spectroscopy and fluorescence resonance energy transfer. Chicken fast skeletal TnC contains a Cys102 at the E helix, while TnT has a Cys264 at its C-terminus. These two cysteines were specifically labeled with sulfhydryl-reactive fluorescence probes. The measured distance in the binary complex was about 19 Angstroms and slightly increased when they formed the ternary complex with TnI (20 Angstroms). Upon Ca2+ binding the distance was not affected in the binary complex but increased by approximately 4 Angstroms in the ternary complex. These results suggest that TnI plays an essential role in the Ca(2+) -mediated change in the spatial relationship between the C-lobe of TnC and the C-terminus of TnT.  相似文献   

14.
We have previously shown that mutations in troponin T (TnT), which is associated with familial hypertrophic cardiomyopathy (HCM), cause an increase in the Ca(2+) sensitivity and a potentiation of cardiac muscle contraction. To gain further insight into the patho-physiological role of these mutations, four mutations (Arg92Gln, Phe110Ile, Glu244Asp, Arg278Cys) were introduced into recombinant human cardiac TnT, and the mutants were exchanged into isolated porcine cardiac myofibrils. The effects of mutations were tested on maximal ATPase activity, the inhibitory function of troponin I (TnI) in the absence of troponin C (TnC), and the neutralizing function of TnC. Arg92Gln, Phe110Ile, and Glu244Asp markedly impaired the inhibitory function of TnI. Arg278Cys also impaired the inhibitory function of TnI, but the effect was much smaller. Phe110Ile and Glu244Asp markedly enhanced the neutralizing function of TnC and potentiated the maximum ATPase activity. Arg92Gln and Arg278Cys only slightly enhanced the neutralizing function of TnC, and they conferred no potentiation on the maximum ATPase activity. These results indicate that mutations in TnT impair multiple processes of Ca(2+) regulation by troponin, and there are marked differences in the degree of impairment from mutation to mutation.  相似文献   

15.
Ward DG  Brewer SM  Cornes MP  Trayer IP 《Biochemistry》2003,42(34):10324-10332
Phosphorylation of the unique N-terminal extension of cardiac troponin I (TnI) by PKA modulates Ca(2+) release from the troponin complex. The mechanism by which phosphorylation affects Ca(2+) binding, however, remains unresolved. To investigate this question, we have studied the interaction of a fragment of TnI consisting of residues 1-64 (I1-64) with troponin C (TnC) by isothermal titration microcalorimetry and cross-linking. I1-64 binds extremely tightly to the C-terminal domain of TnC and weakly to the N-terminal domain. Binding to the N-domain is weakened further by phosphorylation. Using the heterobifunctional cross-linker benzophenone-4-maleimide and four separate cysteine mutants of I1-64 (S5C, E10C, I18C, R26C), we have probed the protein-protein interactions of the N-terminal extension. All four I1-64 mutants cross-link to the N-terminal domain of TnC. The cross-linking is enhanced by Ca(2+) and reduced by phosphorylation. By introducing the same monocysteine mutations into full-length TnI, we were able to probe the environment of the N-terminal extension in intact troponin. We find that the full length of the extension lies in close proximity to both TnC and troponin T (TnT). Ca(2+) enhances the cross-linking to TnC. Cross-linking to both TnC and TnT is reduced by prior phosphorylation of the TnI. In binary complexes the mutant TnIs cross-link to both the isolated TnC N-domain and whole TnC. Cyanogen bromide digestion of the covalent TnI-TnC complex formed from intact troponin demonstrates that cross-linking is predominantly to the N-terminal domain of TnC.  相似文献   

16.
H S Park  B J Gong    T Tao 《Biophysical journal》1994,66(6):2062-2065
Various thio-reactive bifunctional crosslinkers as well as 5,5'-dithiobis(2-nitrobenzoate)-mediated disulfide bond formation were used to crosslink troponin-C and troponin-I, the Ca(2+)-binding and inhibitory subunits of troponin, respectively. In all cases, substantial crosslinking was obtained when the reactions were carried out in the absence of Ca2+. No disulfide crosslinking occurred if either Cys98 of TnC, or Cys133 of TnI were blocked, indicating that these thiols are involved in the crosslinking. Troponin containing the disulfide crosslink is no longer capable of regulating actomyosin ATPase activity in a Ca(2+)-dependent manner. Our results suggest that the relative movement between the Cys98 region of TnC and the Cys133 region of TnI is required for the Ca(2+)-regulatory process in skeletal muscle.  相似文献   

17.
We have previously identified evolutionarily conserved heptad hydrophobic repeat (HR) domains in all isoprotein members of troponin T (TnT) and troponin I (TnI), two subunits of the Ca(2+)-regulatory troponin complex. Our suggestion that the HR domains are involved in the formation of a coiled-coil heterodimer of TnT and TnI has been recently confirmed by the crystal structure of the core domain of the human cardiac troponin complex. Here we studied a series of recombinant deletion mutants of the fast skeletal TnT to determine the minimal sequence required for stable coiled-coil formation with the HR domain of the fast skeletal TnI. Using circular dichroism spectroscopy, we measured the alpha helical content of the coiled-coil formed by the various TnT peptides with TnI HR domain. Sedimentation equilibrium experiments confirmed that the individual peptides of TnT were monomeric but formed heterodimers when mixed with HR domain of TnI. Isothermal titration calorimetry was then used to directly measure the affinity of the TnT peptides for the TnI HR domain. Surprisingly we found that the HR regions alone of the fast skeletal TnT and TnI, as defined earlier, were insufficient to form a coiled-coil. Furthermore we showed that an additional 14 amino acid residues N-terminal to the conserved HR region (TnT residues 165-178) are essential for the stable coiled-coil formation. We discuss the implication of our finding in the fast skeletal troponin isoform in the light of the crystal structure of the cardiac isoform.  相似文献   

18.
Calcium regulation in the human heart is impaired during idiopathic dilated cardiomyopathy (IDC). Here, we analyze the structural basis for impairment in the regulatory mechanism. Regulation of contractility was monitored by MgATPase and Ca2+-binding assays as a function of calcium. Myofibrillar proteolysis and expression of troponin T isoforms were established by gel electrophoresis and by Western blots. Myofibrillar ATPase assays in low salt however, revealed a drastic lowering of calcium sensitivity in IDC myofibrils as indicated by reductions in both activation by high calcium and in EGTA-mediated inhibition of MgATPase. Structural changes in myofilament proteins were found in most IDC hearts, specifically proteolysis of myosin light chain 2 (LC2), troponin T and I (TnT and TnI), and sometimes large isoform shift in TnT. IDC did not induce mutations in LC2 and troponin C (TnC), as established by cDNA sequence data from IDC cases, thus, calcium binding to IDC myofibrils was unaffected. Reassociation of IDC myofibrils with native LC2 raised MgATPase activation at high Ca2+ to control levels, while repletion with intact, canine TnI/TnT restored inhibition at low Ca2+. A model, identifying possible steps in the steric blocking mechanism of regulation, is proposed to explain IDC-induced changes in Ca2+-regulation. Moreover, shifts in TnT isoforms may imply either a genetic or a compensatory factor in the development and pathogenesis of some forms of IDC.  相似文献   

19.
The goal of this study was to relate conformational changes in the N-terminal domain of chicken troponin I (TnI) to Ca2+ activation of the actin-myosin interaction. The two cysteine residues in this region (Cys48 and Cys64) were labeled with two sulfhydryl-reactive pyrene-containing fluorophores [N-(1-pyrene)maleimide, and N-(1-pyrene)iodoacetamide]. The labeled TnI showed a typical fluorescence spectrum: two sharp peaks of monomer fluorescence and a broad peak of excimer fluorescence arising from the formation of an excited dimer (excimer). Results obtained show that forming a binary complex of labeled TnI with skeletal TnC (sTnC) in the absence of Ca2+ decreases the excimer fluorescence, indicating a separation of the two residues. This reduction in excimer fluorescence does not occur when labeled TnI is complexed with cardiac TnC (cTnC). The latter causes only partial activation of the Ca2+-dependent myofibrillar ATPase. The binding of Ca2+ to the two N-terminal sites of sTnC causes a significant decrease in excimer fluorescence and an increase in monomer fluorescence in complexes of labeled TnI with skeletal TnC or TnC/TnT, while Ca2+ binding to site II of cTnC only causes an increase in monomer fluorescence but no change in excimer fluorescence. Thus a conformational change in the N-terminal region of TnI may be necessary for full activation of muscle contraction.  相似文献   

20.
The binding of the NH2-terminal region of troponin T (TnT) to the COOH-terminal region of tropomyosin (Tm) and the head-to-tail overlap between Tm molecules is thought to provide a pivotal link between troponin (Tn) and Tm (White, S.P., Cohen, C., and Phillips, G.N., Jr. (1987) Nature 325, 826-828). To further explore the structure-function relationship of the NH2-terminal region of TnT, we studied the binding of a 26,000-dalton TnT fragment (26K-TnT, Ohtsuki, I., Shiraishi, F., Suenaga, N., Miyata, T., and Tanokura, M.J. (1984) J. Biochem. (Tokyo) 95, 1337-1342) which corresponds to residues 46-259 of TnT2f, the major isoform of TnT in rabbit fast twitch muscle, to immobilized alpha-Tm. Both 26K-TnT and TnT2f were retained by the alpha-Tm affinity column in the presence of 150 mM NaCl. However, upon increasing the NaCl concentration 26K-TnT was eluted from the column at a higher ionic strength than was TnT. When applied alone, the binary complex of TnI and TnC (TnC.TnI) was not retained by the alpha-Tm affinity column. When applied subsequently to prebound TnT2f or 26K-TnT, TnI.TnC was retained by the alpha-Tm affinity column and eluted together with TnT2f or 26K-TnT as ternary troponin complexes. Whether Ca2+ was present or not, Tn containing 26K-TnT was eluted at a higher ionic strength than was Tn containing TnT2f, indicating that removal of the first 45 residues of TnT2f strengthens the binding of Tn to Tm. In the presence of Tm, reconstituted Tn containing 26K-TnT conferred Ca2+ sensitivity on actomyosin-S1 MgATPase, and the steepness of the pCa-ATPase relation was unchanged with respect to the actoS1 ATPase regulated by TnT2f. It is concluded that the first 45 residues of TnT2f are not essential for anchoring the troponin complex to the thin filament and do not play a crucial role in the cooperative response of regulated actoS1 ATPase to Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号