首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deformities in the mouthparts of larval Chironomidae, particularly of the teeth on the mentum, have been proposed as a bioindicator of sediment quality and environmental stress. Most work to date has concentrated on relatively few abundant, responsive genera common in soft-bottom lakes. We examined mentum deformities in 25 genera of Chironominae, Orthocladiinae and Diamesinae (one genus) from streams and a lake in rural Nova Scotia where farming and forestry are the principal land uses. Incidence of deformity at similar stream sites varied across genera from zero to >10%. Average frequencies of deformity across all three subfamilies at sites with no known sources of contamination ranged from <4% to 8%, and increased to nearly 15% at a site receiving treated municipal sewage effluent. Differences in chironomid community structure and rates of leaf litter decomposition above and below the sewage effluent outfall were congruent with the difference in mentum deformities. Frequencies of deformity observed here are an order of magnitude greater than in similar studies of rural areas. Low-level stress from agriculture or forest harvesting may be widespread in rural regions even in aquatic ecosystems that are seemingly free of industrial discharges or sediment contamination.  相似文献   

2.
In many parts of south-eastern Australia, native riparian vegetation has been cleared and exotic willows planted. In order to evaluate some of the possible effects of this practice, the decomposition and colonisation by invertebrates of the leaves of three native plant species along with those of willow were examined.Decomposition of leaves of the willow Salix babylonica L. and the indigenous macrophyte Myriophyllum propinquum A. Cunn. was much faster than for leaves of the indigenous trees Eucalyptus blakelyi Maiden and Casuarina cunninghamiana Miq. Both macroinvertebrates and current were found to have a significant influence upon decomposition. The pattern of preferential colonisation suggested that plant detritus represented a primary food source for invertebrates and not simply a refuge. Colonisation was found to be a function of the stage of decomposition, regardless of plant species. The lower temporal availability of willow leaves compared to the native evergreen tree leaves appears to be insufficient to enhance the production of the benthic macroinvertebrates.  相似文献   

3.
4.
Strongman DB  White MM 《Mycologia》2011,103(1):219-225
Trichomycetes are an ecological group of fungi and protists that colonize the gut lining of invertebrates in aquatic and moist terrestrial habitats. The diversity of this group appears to be high with many new species discovered each year. A new genus of fungal trichomycete, Trifoliellum (Harpellales), is described here with the type species T. bioblitzii. This genus is characterized by having unique, trefoil-shaped asexual spores (trichospores). Another new species, Legeriosimilis halifaxensis, also is described from the same mayfly host, Eurylophella temporalis, collected from the same site near Halifax, Nova Scotia.  相似文献   

5.
Shih  Chang-tai  Marhue  Len  Barrett  Nicole  Munro  Robin 《Hydrobiologia》1988,167(1):319-324
Fifteen species of planktonic copepods are recorded from Bras d'Or Lakes, Nova Scotia, Canada. Pseudocalanus minutus, Oithona similis, Temora longiremis, and Tortanus discaudatus are the dominant species. The distribution of planktonic copepods in Bras d'Or Lakes as well as in the adjacent Gulf of St. Lawrence is discussed.  相似文献   

6.
Kerekes  J.  Tordon  R.  Nieuwburg  A.  Risk  L. 《Hydrobiologia》1994,(1):57-61
Aquatic bird population data in 40 oligotrophic lakes and ponds in Nova Scotia, Canada indicates that only lakes > 20 ha support territorial pairs of Common Loon (Gavia immer) and only lakes 40 ha produce their young. Broods of Common Merganser (Mergus merganser americanus) occurred in lakes > 25 ha and loon and merganser broods together occurred only in lakes 80 ha. The fish production in the lakes was estimated from the total phosphorus vs fish yield relationship obtained in similar, oligotrophic lakes in Ontario. Considering the fish consumption and mergansers until fledging along with the maintenance of the adults during the same period (about 200 and 130 kg fish respectively) and the estimated fish production in these lakes, there is a close balance between the size of water body and its fish production to the occupancy and production of piscivorous birds.  相似文献   

7.
From December 1996 to August 1997, beech litter breakdown and stream benthic macroinvertebrate communities were investigated to assess the effects of acidic precipitation on community structure and function in two second-order headwater streams of the Vosges Mountains (NE France). Because of microscale changes in bedrock mineral composition, one of the streams was acidified (mean pH=4.53, mean total Al=421 g.l-1) and the other circum-neutral (mean pH=7.23, mean total Al=36 g.l-1). Results showed that both litter breakdown rate and macroinvertebrate community structure were drastically affected under acidic conditions. The rate of leaf litter breakdown decreased by nine times in the acidic stream. Benthic sampling showed that scrapers were totally eradicated and both gathering and filtering collectors were drastically reduced. Such drastic effects appear to be the consequences of the toxicity of acid water including both proton and aluminum toxicity. A decrease in shredder abundance and a shift from the efficient acid-sensitive Amphipoda Gammarus fossarum to acid-tolerant Nemouroidea (mainly Leuctra sp.) was observed in the acidic stream. Our results indicate that freshwater acidification significantly alters the action of shredders processing leaf litter in the acidic stream. Consequently, interactions between structural and functional responses to acidification probably have profound consequences on the efficiency of acidified stream ecosystems, which in return may alter downstream functioning.  相似文献   

8.
The invertebrate fauna of a small northern stream was examined within Edmonton, Alberta. Many invertebrates that were common upstream of the city were absent or rare within the city. In contrast, some tubificids and chironomids were very abundant within the city. Diversity and richness (number of taxa) of the fauna were much lower within Edmonton than upstream, while the total density was much higher within the city. These changes in the urban invertebrate fauna were apparently caused by the discharge of organic materials and silt from storm sewer runoff.Chemical analysis of routinely-collected water samples did not show significant differences between urban and non-urban sites. This was probably due to the sporadic nature of storm sewer runoff. Peak levels of contaminants in the stream were usually missed because of the routine nature of sampling. Aquatic invertebrates, which exhibit long-term responses to sporadic runoff incidents, provided a better indication of stream water quality than did routine chemical monitoring.  相似文献   

9.
The sensitivity of surface waters to acidic deposition is governed by the interaction of catchment geology, soils, topography, land use, climate and atmospheric deposition. Accordingly at the landscape scale, catchment attributes may be used to predict lake chemistry (for example, acid neutralising capacity (ANC), pH, calcium (Ca2+) and dissolved organic carbon (DOC)). Empirical (multiple linear regression) models based on average measured chemistry (2000–2006) for 204 lakes in Nova Scotia (NS) Canada, and their catchment attributes, were used to predict chemistry for all lakes in NS (n = 6104). Damage to aquatic biota, such as loss of species and/or reduced biodiversity has been widely evaluated using critical chemical thresholds commonly based on pH, ANC and Ca2+. The proportion of sensitive lakes in NS (that is, the stock at risk) was estimated as lakes with ANC less than 20 μeq l−1, pH below 6, and Ca2+ less than 75 μeq l−1 (13, 73 and 74%, respectively). Many lakes in NS are characterized by high DOC (>7 mg l−1); in these lakes organic acids contribute to total acidity, making anthropogenic influences difficult to discern. To account for the potential contribution of organic acidity, all lakes with pH below 6 (and DOC < 7 mg l−1) and lakes below a threshold for ANC adjusted for organic acids were quantified; 63% of the lakes fell below either of these thresholds. Despite substantial reductions in sulphur emissions in North America since the 1980s, many lakes in NS remain at risk to acidic deposition.  相似文献   

10.
Moola  F.M.  Vasseur  L. 《Plant Ecology》2004,172(2):183-197
We investigated the impacts of clearcutting on the ground vegetation of remnant late-successional coastal Acadian forests in southwestern Nova Scotia. Vegetation was sampled in 750 1-m2 quadrats established in 16 stands belonging to different recovery periods since clearcutting (3–54 years) and 9 late-successional forests (100–165 years) with no signs of significant human disturbance. Our objectives were to: i) describe the changes in species richness, diversity, and abundance of ground vegetation after clearcutting; ii) examine the responses of residual species (i.e., late-successional flora) to clearcutting; and iii) determine whether any forest species were restricted to or dependent upon the late-successional stages of stand development for maximal frequency and/or abundance. Although clearcutting had no immediate impact on overall alpha richness or diversity, the richness and diversity of residual plants declined after canopy removal and showed no evidence of recovery over 54 years of secondary succession. Consequently, compositional differences between secondary and late-seral stands persisted for many decades after clearcutting. Several understory herbs (e.g., Coptis trifolia (L.) , Oxalis montana (L.), Monotropa uniflora (L.)) were restricted to or attained their highest frequency and abundance in late-seral forests. These results suggest that the preservation of remnant old stands may be necessary for the maintenance of some residual plants in highly disturbed and fragmented forest landscapes in eastern Canada.  相似文献   

11.
Residential development of lakeshores affects the structure and function of riparian and littoral habitats. Organic detritus in sediments is a critical component of littoral food webs, but the effects of urbanization on sediment characteristics are unexplored. We characterized the quantity of organic sediments in Pacific Northwest lakes along a development gradient and found a 10-fold decline in the proportion of detritus in littoral sediments associated with density of lakeshore dwellings. In a comparison between two fully developed lakes and two undeveloped reference lakes, we examined several possible controls on sedimentary organic content, including terrestrial inputs, decomposition rates and associated macroinvertebrate communities, and physical retention by coarse wood. The littoral sediments of undeveloped lakes ranged from 34 to 77% organic by mass, whereas the range on urban lakes was an order of magnitude less, ranging from 1 to 3% organic. We found no significant differences in terrestrial litter inputs between the two sets of lakes. Leaf litter decomposition rates did not vary significantly between the two sets of lakes, and we found higher densities of shredder macroinvertebrate taxa in the littoral zones of undeveloped lakes. Sedimentary organic matter on undeveloped lakes accumulated in shallow waters and declined with distance from shore, whereas the opposite pattern existed on urban lakes. Our results suggest that coarse wood physically retains organic matter in littoral zones where it can enter the detrital energy pathway, and the loss of this feature on urban lakes alters littoral sediment characteristics, with potentially far-reaching consequences for lake food webs.  相似文献   

12.
Diatom-based paleolimnological techniques were used to study 14 lakes from two regions of Nova Scotia which represent regions of high and low sulphate deposition. Using decadal scale intervals, changes in diatom assemblages and diatom-inferred pH were tracked in relation to deposition of anthropogenic-sourced strong acids. Eight study lakes were located in Kejimkujik National Park in the southwestern part of the province, which receives an annual sulphate deposition (2000–2002) of ~10.5 kg ha−1 yr−1. These lakes showed significant changes in diatom assemblages with overall diatom-inferred acidification of ~0.5 pH units starting between 1925 and 1940, with the timing of acidification related to pre-industrial (or pre−1850) lakewater pH. Six study lakes were located in Cape Breton Highlands National Park, in northern Nova Scotia, a region of lower sulphate deposition. These lakes did not show any consistent trends in diatom assemblages or inferred pH values consistent with recent acidic deposition, but rather variations that may be related to climatic influences. Nova Scotia lakes that have been most impacted by acidic deposition had the lowest pre-industrial lakewater pH values and were in an area of relatively high sulphate deposition. Handling editor: K. Martens  相似文献   

13.
The decomposition of allochthonous leaf litter is retarded by stream acidification, but few studies have evaluated whether this effect can be offset by liming – the palliative addition of calcium carbonate either to streams or their catchments. We assessed the response of litter decomposition to pH and experimental liming in Welsh upland streams. Small-mesh (<335 μm) litter-bags containing common beech (Fagus sylvatica L.) were submerged in main river sites along the River Wye, and in replicate acid, circumneutral and experimentally limed tributaries (all n = 3) for 20 days. Beech decomposition was inhibited in acid tributaries and main river sites compared to circumneutral tributaries. Despite having only moderately increased pH relative to acid streams, limed sites had increased decomposition rates that were indistinguishable from naturally circumneutral streams. Decomposition rates increased highly significantly with pH across all 12 sites studied, and values were near identical to those in more prolonged experiments elsewhere. There were no significant variations in shredder numbers with decomposition rate, and no evidence that sites with faster decomposition had smaller shredder proportions. Although based on short-term observations and leaves from just one tree species, these results are consistent with the well-known retardation at low pH of some aspect microbial decomposition (e.g. by hyphomycete fungi). They are among the first to suggest that stream liming to combat acidification might reverse such impacts of low pH. Further data are required on the microbiological causes and ecological consequences of altered detrital processing in acid-sensitive and limed streams.  相似文献   

14.
Processing of maple leaf (Acer saccharum Marsh) packs, their colonization by invertebrates and nutrient dynamics in leaves were investigated in a forested reach and agricultural reach of Canagagigue Creek, Ontario. Shredders, Pycnopsyche, and collectors, Ephemerella subvaria, Stenonema vicarium and Baetis were significantly more numerous in packs at the forest site than in packs at the agricultural site, whereas filter feeders, especially blackflies, were significantly more numerous in packs at the agricultural site. Weight loss of litter packs was nearly equivalent at the two sites. However, there were major differences in the mechanism of processing between the sites. Physical abrasion and microbial activity governed weight loss of maple leaf packs at the agricultural site, whereas processing was governed mainly by microbial and invertebrate activity and, to a much lesser extent, by physical abrasion at the forest site. Both shredders and collector species played an important role in the processing of leaf material at the forest site. Greater uptake of N and P (P<0.05 in spring) and higher C concentrations were observed in leaf packs at the forest site than the agricultural site. Therefore, the results support the concept of retention of nutrients in forested areas and their export in deforested (agricultural) areas. Findings also indicated that the processing of leaf litter is not an efficient means of monitoring changes in stream ecosystems since leaf processing is affected by many factors, particularly physical abrasion.  相似文献   

15.
The colonization of deciduous leaf litter by aquatic invertebrates was studied at Scott Lake in Algonquin Park, Ontario, Canada. Deciduous leaf packs were colonized after only 2 days submergence. The invertebrate community was dominated by chironomids (25–94% depending on sampling period), and to a lesser extent by oligochaetes, turbellarians, and mayflies. Collectors, such as the chironomids Dicrotendipes, Pseudochironomus, Paratanytarsus and Parakiefferiella were the dominant functional-feeding group suggesting that leaf litter is being used as habitat rather than a direct food source. Deciduous leaf litter lost a substantial amount of weight, due to leaching, after only 48 h submergence. Fall-shed beech (Fagus grandifolia) leaves decomposed more rapidly than fall-shed sugar maple (Acer saccharum) leaves with daily processing coefficients (k), determined using an exponential decay model, of 0.0058 and 0.0039, respectively. Conversely, conditioned maple leaves, defined as leaves remaining on the ground over winter, were processed faster than conditioned beech leaves, with coefficients of 0.0042 and 0.0014, respectively. It is speculated that inhibitory compounds have been leached from the maple leaves, allowing for faster leaf processing. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
1. We tested how strongly aquatic macroinvertebrate taxa richness and composition were associated with natural variation in both flow regime and stream temperatures across streams of the western United States. 2. We used long‐term flow records from 543 minimally impacted gauged streams to quantify 12 streamflow variables thought to be ecologically important. A principal component analysis reduced the dimensionality of the data from 12 variables to seven principal component (PC) factors that characterised statistically independent aspects of streamflow: (1) zero flow days, (2) flow magnitude, (3) predictability, (4) flood duration, (5) seasonality, (6) flashiness and (7) base flow. K‐means clustering was used to group streams into 4–8 hydrologically different classes based on these seven factors. 3. We also used empirical models to estimate mean annual, mean summer and mean winter stream temperatures at each stream site. We then used invertebrate data from 63 sites to develop Random Forest models to predict taxa richness and taxon‐specific probabilities of capture at a site from flow and temperature. We used the predicted taxon‐specific probabilities of capture to estimate how well predicted assemblages matched observed assemblages as measured by RIVPACS‐type observed/expected (O/E) indices and Bray–Curtis dissimilarities. 4. Macroinvertebrate taxon richness was only weakly associated with streamflow and temperature variables, implying that other factors more strongly influenced taxa richness. 5. In contrast to taxa richness, taxa composition was strongly associated with streamflow and temperature. Predictions of taxa composition (O/E and Bray–Curtis) were most precise when both temperature and streamflow PC factors were used, although predictions based on either streamflow PC factors or temperature alone were also better than null model predictions. Of the seven aspects of the streamflow regime we examined, variation in baseflow conditions appeared to be most directly associated with invertebrate biotic composition. We were also able to predict assemblage composition from the conditional probabilities of hydrological class membership nearly as well as Random Forests models that were based directly on continuous PC factors. 6. Our results have direct implication for understanding the relative importance of streamflow and temperature in regulating the structure and composition of stream assemblages and for improving the accuracy and precision of biological assessments.  相似文献   

17.
We compared processing rates (k d) for leaves of the native willow (Salix exigua Nutt.) and cottonwood (Populus fremontii Wats.) to those of the non-native salt cedar (Tamarix chinensis Lour.) in the regulated Colorado River, U.S.A. Leaf packs of each species were incubated at Lees Ferry, approximately 26 km below Glen Canyon Dam, Arizona. Leaf packs were processed at 2, 21, 46, 84 and 142-d intervals. Water temperatures remained relatively constant (10 °C, SE ± 1 °C) during the study. There were significant differences in processing rates between species, with P. fremontii showing the fastest breakdown. After 142 d, only 20% of the P. fremontii leaf mass remained, whereas 30% and 52% of leaf masses remained for T. chinensis and S. exigua, respectively. The k d value for P. fremontii was 0.0062 compared to 0.0049 and 0.0038 for T. chinensis and S. exigua, respectively. Invertebrate colonization was not significantly different between native and non-native plant species with oligochaetes the most abundant animal colonizing the leaf packs. Dual stable isotope analysis showed that leaf material was not the primary food for invertebrates associated with leaf packs. Processing rates for all leaf types were slow in the regulated Colorado River compared to rates reported in many other systems. This is likely due to the lack of caddisfly and stonefly shredders and perhaps slow metabolic rates by microbes.  相似文献   

18.
The dynamics of Rhizophora mangle litter production and decomposition were studied in a tropical coastal lagoon on the Gulf of Mexico in Veracruz, Mexico over a year (October 2002–October 2003). This region is characterized by three seasons: northerly winds (called ‘nortes’), dry, and rainy. Annual litter production (1116 g m−2) followed a seasonal pattern with leaf litter as the main fraction (70%) with two peaks in the dry and one in the rainy season. Leaf decomposition was evaluated with two types of litter bag in each season: fine mesh (1×1 mm) and coarse mesh (3×7 mm). Decomposition data were adjusted to a single negative exponential model. The results indicated faster decomposition rates in the coarse litter bag and significant differences among seasons. However these differences occurred after the 60th day of decomposition, indicating that leaching and microbial action were responsible for more than 50% of mass loss. After this period, the effects of aquatic invertebrates were evident but depended on climatic conditions. In the rainy season, the gastropod Neritina reclivata was associated with increasing leaf decomposition rate. In the ‘nortes’ season, the effect of aquatic invertebrates was smaller, and there were no differences in the decay constants calculated for the two litter bag types. High litter production represents an important input of organic matter which, through decomposition, may represent an important source of C, N, and P in this aquatic system.  相似文献   

19.
Common loons (Gavia immer) are top predators that are sensitive to biotic and abiotic conditions associated with their breeding lakes, so factors such as lake chemistry and human activity or disturbance are thought to influence their seasonal and long-term reproductive success. We used two indices of loon productivity to evaluate (1) temporal patterns and (2) relationships with physical and chemical lake characteristics and human activities. Data collected from 1991 to 2000 by volunteers of the Canadian Lakes Loon Survey (CLLS) in Nova Scotia showed that loon productivity, as indexed by both the proportion of resident pairs that produced at least one large young (Ps1) and the proportion of successful pairs that produced two large young (Ps2), did not vary substantially from year to year and showed no linear trend from 1991 to 2000. Average estimates (1991–2000) for Ps1 and Ps2 were 0.49 ± 0.02 and 0.43 ± 0.03, respectively, and the mean number of chicks per residential pair over that time was 0.75 ± 0.04. We found that human disturbance and shoreline development did not influence loon productivity during the prefledging stage on lakes surveyed by CLLS volunteers. Proportion of resident pairs rearing at least one large young was independent of dissolved organic carbon (DOC) concentrations of breeding lakes, but there was a positive relationship between the proportion of successful pairs rearing two large young and DOC. Both indices of loon productivity tended to be negatively correlated with lake pH. These results were not consistent with other findings that loon productivity generally declines with lake acidity, but likely reflect the preponderance of circumneutral (pH 6.5–7.0) lakes surveyed by the CLLS volunteers in Nova Scotia.  相似文献   

20.
A stickleback with brilliant white dorsal breeding colours is widely distributed in north-eastern Nova Scotia, Canada, where it often breeds sympatrically with the threespine stickleback, Gasterosteus aculeatus. Breeding males are highly conspicuous and visible at distances of 20 m or more whereas sympatric G. aculeatus are cryptic and difficult to detect even at 2 m. The white stickleback nests only above the substrate in filamentous algae, where G. aculeatus nests only on the substrate. The white stickleback is smaller in size and more terete than G. aculeatus , but it is morphologically similar in having a complete row of lateral plates and similar lateral plate and gill raker numbers. The white stickleback occurs only in environments where there are filamentous algae (which appears to be an obligatory nesting substrate) and where the water is clear, saline and relatively still. Female choice tests in the laboratory show that the white stickleback is reproductively isolated from G. aculeatus , and field observations on natural spawning support this conclusion. We suggest that the bright breeding colouration may have evolved through sexual selection and/or to advertise unprofitability to predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号