首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S-adenosylhomocysteine (SAH) hydrolase is a cytosolic enzyme present in the kidney. Enzyme activities of SAH hydrolase were measured in the kidney in isolated glomeruli and tubules. SAH hydrolase activity was 0.62 +/- 0.02 mU/mg in the kidney, 0.32 +/- 0.03 mU/mg in the glomeruli, and 0.50 +/- 0.02 mU/mg in isolated tubules. Using immunohistochemical methods, we describe the localization of the enzyme SAH hydrolase in rat kidney with a highly specific antibody raised in rabbits against purified SAH hydrolase from bovine kidney. This antibody crossreacts to almost the same extent with the SAH hydrolase from different species such as rat, pig, and human. Using light microscopy, SAH hydrolase was visualized by the biotin-streptavidin-alkaline phosphatase immunohistochemical procedure. SAH hydrolase immunostaining was observed in glomeruli and in the epithelium of the proximal and distal tubules. The collecting ducts of the cortex and medulla were homogeneously stained. By using double immunofluorescence staining and two-channel immunofluorescence confocal laser scanning microscopy, we differentiated the glomerular cells (endothelium, mesangium, podocytes) and found intensive staining of podocytes. Our results show that the enzyme SAH hydrolase is found ubiquitously in the rat kidney. The prominent staining of SAH hydrolase in the podocytes may reflect high rates of transmethylation. (J Histochem Cytochem 48:211-218, 2000)  相似文献   

2.
BACKGROUND/AIMS: The methylation potential (MP) is defined as the ratio of S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy). It was shown recently that hypoxia increases AdoMet/AdoHcy ratio in HepG2 cells (Hermes et al., Exp Cell Res 294: 325-334, 2004). In the present study, we compared AdoMet/AdoHcy ratio and energy metabolism in HepG2, HEK-293, HeLa, MCF-7 and SK-HEP-1 cell lines under normoxia and hypoxia. METHODS: Metabolite concentrations were measured by HPLC. In addition, AdoHcy hydrolase (AdoHcyase) activity was determined photometrically. RESULTS: Under normoxia HepG2 cells show the highest AdoMet/AdoHcy ratio of 53.4 +/- 3.3 followed by MCF-7 and SK-HEP-1 cells with a AdoMet/AdoHcy ratio of 14.4 +/- 1.1 and 21.1 +/- 1.3, respectively. The lowest AdoMet/AdoHcy ratios are exhibited by HeLa and HEK-293 cells (6.6 +/- 0.7 and 7.1 +/- 0.3). Hypoxia does not significantly change the MP in MCF-7 and HeLa cells, but alters the MP in HepG2, HEK-293 and SK-HEP-1 cells. These alterations are dependent on the cell density. Under normoxia HepG2 cells exhibit AdoHcyase activity of 2.5 +/- 0.2 nmol min(-1) mg(-1) protein. All other cell lines show 3-5 times lower enzyme activity. Interestingly, hypoxia affects AdoHcyase activity only in HepG2 cells. CONCLUSIONS: Our data clearly show that the cell lines are characterized by different MP and different behavior under hypoxia. That implies that a lower MP is not necessarily associated with impaired transmethylation activity and cellular function.  相似文献   

3.
To investigate regional aspects of hypoxic regulation of adrenomedullin (AM) in kidneys, we mapped the distribution of AM in the rat kidney after hypoxia (normobaric hypoxic hypoxia, carbon monoxide, and CoCl(2) for 6 h), anemia (hematocrit lowered by bleeding) and after global transient ischemia for 1 h (unilateral renal artery occlusion and reperfusion for 6 and 24 h) and segmental infarct (6 and 24 h). AM expression and localization was determined in normal human kidneys and in kidneys with arterial stenosis. Hypoxia stimulated AM mRNA expression significantly in rat inner medulla (CO 13 times, 8% O(2) 6 times, and CoCl(2) 8 times), followed by the outer medulla and cortex. AM mRNA level was significantly elevated in response to anemia and occlusion-reperfusion. Immunoreactive AM was associated with the thin limbs of Henle's loop, distal convoluted tubule, collecting ducts, papilla surface epithelium, and urothelium. AM labeling was prominent in the inner medulla after CO and in the outer medulla after occlusion-reperfusion. The infarct border zone was strongly labeled for AM. In cultured inner medullary collecting duct cells, AM mRNA was significantly increased by hypoxia. AM mRNA was equally distributed in human kidney and AM was localized as in the rat kidney. In human kidneys with artery stenosis, AM mRNA was not significantly enhanced compared with controls, but AM immunoreactivity was observed in tubules, vessels, and glomerular cells. In summary, AM expression was increased in the rat kidney in response to hypoxic and ischemic hypoxia in keeping with oxygen gradients. AM was widely distributed in the human kidney with arterial stenosis. AM may play a significant role to counteract hypoxia in the kidney.  相似文献   

4.
5.
Administration of methionine sulfoximine (MSO) to rats and mice significantly decreased cerebral levels ofS-adenosyl-l-homocysteine (AdoHcy). Concurrent administration of methionine prevented this decrease and, when methionine was given alone, significantly elevated AdoHcy levels resulted in both species. Regionally, AdoHcy levels varied from 20 nmol/g in rat cerebellum and spinal cord to about 60 nmol/g in hypothalamus and midbrain. MSO decreased AdoHcy in all regions tested except striatum, midbrain, and spinal cord. AdoMet/AdoHcy ratios (methylation index) varied from 0.48 in hypothalamus to 2.4 in cerebellum, and MSO administration decreased these ratios in all regions except hypothalamus. AdoHcy hydrolase activity was lowest in hypothalamus, highest in brainstem and, generally, varied inversely with regional AdoHcy levels. MSO decreased AdoHcy hydrolase activity in all regions except hypothalamus and spinal cord. Cycloleucine administration resulted in significantly decreased levels of mouse brain AdoHcy, whereas the administration of dihydroxyphenylalanine (DOPA) failed to affect AdoHcy levels. It is concluded that (a) cerebral AdoHcy levels are more tightly regulated than are those of AdoMet after MSO administration, (b) slight fluctuations of AdoHcy levels may be important in regulating AdoHcy hydrolase activity and hence AdoHcy catabolism in vivo, (c) the AdoMet/AdoHcy ratio reflects the absolute AdoMet concentration rather than the transmethylation flux, (d) the decreased AdoMet levels in midbrain, cortex, and striatum after MSO with no corresponding decrease in AdoHcy suggest an enhanced AdoMet utilization, hence an increased transmethylation in the MSO preconvulsant state.Supported by USPHS, NINCDS grant NS-06294.  相似文献   

6.
7.
The overall rates of S-adenosylmethionine (AdoMet)-dependent transmethylation were estimated in various tissues from the initial rate of S-adenosylhomocysteine (AdoHcy) plus AdoMet accumulation after blocking hydrolysis of AdoHcy. The rates were found to differ widely among the tissues of sheep and the highest rate was in the pancreas, being 600 times higher than that in the muscle. Sheep liver possessed approximately 75% of total-body capacity for transmethylation although the transmethylation rate was approximately half that in rat liver. The minimum estimate of daily requirement of AdoMet for transmethylation for adult sheep was approximately 18 mmol, far in excess of methionine intake. Methionine loading elevated AdoMet levels only in the tissues with a high or moderate rate of transmethylation. The kinetic properties of major methyltransferases in sheep liver along with tissue distribution of AdoMet and AdoHcy suggest that transmethylation rate is subject to physiological regulation by tissue levels of AdoMet and AdoHcy.  相似文献   

8.
Abstract: The ability of S -adenosyl- l -homocysteine (AdoHcy) to inhibit biologic transmethylation reactions in vitro has led us to explore the possibility of pharmacologically manipulating AdoHcy levels in vivo and examining the consequences of these alterations on the transmethylation of some biogenic amines. Swiss-Webster mice were injected intraperitoneally with different doses of adenosine (Ado) and d,l -homocysteine thiolactone (Hcy) and were killed at various times thereafter. S -Adenosyl- l -methionine (AdoMet) and AdoHcy concentrations were determined by using a modified isotope dilution-ion exchange chromatography-high pressure liquid chromatography technique sensitive to less than 10 pmol. Increasing doses of Ado + Hcy (50-1000 mg/kg of each) produced a dose-related increase in blood, liver, and brain AdoHcy levels. At a dose level of 200 mg/kg Ado + Hcy, AdoHcy levels were markedly elevated, with minimal concomitant perturbations of AdoMet. This elevation was maximal 40 min after giving Ado + Hcy, returning to control values within 6 h. Ado + Hcy treatment resulted in decreased activities of catechol- O -methyltransferase, histamine- N -methyltransferase, and AdoHcy hydrolase in vitro. The cerebral catabolism of intraventricularly administered [3H]histamine (HA) was decreased in a dose-related manner by Ado + Hcy treatment as evidenced by higher amounts of nonutilized [3H]HA in brain, concurrent decreases in [3H]methylhistamine formation, and decreases in the transmethylation conversion index. Steady state levels of HA also showed dose-related increases after Ado + Hcy treatment. It is concluded that injections of Ado + Hcy can markedly elevate AdoHcy levels in vivo , which can, in turn, decrease the rate of transmethylation reactions.  相似文献   

9.
Prostaglandin E2, when infused into the renal artery of the dog, is a vasodilator and increases both renal interstitial hydrostatic pressure and sodium excretion. Similar studies in the rat, however, have been inconclusive. The present study examined the effect of prostaglandin E2 infusion into the renal interstitium, by means of a chronically implanted matrix, on renal blood flow, renal interstitial hydrostatic pressure and sodium excretion in the rat. Prostaglandin E2 was continuously infused directly into the kidney interstitium to mimic endogenous prostaglandin E2 production by renal cells. The maximum change in each of these parameters occurred when 10(-5) M PGE2 was infused. Renal blood flow increased from 4.70 +/- 0.91 to 5.45 +/- 0.35 ml/min (p less than 0.05) while renal interstitial hydrostatic pressure decreased from 3.9 +/- 0.4 to 2.6 +/- 0.5 mmHg (p less than 0.05) and fractional excretion of sodium decreased from 1.02 +/- 0.20 to 0.61 +/- 0.12% (p less than 0.05). Thus, the present study demonstrates that renal interstitial infusion of prostaglandin E2 increases total renal blood flow but decreases both renal interstitial hydrostatic pressure and urinary sodium excretion in the rat.  相似文献   

10.
Despite the aberrant expression of cholinesterases in tumours, the question of their possible contribution to tumorigenesis remains unsolved. The identification in kidney of a cholinergic system has paved the way to functional studies, but details on renal cholinesterases are still lacking. To fill the gap and to determine whether cholinesterases are abnormally expressed in renal tumours, paired pieces of normal kidney and renal cell carcinomas (RCCs) were compared for cholinesterase activity and mRNA levels. In studies with papillary RCC (pRCC), conventional RCC, chromophobe RCC, and renal oncocytoma, acetylcholinesterase activity increased in pRCC (3.92 ± 3.01 mU·mg(-1), P = 0.031) and conventional RCC (2.64 ± 1.49 mU·mg(-1), P = 0.047) with respect to their controls (1.52 ± 0.92 and 1.57 ± 0.44 mU·mg(-1)). Butyrylcholinesterase activity increased in pRCC (5.12 ± 2.61 versus 2.73 ± 1.15 mU·mg(-1), P = 0.031). Glycosylphosphatidylinositol-linked acetylcholinesterase dimers and hydrophilic butyrylcholinesterase tetramers predominated in control and cancerous kidney. Acetylcholinesterase mRNAs with exons E1c and E1e, 3'-alternative T, H and R acetylcholinesterase mRNAs and butyrylcholinesterase mRNA were identified in kidney. The levels of acetylcholinesterase and butyrylcholinesterase mRNAs were nearly 1000-fold lower in human kidney than in colon. Whereas kidney and renal tumours showed comparable levels of acetylcholinesterase mRNA, the content of butyrylcholinesterase mRNA was increased 10-fold in pRCC. The presence of acetylcholinesterase and butyrylcholinesterase mRNAs in kidney supports their synthesis in the organ itself, and the prevalence of glycosylphosphatidylinositol-anchored acetylcholinesterase explains the splicing to acetylcholinesterase-H mRNA. The consequences of butyrylcholinesterase upregulation for pRCC growth are discussed.  相似文献   

11.
Impairment of cardiac function causes renal damage. Renal failure after heart failure is attributed to hemodynamic derangement including reduced renal perfusion and increased venous pressure. One mechanism involves apoptosis and is defined as cardiorenal syndrome type 1. Erythropoietin (EPO) is a cytokine that induces erythropoiesis under hypoxic conditions. Hypoxia inducible factor 1 alpha (HIF-1α) plays a regulatory role in cellular response to hypoxia. Protective effects of EPO on heart, kidney and nervous system are unrelated to red blood cell production. We investigated early changes in and effects of EPO on renal tissues of rats with myocardial infarction by morphology and immunohistochemistry. Coronary artery ligation was used to induce myocardial infarction in Wistar rats. Group 1 comprised sham operated rats; groups 2, 3 and 4 included rats after coronary artery ligation that were sacrificed 6 h after ligation and that were treated with saline, 5,000 U/kg EPO or 10,000 U/kg EPO, respectively; group 5 included rats sacrificed 1 h after ligation. Group 2 showed increased renal tubule damage. Significantly less tubule damage was observed in EPO treated groups. EPO and EPO receptor (EPO-R) immunostaining intensities increased slightly for group 5 and became more intense for group 2. EPO and EPO-R immunostaining was observed in the interstitial area, glomerular cells and tubule epithelial cells of EPO treated groups. HIF-1α immunostaining was observed in collecting tubules in the medulla only in group 2. Caspase-3 immunostaining is an indicator of apoptosis. Caspase-3 staining intensity decreased in renal medulla of EPO treated groups. EPO treatment may exert a protective effect on the renal tissues of patients with cardiorenal syndrome.  相似文献   

12.
It has been hypothesized that O(2) sensing in type I cells of the carotid body and erythropoietin (EPO)-producing cells of the kidney involves protein components identical to the NADPH oxidase system responsible for the respiratory burst of phagocytes. In the present study, we evaluated O(2) sensing in mice with null mutant genotypes for two components of the phagocytic oxidase. Whole body plethysmography was used to study unanesthetized, unrestrained mice. When exposed to an acute hypoxic stimulus, gp91(phox)-null mutant and wild-type mice increased their minute ventilation by similar amounts. In contrast, p47(phox)-null mutant mice demonstrated increases in minute ventilation in response to hypoxia that exceeded that of their wild-type counterparts: 98.0 +/- 18.0 vs. 20.0 +/- 13.0% (n = 11, P = 0.003). In vitro recordings of carotid sinus nerve (CSN) activity demonstrated that resting (basal) neural activity was marginally elevated in p47(phox)-null mutant mice. With hypoxic challenge, mean CSN discharge was 1.5-fold greater in p47(phox)-null mutant than in wild-type mice: 109.61 +/- 13.29 vs. 72.54 +/- 7.65 impulses/s (n = 8 and 7, respectively, P = 0.026). Consequently, the hypoxia-evoked CSN discharge (stimulus-basal) was approximately 58% larger in p47(phox)-null mutant mice. Quantities of EPO mRNA in kidney were similar in gp91(phox)- and p47(phox)-null mutant mice and their respective wild-type controls exposed to hypobaric hypoxia for 72 h. These findings confirm the previous observation that absence of the gp91(phox) component of the phagocytic NADPH oxidase does not alter the O(2)-sensing mechanism of the carotid body. However, absence of the p47(phox) component significantly potentiates ventilatory and chemoreceptor responses to hypoxia. O(2) sensing in EPO-producing cells of the kidney appears to be independent of the gp91(phox) and p47(phox) components of the phagocytic NADPH oxidase.  相似文献   

13.
Cultured renal collecting duct cells from neonatal rabbit kidney were used to examine the influence of aldosterone on enzymatic activity of citrate synthase during increase in Na+ transport. Control epithelia showed citrate synthase activity of 71 +/- 3 mU/mg protein (n = 28), while after aldosterone treatment citrate synthase activity was significantly increased to 79 +/- 6 mU/mg at 1 h (n = 5), to 88 +/- 6 mU/mg at 2 h (n = 6) and to 93 +/- 8 mU/mg protein at 3 h (n = 5). Citrate synthase activity subsequently decreased to basal values. Spironolactone fully blocked the aldosterone-induced increase in citrate synthase activity. The time course of enzyme stimulation after aldosterone administration indicates that the hormone activates citrate synthase during the physiological early response phase.  相似文献   

14.
87Rb, 23Na and 31P nuclear magnetic resonance (NMR) were used to monitor changes in renal cations and energetics during the induction of hypoxia in the isolated perfused rat kidney. The NMR-determined unidirectional Rb+ flux in normoxic kidneys was shown to be a good measure of net intracellular K+ influx in the perfused rat kidney model. The changes in 87Rb, 23Na and 31P spectra following the induction of hypoxia are consistent with hypoxic depletion of intracellular adenosine triphosphate (ATP) and a subsequent decrease in Na-K-ATPase transport activity. The exponential rate constant for 87Rb+ efflux measured during Rb+ uptake in normoxic kidneys (0.12 +/- 0.01 min-1) was not significantly different to the rate constant for 87Rb+ efflux during the induction of hypoxia (0.16 +/- 0.07 min-1). We conclude that there is no direct effect of hypoxia on renal cellular membrane integrity and that renal cell sensitivity to hypoxia is due to an inability to sustain cellular ion gradients following depletion of intracellular ATP.  相似文献   

15.
In order to quantify adenosine production from the transmethylation pathway [S-adenosylmethionine (AdoMet)----S-adenosylhomocysteine (AdoHcy) in equilibrium adenosine + L-homocysteine] in the isolated guinea-pig heart under basal conditions (normoxic perfusion with 95% O2) and during elevated adenosine production (hypoxic perfusion with 30% O2), two methods were used. (1) Hearts were perfused with normoxic medium containing [2,5,8-3H]adenosine (5 microM) and L-homocysteine thiolactone (0.1 mM), which brings about net AdoHcy synthesis via reversal of the AdoHcy hydrolase reaction and labels the intracellular pool of AdoHcy. From the decrease in AdoHcy pool size and specific radioactivity of AdoHcy in the post-labelling period, the rate of transmethylation, which is equivalent to the rate of adenosine production, was calculated to be 0.98 nmol/min per g. Adenosine release from the hearts was 40-50 pmol/min per g. (2) Hearts were perfused with hypoxic medium containing [35S]homocysteine (50 microM). Owing to the hypoxia-induced increase in adenosine production, this procedure also results in expansion and labelling of the AdoHcy pool. From the dilution of the specific radioactivity of AdoHcy relative to that of [35S]homocysteine, the rate of AdoHcy synthesis from AdoMet (transmethylation) was calculated to be 1.12 nmol/min per g. It is concluded that in the oxygenated heart the transmethylation pathway is quantitatively an important intracellular source of adenosine, which exceeds the rate of adenosine wash-out by the coronary system by about 15-fold. Most of the adenosine formed by this pathway is re-incorporated into the ATP pool, most likely by adenosine kinase. The transmethylation pathway is essentially O2-independent, and the known hypoxia-induced production of adenosine must be derived from an increase in 5'-AMP hydrolysis.  相似文献   

16.
Anemia is a common complication of chronic kidney disease (CKD) that develops early and its severity increases as renal function declines. It is mainly due to a reduced production of erythropoietin (EPO) by the kidneys; however, there are evidences that iron metabolism disturbances increase as CKD progresses. Our aim was to study the mechanisms underlying the development of anemia of CKD, as well as renal damage, in the remnant kidney rat model of CKD induced by 5/6 nephrectomy. This model of CKD presented a sustained degree of renal dysfunction, with mild and advanced glomerular and tubulointerstitial lesions. Anemia developed 3 weeks after nephrectomy and persisted throughout the protocol. The remnant kidney was still able to produce EPO and the liver showed an increased EPO gene expression. In spite of the increased EPO blood levels, anemia persisted and was linked to low serum iron and transferrin levels, while serum interleukin (IL)-6 and high sensitivity C-reactive protein (hs-CRP) levels showed the absence of systemic inflammation. The increased expression of duodenal ferroportin favours iron absorption; however, serum iron is reduced which might be due to iron leakage through advanced kidney lesions, as showed by tubular iron accumulation. Our data suggest that the persistence of anemia may result from disturbances in iron metabolism and by an altered activity/function of EPO as a result of kidney cell damage and a local inflammatory milieu, as showed by the increased gene expression of different inflammatory proteins in the remnant kidney. In addition, this anemia and the associated kidney hypoxia favour the development of fibrosis, angiogenesis and inflammation that may underlie a resistance to EPO stimuli and reduced iron availability. These findings might contribute to open new windows to identify putative therapeutic targets for this condition, as well as for recombinant human EPO (rHuEPO) resistance, which occurs in a considerable percentage of CKD patients.  相似文献   

17.
Erythropoietin production has been reported to occur in the peritubular interstitial fibroblasts in the kidney. Since the erythropoietin production in the nephron is controversial, we reevaluated the erythropoietin production in the kidney. We examined mRNA expressions of erythropoietin and HIF PHD2 using high-sensitive in situ hybridization system (ISH) and protein expression of HIF PHD2 using immunohistochemistry in the kidney. We further investigated the mechanism of erythropoietin production by hypoxia in vitro using human liver hepatocell (HepG2) and rat intercalated cell line (IN-IC cells). ISH in mice showed mRNA expression of erythropoietin in proximal convoluted tubules (PCTs), distal convoluted tubules (DCTs) and cortical collecting ducts (CCDs) but not in the peritubular cells under normal conditions. Hypoxia induced mRNA expression of erythropoietin largely in peritubular cells and slightly in PCTs, DCTs, and CCDs. Double staining with AQP3 or AE1 indicated that erythropoietin mRNA expresses mainly in β-intercalated or non α/non β-intercalated cells of the collecting ducts. Immunohistochemistry in rat showed the expression of HIF PHD2 in the collecting ducts and peritubular cells and its increase by anemia in peritubular cells. In IN-IC cells, hypoxia increased mRNA expression of erythropoietin, erythropoietin concentration in the medium and protein expression of HIF PHD2. These data suggest that erythropoietin is produced by the cortical nephrons mainly in the intercalated cells, but not in the peritubular cells, in normal hematopoietic condition and by mainly peritubular cells in hypoxia, suggesting the different regulation mechanism between the nephrons and peritubular cells.  相似文献   

18.

Purpose

Tumor growth factor-β1 (TGF-β1) plays a pivotal role in processes like kidney epithelial-mesenchymal transition (EMT) and interstitial fibrosis, which correlate well with progression of renal disease. Little is known about underlying mechanisms that regulate EMT. Based on the anatomical relationship between erythropoietin (EPO)-producing interstitial fibroblasts and adjacent tubular cells, we investigated the role of EPO in TGF-β1-mediated EMT and fibrosis in kidney injury.

Methods

We examined apoptosis and EMT in TGF-β1-treated LLC-PK1 cells in the presence or absence of EPO. We examined the effect of EPO on TGF-β1-mediated Smad signaling. Apoptosis and cell proliferation were assessed with flow cytometry and hemocytometry. We used Western blotting and indirect immunofluorescence to evaluate expression levels of TGF-β1 signal pathway proteins and EMT markers.

Results

We demonstrated that ZVAD-FMK (a caspase inhibitor) inhibited TGF-β1-induced apoptosis but did not inhibit EMT. In contrast, EPO reversed TGF-β1-mediated apoptosis and also partially inhibited TGF-β1-mediated EMT. We showed that EPO treatment suppressed TGF-β1-mediated signaling by inhibiting the phosphorylation and nuclear translocation of Smad 3. Inhibition of mitogen-activated protein kinase kinase 1 (MEK 1) either directly with PD98059 or with MEK 1 siRNA resulted in inhibition of EPO-mediated suppression of EMT and Smad signal transduction in TGF-β1-treated cells.

Conclusions

EPO inhibited apoptosis and EMT in TGF-β1-treated LLC-PK1 cells. This effect of EPO was partially mediated by a mitogen-activated protein kinase-dependent inhibition of Smad signal transduction.  相似文献   

19.
This study was carried out to investigate the early changes in erythropoietin (EPO) formation in humans in response to hypoxia. Six volunteers were exposed to simulated altitudes of 3,000 and 4,000 m in a decompression chamber for 5.5 h. EPO was measured by radioimmunoassay in serum samples withdrawn every 30 min during altitude exposure and also in two subjects after termination of hypoxia (4,000 m). EPO levels during hypoxia were significantly elevated after 114 and 84 min (3,000 and 4,000 m), rising thereafter continuously for the period investigated. Mean values increased from 16.0 to 22.5 mU/ml (3,000 m) and from 16.7 to 28.0 mU/ml (4,000 m). This rise in EPO levels corresponds to 1.8-fold (3,000 m) and 3.0-fold (4,000 m) increases in the calculated production rate of the hormone. After termination of hypoxia, EPO levels continued to rise for approximately 1.5 h and after 3 h declined exponentially with an average half-life time of 5.2 h.  相似文献   

20.
Rabbit antiserum has been prepared against the prostaglandin endoperoxide-forming cyclooxygenase (EC 1.14.99.1) purified from sheep vesicular glands. Ouchterlony double diffusion and immunoelectrophoretic analyses indicate that the anti-cyclooxygenase serum is monospecific for the enzyme. The anti-cyclooxygenase serum reacts with both active and inactivated forms of the sheep vesicular gland (SVG) cyclooxygenase. Furthermore, the immune serum precipitates solubilized microsomal cyclooxygenases from each of six other tissues examined, including bovine seminal vesicle, rabbit kidney medulla, guinea pig lung, dog spleen, sheep uterus, and human platelets. Anti-SVG cyclooxygenase serum was used in combination with fluorescein isothiocyanate )FITC)-labeled goat anti-rabbit IgG to detect cyclooxygenases in cryostat sections from rat, rabbit and guinea pig kidneys by immunofluorescence. Highly prominent fluorescence was associated only with the epithelial cells lining the collecting ducts in rabbit and guinea pig kidneys, and except for the nucleus, was uniformly distributed within the interior of these cells. In rat kidney, fluorescence was detected not only in collecting tubules but also in the interstitial cells of the renal papilla. Our results are consistent with the emerging hypothesis that PGE2 produced intrarenally plays a physiological role in natriuresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号