首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli strains harboring malE signal sequence point mutations accumulate export-defective precursor maltose-binding protein (MBP) in the cytoplasm. Beginning with these mutants, a number of spontaneous intragenic revertants have been obtained in which export of the MBP to the periplasm is either partially or totally restored. With a single exception, each of the reversion mutations resulted in an increase in the overall hydrophobicity of the signal peptide hydrophobic core by one of five different mechanisms. In some revertants, MBP export was achieved at a rate comparable to the wild type MBP; in other cases, the rate of MBP export was significantly slower than wild type. The results indicate that the overall hydrophobicity of the signal peptide, rather than the absolute length of its uninterrupted hydrophobic core, is a major determinant of MBP export competency. An alteration at residue 19 of the mature MBP also has been identified that provides fairly efficient suppression of the export defect in the adjacent signal peptide, further suggesting that important export information may reside in this region of the precursor protein.  相似文献   

2.
It is believed that one or more basic residues at the extreme amino terminus of precursor proteins and the lack of a net positive charge immediately following the signal peptide act as topological determinants that promote the insertion of the signal peptide hydrophobic core into the cytoplasmic membrane of Escherichia coli cells with the correct orientation required to initiate the protein export process. The export efficiency of precursor maltose-binding protein (pre-MBP) was found to decrease progressively as the net charge in the early mature region was increased systematically from 0 to +4. This inhibitory effect could be further exacerbated by reducing the net charge in the signal peptide to below 0. One such MBP species, designated MBP-3/+3 and having a net charge of -3 in the signal peptide and +3 in the early mature region, was totally export defective. Revertants in which MBP-3/+3 export was restored were found to harbor mutations in the prlA (secY) gene, encoding a key component of the E. coli protein export machinery. One such mutation, prlA666, was extensively characterized and shown to be a particularly strong suppressor of a variety of MBP export defects. Export of MBP-3/+3 and other MBP species with charge alterations in the early mature region also was substantially improved in E. coli cells harboring certain other prlA mutations originally selected as extragenic suppressors of signal sequence mutations altering the hydrophobic core of the LamB or MBP signal peptide. In addition, the enzymatic activity of alkaline phosphatase (PhoA) fused to a predicted cytoplasmic domain of an integral membrane protein (UhpT) increased significantly in cells harboring prlA666. These results suggest a role for PrlA/SecY in determining the orientation of signal peptides and possibly other membrane-spanning protein domains in the cytoplasmic membrane.  相似文献   

3.
Oligonucleotide-directed mutagenesis was employed to investigate the role of the hydrophilic segment of the Escherichia coli maltose-binding protein (MBP) signal peptide in the protein export process. The three basic residues residing at the amino terminus of the signal peptide were systematically substituted with neutral or acidic residues, decreasing the net charge in a stepwise fashion from +3 to -3. It was found that a net positive charge was not absolutely required for MBP export to the periplasm. However, export was most rapid and efficient when the signal peptide retained at least a single basic residue and a net charge of +1. The nature of the adjacent hydrophobic core helped to determine the effect of charge changes in the hydrophilic segment on MBP export, which suggested that these two regions of the signal peptide do not have totally distinct functions. Although the stepwise decrease in net charge of the signal peptide also resulted in a progressive decrease in the level of MBP synthesis, the data do not readily support a model in which MBP synthesis and export are obligately coupled events. The export defect resulting from alterations in the hydrophilic segment was partially suppressed in strains harboring certain prl alleles but not in strains harboring prlA alleles that are highly efficient suppressors of signal sequence mutations that alter the hydrophobic core.  相似文献   

4.
An Escherichia coli strain containing a signal sequence mutation in the periplasmic maltose-binding protein (MBP) (malE18-1) and a point mutation in the soluble export factor SecB (secBL75Q) is completely defective in export of MBP and unable to grow on maltose (Mal- phenotype). We isolated 95 spontaneous Mal+ revertants and characterized them genetically. Three types of extragenic suppressors were identified: informational (missense) suppressors, a bypass suppressor conferring the Mal+ phenotype in the absence of MBP, and suppressors affecting the prlA gene, which encodes a component of the protein export apparatus. In this study, a novel prlA allele, designated prlA1001 and mapping in the putative second transmembrane domain of the PrlA (SecY) protein, was found. In addition, we isolated a mutation designated prlA1024 which is identical to prlA4-2, the mutation responsible for the signal sequence suppression in the prlA4 (prlA4-1 prlA4-2) double mutant (T. Sako and T. Iino, J. Bacteriol. 170:5389-5391, 1988). Comparison of the prlA1024 mutant and the prlA4 double mutant provides a possible explanation for the isolation of these prlA alleles.  相似文献   

5.
The wild-type maltose-binding protein (MBP) signal peptide is 26 amino acids in length. A mutationally altered MBP signal peptide has been previously described that is missing one of the basic residues from the hydrophilic segment and seven residues from the hydrophobic core; however, it still facilitates MBP secretion to the periplasm at a rate and efficiency comparable to those of the wild-type structure. Thus, this truncated signal peptide (designated the R2 signal peptide) must retain all of the essential features required for proper export function. In this study, alterations were obtained in the R2 signal peptide that resulted in an export-defective MBP. For the first time, signal sequence mutations were obtained that resulted in the synthesis of a totally export-defective MBP. As was previously the case for the wild-type signal peptide, the introduction of either charged residues or helix-breaking proline residues adversely affected export function. Despite these similarities, the position of these alterations within the R2 signal peptide, their relative effects on MBP secretion and processing, and an analysis of the ability of various extragenic prl mutations to suppress the secretion defects provide additional insight into the minimal requirements for a functional MBP signal peptide.  相似文献   

6.
An Escherichia coli mutant carrying delta malE12-18, a 21-base pair deletion confined to the coding DNA of the maltose-binding protein signal peptide, is unable to export maltose-binding protein to the periplasm efficiently. Consequently, such a strain is defective for the utilization of maltose as a sole carbon source. We obtained 16 mutants harboring extragenic delta malE12-18 suppressor mutations that exhibit partial restoration of export to the mutant maltose-binding protein. A genetic analysis of these extragenic suppressor mutations demonstrated that 15 map at prlA, at 72 min on the standard E. coli linkage map, and that 1 maps at a new locus, prlD, at 2.5 min on the linkage map. Our evidence indicates that the prlA and prlD gene products play an important role in the normal pathway for export of proteins to the cell envelope. Efficient execution of the secretory process requires that these prl gene products interact properly with each other so that a productive interaction of these gene products with the signal peptide also can occur. Our data suggest that proper assembly of a complex is required for efficient export of E. coli envelope proteins to their various extracytoplasmic compartments.  相似文献   

7.
Mutations that reduce the net positive charge within the hydrophilic segments of the signal peptides of several prokaryotic exported proteins can result in a reduction in the rate of protein export, as well as a reduction in protein synthesis (M. N. Hall, J. Gabay, and M. Shwartz, EMBO J. 2:15-19, 1983; S. Inouye, X. Soberon, T. Franceschini, K. Nakamura, K. Itakura, and M. Inouye, Proc. Natl. Acad. Sci. USA 79:3438-3441, 1982; J. W. Puziss, J. D. Fikes, and P. J. Bassford, Jr., J. Bacteriol. 171:2302-2311, 1989). This result has been interpreted as evidence that the hydrophilic segment is part of a mechanism that obligatorily couples translation to protein export. We have investigated the role of the hydrophilic segment of the Escherichia coli maltose-binding protein (MBP) signal peptide in the export and synthesis of MBP. Deletion of the entire hydrophilic segment from the MBP signal peptide resulted in a defect in MBP export, as well as a dramatic reduction in total MBP synthesis. Suppressor mutations that lie upstream of the malE coding region were isolated. These mutations do not affect MBP export but instead were shown to partially restore MBP synthesis by increasing the efficiency of MBP translational initiation. In addition, analysis of a series of substitution mutations in the second codon of certain malE alleles demonstrated that MBP export and synthesis can be independently affected by mutations in the hydrophilic segment. Finally, analysis of alterations in the hydrophilic segment of the ribose-binding protein signal peptide fused to the mature moiety of the MBP has revealed that the role of the hydrophilic segment in the export process can be functionally separated from any role in translation. Taken together, these results strongly suggest that the hydrophilic segment of the MBP signal peptide is not involved in a mechanism that couples MBP translation to export and argue against the presence of a mechanism that obligatorily couples translation to protein export in Escherichia coli.  相似文献   

8.
9.
10.
We have studied the export kinetics of the maltose-binding protein (MBP) of Escherichia coli, the malE gene product, when it is synthesized with either a wildtype signal sequence or with a mutationally altered signal sequence that affects the efficiency of secretion to the periplasm. Our results confirm a very rapid export process for the wild-type protein and, in contrast, reveal a relatively slow post-translational mode of export for the altered precursor species. For each different signal sequence mutant, a fraction of the precursor MBP pool that is proportional to the strength of the export defect appears to never exit the cytoplasm. We have also analyzed MBP export in strains harboring prl mutations that suppress malE signal sequence mutations and are thought to somehow alter the specificity of the cell's protein export machinery. The introduction of different prl alleles has no apparent effect on wild-type MBP export but increases both the amount of mutant MBP that is exported and the rate at which this is accomplished. In fact, the presence of two different prl alleles in the same strain can act synergistically in suppressing MBP export defects. The inhibition of total protein synthesis with chloramphenicol can also increase the proportion of pMBP that is post-translationally exported in these strains. A model that describes the initial steps in MBP export is presented.  相似文献   

11.
Active accumulation of maltose and maltodextrins by Escherichia coli depends on an outer-membrane protein. LamB, a periplasmic maltose-binding protein (MalE, MBP) and three inner-membrane proteins, MalF, MalG and MalK. MalF and MalG are integral transmembrane proteins, while MalK is associated with the inner aspect of the cytoplasmic membrane via an interaction with MalG. Previously we have shown that MBP is essential for movement of maltose across the inner membrane. We have taken advantage of malF and malG mutants in which MBP interacts improperly with the membrane proteins. We describe the properties of malE mutations in which a proper interaction between MBP and defective MalF and MalG proteins has been restored. We found that these malE suppressor mutations are able to restore transport activity in an allele-specific manner. That is, a given malE mutation restores transport activity to different extents in different malF and malG mutants. Since both malF and malG mutations could be suppressed by allele-specific malE suppressors, we propose that, in wild-type bacteria, MBP interacts with sites on both MalF and MalG during active transport. The locations of different malE suppressor mutations indicate specific regions on MBP that are important for interacting with MalF and MalG.  相似文献   

12.
S Ferro-Novick  M Honma  J Beckwith 《Cell》1984,38(1):211-217
To obtain additional mutants in the secretory apparatus of E. coli we have isolated suppressors of a mutant (secAts) that is temperature-sensitive for secretion. One of these, secC, can suppress the secretion defect of secA and has a phenotype of its own. At 23 degrees C, the secC mutant is cold-sensitive for growth and blocks the synthesis of transported proteins. The synthesis of at least one secreted protein, maltose-binding protein (MBP), can be restored by mutations that alter the hydrophobic region of the signal sequence of MBP. The phenotype of the secC mutant suggests that the SecC protein may be a component of the secretory apparatus of E. coli; it also supports the notion that in procaryotes secretion and gene expression are coupled. The secC gene maps at 68.5 minutes on the E. coli chromosome.  相似文献   

13.
Maltose-binding protein (MBP), which is encoded by the malE gene, is the maltose chemoreceptor of Escherichia coli, as well as an essential component of the maltose uptake system. Maltose-loaded MBP is thought to initiate a chemotactic response by binding to the tar gene product, the signal transducer Tar, which is also the aspartate chemoreceptor. To study the interaction of MBP with Tar, we selected 14 malE mutants which had specific defects in maltose taxis. Three of these mutants were fully active in maltose transport and produced MBP in normal amounts. The isoelectric points of the MBPs from these three mutants were identical to (malE461 and malE469) or only 0.1 pH unit more basic than (malE454) the isoelectric point of the wild-type protein (pH 5.0). Six of the mutations, including malE454, malE461, and malE469, were mapped in detail; they were located in two regions within malE. We also isolated second-site suppressor mutations in the tar gene that restored maltose taxis in combination with the closely linked malE454 and malE461 mutations but not with the malE469 mutation, which maps in a different part of the gene. This allele-specific suppression confirmed that MBP and Tar interact directly.  相似文献   

14.
The Escherichia coli maltose-binding protein (MBP) R2 signal peptide is a truncated version of the wild-type structure that still facilitates very efficient export of MBP to the periplasm. Among single amino acid substitutions in the R2 signal peptide resulting in an export-defective precursor MBP (pMBP) were two that replaced residues in the consensus Ala-X-Ala sequence (residues -3 to -1) that immediately precedes the cleavage site. It was suggested that the functional hydrophobic core and signal peptidase recognition sequence of this signal peptide substantially overlap and that these two alterations affect both pMBP translocation and processing. In this study, the export of pMBP by the mutants, designated CC15 and CC17, with these two alterations was investigated further. The pMBP of mutant CC17 has an Arg substituted for Leu at the -2 position. It was found that CC17 cells exported only a very small amount of MBP, but that which was exported appeared to be correctly processed. This result was consistent with other studies that have concluded that virtually any amino acid can occupy the -2 position. For mutant CC15, which exhibits a fully Mal+ phenotype, an Asp is substituted for the Ala at the -3 position. CC15 cells were found to export large quantities of unprocessed, soluble pMBP to the periplasm, although such export was achieved in a relatively slow, posttranslational manner. This result was also consistent with other studies that suggested that charged residues are normally excluded from the -3 position of the cleavage site. Using in vitro oligonucleotide-directed mutagenesis, we constructed a new signal sequence mutant in which Asp was substituted for Arg at the -3 position of an otherwise wild-type MBP signal peptide. This alteration had no apparent effect on pMBP translocation across the cytoplasmic membrane, but processing by signal peptidase was inhibited. This pMBP species with its full-length hydrophobic core remained anchored to the membrane, where it could still participate in maltose uptake. The implications of these results for models of protein export are discussed.  相似文献   

15.
Six mutations in malE, the structural gene for the periplasmic maltose-binding protein (MBP) from Escherichia coli, prevent growth on maltose as a carbon source, as well as release of the mutant proteins by the cold osmotic-shock procedure. These mutations correspond to insertion of an oligonucleotide linker, concomitant with a deletion. One of the mutations (malE127) affects the N-terminal extension (the signal peptide), whereas the five others lie within the mature protein. As expected, the export of protein MalE127 is blocked at an early stage. This protein is neither processed to maturity nor sensitive to proteinase K in spheroplasts. In contrast, in the five other mutants, the signal peptide is cleaved and the protein is accessible to proteinase K added to spheroplasts. This indicates that the five mutant proteins are, at least in part, exported through the inner membrane. We propose that the corresponding mutations define two regions of the mature protein (between residues 18 and 42 and between residues 280 and 306), which are important for release of the protein from the inner membrane into the periplasm. We discuss the results in terms of possible conformational changes at this late step of export to the periplasm.  相似文献   

16.
The malE gene encodes the periplasmic maltose-binding protein (MBP). Nineteen mutations that still permit synthesis of stable MBP were generated by random insertion of a BamHI octanucleotide into malE and six additional mutations by in-vitro recombinations between mutant genes. The sequence changes were determined; in most cases the linker insertion is accompanied by a small deletion (30 base-pairs on average). The mutant MBP were studied for export, growth on maltose and maltodextrins, maltose transport and binding, and maltose-induced fluorescence changes. Sixteen mutant MBP (out of 21 studied in detail) were found in the periplasmic space: 12 of them retained a high affinity for maltose, and 10 activity for growth on maltose. The results show that several regions of MBP are dispensable for stability, substrate binding and export. Three regions (residues 207 to 220, 297 to 303 and 364 to 370) may be involved in interactions with the MalF or MalG proteins. A region near the C-terminal end is important for maltose binding. Two regions of the mature protein (residues 18 to 42 and 280 to 296) are required for export to, or solubility in, the periplasm.  相似文献   

17.
Maltose-binding protein (MBP) is essential for maltose transport and chemotaxis in Escherichia coli. To perform these functions it must interact with two sets of cytoplasmic membrane proteins, the MalFGK transport complex and the chemotactic signal transducer Tar. MBP is present at high concentrations, on the order of 1 mM, in the periplasm of maltose-induced or malTc constitutive cells. To determine how the amount of MBP affects transport and taxis, we utilized a series of malE signal-sequence mutations that interfere with export of MBP. The MBP content in shock fluid from cells carrying the various mutations ranged from 4 to 23% of the malE+ level. The apparent Km for maltose transport varied by less than a factor of 2 among malE+ and mutant strains. At a saturating maltose concentration 9% (approximately 90 microM) of the malE+ amount of MBP was required for half-maximal uptake rates. Transport exhibited a sigmoidal dependence on the amount of periplasmic MBP, indicating that MBP may be involved in a cooperative interaction at some stage of the transport process. The chemotactic response to a saturating maltose stimulus exhibited a first-order dependence on the amount of periplasmic MBP. Thus, interaction of a single substrate-bound MBP with Tar appears sufficient to initiate a chemotactic signal from the transducer. A half-maximal chemotactic response occurred at 25% of the malE+ MBP level, suggesting that in vivo the KD for binding of maltose-loaded MBP to Tar is quite high (approximately 250 microM).  相似文献   

18.
The biological properties of four chemically synthesized signal peptides were compared in mammalian (rabbit reticulocyte) and plant (wheat germ) cell-free protein secretion systems. The precursor-specific region of bovine pre-proparathyroid hormone (preproPTH), [D-Tyr-(+1)]preproPTH-(-29-+1)amide, and a sulfur-free analog, [Nle-(-25), Nle-(-21), Nle-(-18), Ala-(-14), D-Tyr-(+1)]preproPTH-(-29-+1)amide, inhibit the processing of an unrelated precursor protein (pre-prolactin) to its mature secreted form (prolactin) in the mammalian system. In the plant system supplemented with signal recognition particle, the signal peptides arrest translation of both secretory (preprolactin) and cytoplasmic (globin) proteins. One analog, [Nle-(-25), Nle-(-21), Asp-(-18), Ala-(-14), D-Tyr-(+1)]preproPTH-(-29-+1)amide, inhibits preprotein processing in the mammalian system but fails to induce translation arrest in the plant system. A truncated peptide, [N alpha-AcLeu-(-17), Ala-(-14), D-Tyr-(+1)]preproPTH-(-17-+1)amide, lacking the N-terminal (positively charged) region and a portion of the hydrophobic core region, is inactive in both systems. These studies demonstrate that the chemically synthesized signal region of a precursor protein interacts directly with signal recognition particle and functionally mimics the proposed properties of a native signal sequence linked to a nascent protein as it emerges from the ribosome during biosynthesis, and an analog of the signal peptide reveals fundamental differences between the components involved in the protein secretion apparatus in mammals and plants.  相似文献   

19.
In Escherichia coli, the periplasmic maltose-binding protein (MBP), the product of the malE gene, is the primary recognition component of the transport system for maltose and maltodextrins. It is also the maltose chemoreceptor, in which capacity it interacts with the signal transducer Tar (taxis to aspartate and some repellents). In studies of the maltose system in other members of the family Enterobacteriaceae, we found that MBP is produced by Salmonella typhimurium, Klebsiella pneumoniae, Enterobacter aerogenes, and Serratia marcescens. MBP from all of these species cross-reacted with antibody against the E. coli protein and had a similar molecular weight (about 40,000). The Shigella flexneri and Proteus mirabilis strains we examined did not synthesize MBP. The isoelectric points of MBP from different species varied from the acid extreme of E. coli (4.8) to the basic extreme of E. aerogenes (8.9). All species with MBP transported maltose with high affinity, although the Vmax for K. pneumoniae was severalfold lower than that for the other species. Maltose chemotaxis was observed only in E. coli and E. aerogenes. In S. typhimurium LT2, Tar was completely inactive in maltose taxis, although it signaled normally in response to aspartate. MBP isolated from all five species could be used to reconstitute maltose transport and taxis in a delta malE strain of E. coli after permeabilization of the outer membrane with calcium.  相似文献   

20.
Signal peptides of gram-positive exoproteins generally carry a higher net positive charge at their amino termini (N regions) and have longer hydrophobic cores (h regions) and carboxy termini (C regions) than do signal peptides of Escherichia coli envelope proteins. To determine if these differences are functionally significant, the ability of Bacillus subtilis to secrete four different E. coli envelope proteins was tested. A pulse-chase analysis demonstrated that the periplasmic maltose-binding protein (MBP), ribose-binding protein (RBP), alkaline phosphatase (PhoA), and outer membrane protein OmpA were only inefficiently secreted. Inefficient secretion could be ascribed largely to properties of the homologous signal peptides, since replacing them with the B. amyloliquefaciens alkaline protease signal peptide resulted in significant increases in both the rate and extent of export. The relative efficiency with which the native precursors were secreted (OmpA >> RBP > MBP > PhoA) was most closely correlated with the overall hydrophobicity of their h regions. This correlation was strengthened by the observation that the B. amyloliquefaciens levansucrase signal peptide, whose h region has an overall hydrophobicity similar to that of E. coli signal peptides, was able to direct secretion of only modest levels of MBP and OmpA. These results imply that there are differences between the secretion machineries of B. subtilis and E. coli and demonstrate that the outer membrane protein OmpA can be translocated across the cytoplasmic membrane of B. subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号