首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
北京鸭消化道内分泌细胞的免疫组织化学研究   总被引:32,自引:3,他引:32  
应用七种消化道激素抗血清,对北京鸭消化道内分泌细胞进行了免疫组织化学定位,促胃素释放肽细胞大量分布于腺胃和肌胃。生长抑素细胞在腺胃和肌胃数量很多,在幽门部密集,且偶见于十地二指肠,胃素细胞在幽门部非常密集,并较多分布于整个小肠,肌胃内亦有少量。5-羟色胺细胞大量见于肠管各段,并偶见于幽门,少量胰多肽细胞见于腺胃、十二指肠和空肠,未检出胃动素和抑胃肽细胞。  相似文献   

2.
The gizzard (muscular stomach) of chicks is deficient in endocrine cells at hatching. It has previously been shown that proventricular types and proportions of endocrine cells can be induced in gizzard endoderm under the influence of proventricular (glandular stomach) mesenchyme. In order to test its capacity to form nongastric endocrine cell types, gizzard endoderm of 3.75- to 5-day chick embryos was combined with mesenchyme from the small intestine of 3.5- to 4-day quail embryos. The combinations were grown as chorio-allantoic grafts until they attained an incubation age comparable to that of hatching chicks. Controls comprised reassociated endoderm and mesenchyme of chick gizzard and of quail intestine. In the experimental grafts, morphogenesis was predominantly intestinal but some grafts showed gizzard-like features, particularly if the endoderm had been provided by older donors. All intestinal endocrine cell types, including those also found in the normal proventriculus (serotonin-, glucagon-, pancreatic polypeptide-, neurotensin- and somatostatin-immunoreactive cells) differentiated in experimental grafts, some even where morphogenesis was gizzard-like. Hence progenitors of not only gastric, but also intestinal, endocrine cells are indeed present in gizzard endoderm. The possibility that gizzard mesenchyme is inhibitory to endocrine cell differentiation is mooted. Motilin- and secretin-immunoreactive cells, which are characteristic of the intestine but not of the proventriculus of chicks at hatching, were respectively sparse or absent when the endoderm was derived from older donors. Thus the ability of gizzard endoderm to differentiate into nongastric endocrine cell types declines before its capacity to form gastric types. The unexpected appearance of gastrin-releasing peptide (GRP)-immunoreactive cells, a proventricular type not found in normal chick intestine, suggests that the intestinal mesenchyme, at least in this instance, was exercising a permissive role.  相似文献   

3.
The relative frequencies of endocrine cells and peptidergic nerve elements in the proximal small intestine of the adult platypus were studied by immunohistochemistry. Six kinds of endocrine cells - serotonin (5-HT)-, somatostatin-, gastrin-, motilin-, cholecystokinin (CCK)- and bovine pancreatic polypeptide (BPP)-immunoreactive cells - were identified in this study. These endocrine cells were found most frequently in the intestinal glands, in moderate numbers in the tubular ducts and were infrequent in the surface folds. 5-HT-immunoreactive cells were most numerous, somatostatin-, gastrin-, motilin- and BPP-immunoreactive cells were moderately numerous, whereas CCK-immunoreactive cells were rare. Five kinds of neuropeptides: substance P, vasoactive intestinal polypeptide (VIP), gastrin releasing peptide (GRP), somatostatin and leu-enkephalin, were detected in the intramural nerve elements. Substance P-, VIP- and GRP-immunoreactive nerve fibers were found most frequently in the lamina propria mucosae of the surface folds. The relationships between the possible functions of the peptides and amine detected in this study as well as the characteristic structure of the digestive tract of the adult platypus are discussed.  相似文献   

4.
A study about the genesis of the inner lining which covers the mucous membrane of the chicken gizzard was made and histochemical test were employed to detect the presence of carbohydrate in the epithelial components of the mucous membrane. The histochemical treatment of the apical border of gizzard epithelium from the 5th, 7th, 9th, 12th, and 15th d of incubation revealed the absence of glycoprotein (with 1.2-glycol containing hexoses), sialic acid, and glycogen but weakly acidic sulphated mucosubstances were present. The same was observed in the medium 1/3 of the gizzard epithelium on 12th and 15th d. The upper 1/3 of the buddings, precursor of gizzard glands, on the 15th d, besides exhibiting the same histochemical characteristics of apical border, revealed, clearly visible, strongly sulphated mucosubstances. The histochemical reactions of the epithelium which covers the free surface and lines the pits from the 18th d of incubation and from the young chicken (0.5 h, 1 d, 3 d, 7 d, 3 weeks and 8 weeks) revealed the absence of glycoprotein (with 1.2-glycol containing hexoses), sialic acid, and glycogen, however, weakly acidic sulphated mucosubstances and strongly sulphated epithelial acidic mucin were present. On the 18th d, the glands presented a lumen and the accumulation of intraepithelial secretion displaced the upper part of the superficial epithelium, splitting, it.  相似文献   

5.
Historically, the enterochromaffin cell was the first endocrine cell type detected in avian gut; subsequently, a number of types of such cells were distinguished on the basis of the ultrastructural features of the secretory granules. More recently, immunocytochemical procedures have revealed somatostatin-, pancreatic polypeptide (PP)-, polypeptide YY-, glucagon-, secretin-, vasoactive intestinal peptide (VIP)-, gastrin-, cholecystokinin-, neurotensin-, bombesin-, substance P-, enkephalin-, motilin-, and FMRFamide-like immunoreactivity in avian gastrointestinal endocrine cells. Most endocrine cells are located in the antrum; there are a number in the proventriculus and small intestine but few in the gizzard, cecum, and rectum. Several avian gastroenteropancreatic hormones, including glucagon, VIP, secretin, bombesin, neurotensin, and PP, have been isolated and sequenced. They resemble the equivalent mammalian peptides in terms of molecular size but differ in amino acid composition and sequence; some (e.g., VIP) differ only in minor respects, others (e.g., secretin) more radically. Gastrointestinal endocrine cells appear late in development; available data indicate that few types are recognized by either immunocytochemistry or electron microscopy before 16 days of incubation. Experimental evidence has shown that at least the majority of gut endocrine cells are of endodermal origin and are not derived from the neural crest or neuroectoderm as earlier proposed. In early embryos, the progenitors of gastrointestinal endocrine cells are more widespread than are the differentiated cells in chicks at hatching. This, along with other observations, raises the question of factors that might influence the differentiation of gut endocrine cells.  相似文献   

6.
The endocrine cells in the gastrointestinal tract of the domestic pigeon (Columba livia var domestica) were studied immunohistochemically, and their distribution and relative frequencies were determined. In the proventriculus, moderate numbers of somatostatin- and numerous gastrin-releasing polypeptide (GRP)-immunoreactive cells were found. No immunoreactive cells were detected in the gizzard. In the pyloric region, many motilin-immunoreactive cells were found in addition to numerous somatostatin- and gastrin-immunoreactive cells. In the intestine, somatostatin-, gastrin-, serotonin-, neurotensin-, pancreatic glucagon- and enteroglucagon-immunoreactive cells were found to have in differing distribution patterns.  相似文献   

7.
Summary The development of endocrine cells in the chicken proventriculus has been investigated using light-and electron-microscopy in conjunction with silver and immunocytochemical techniques. The first morphologically detectable endocrine cells were found in 5-day-old embryos by electron microscopy. From the 9th to the 13th day, endocrine cells in contact with the lumen of the organ could be detected both by electron and light (silver impregnation) microscopy. The number of open-type endocrine cells progressively decreased and the number of closed-type increased after this stage. Until the 16th day, endocrine cells were located exclusively in the luminal epithelium, but afterwards they appeared in progressively greater numbers in the compound glands. After hatching, long cytoplasmic processes could be seen in the endocrine cells. Immunoreactivities to regulatory substances appeared in the following order: serotonin (day-14), avian pancreatic polypeptide, glucagon and somatostatin (day-16), bombesin and neurotensin (day-18), and finally, met-enkephalin (day-21).  相似文献   

8.
The distribution and the frequency of occurrence of nine types of gut endocrine cells were revealed using immunohistochemical methods in eight portions from the gastrointestinal tract of the chicken (Gallus gallus var domestica). In the proventriculus, somatostatin- and gastrin-releasing polypeptide (GRP)-immunoreactive cells were commonly found. Serotonin-, pancreatic glucagon-, and enteroglucagon-immunoreactive cells were uncommon. Avian pancreatic polypeptide (APP)-immunoreactive cells were rare. In the gizzard, numerous GRP-, and a small number of somatostatin-immunoreactive cells were observed. The pyloric region was characterized by the presence of abundant gastrin-, somatostatin-, and neurotensin-immunoreactive cells. Numerous serotonin-immunoreactive cells were detected in all portions of the intestine. Moderate numbers of neurotensin-immunoreactive cells were detected in all portions of the intestine except for the cecum. A few gastrin- and somatostatin-immunoreactive cells were detected in the duodenum and jejunum. A small number of pancreatic glucagon-immunoreactive cells were detected in the jejunum and ileum. Enteroglucagon-immunoreactive cells were detected in the small intestine in increasing numbers forwards the ileum. Motilin-immunoreactive cells were rare in the small intestine.  相似文献   

9.
Dissociation and reassociation experiments were carried out to study the inductive ability of mesenchyme of the oesophagus, gizzard and intestine of the chicken embryo, using 3-day-old quail embryonic allantoic endoderm as an effector tissue. The mesenchyme of the oesophagus and gizzard possesses inductive ability until the Ilth day of incubation. Thereafter, it no longer has inductive influence upon the allantoic endoderm. The intestinal mesenchyme was favourable to differentiation of allantoic endoderm into intestinal epithelium even on the I5th day of incubation. In all types of recombination tested, goblet cells differentiated among allantoic endodermal cells.  相似文献   

10.
The endocrine cells in the gastrointestinal tract of the musk shrew were studied immunohistochemically. Eleven kinds of endocrine cells, immunoreactive for serotonin, somatostatin, gastrin, cholecistokinin, gastric inhibitory polypeptide, motilin, secretin, neurotensin, pancreatic glucagon, enteroglucagon and bovine pancreatic polypeptide, were revealed. In the stomach, serotonin-, somatostatin-, gastrin-, pancreatic glucagon- and enteroglucagon-immunoreactive cells were detected. The first three types of cells predominated and were more abundant in the pyloric glands than in the other stomach regions. In the small intestine, all types of endocrine cells were found, each having different distributions and relative frequencies. In the large intestine, 10 types of endocrine cells except cholecystokinin-immunoreactive cells were detected. Serotonin- and bovine pancreatic polypeptide-immunoreactive cells were more numerous in the large intestine than in the small intestine.  相似文献   

11.
Summary The proventriculus, gizzard and pyloric antrum (region between the gizzard and the duodenum) of 18-day Black Australorp chick embryos and of chicks within 30 h of hatching have been studied by electron microscopy. D and EC cells, and putative G, D1 and A-like cells were identified (terminology of Solcia et al., 1973) but no ECL cells. No endocrine cells of any kind were revealed in the gizzard.Supported by grants from the Senyte Research Comittee of the University of the Witwaterstrand, Johannesburg  相似文献   

12.
在上世纪末Retterer(1885)认为法氏囊的淋巴细胞是法氏囊上皮本身发生的。到本世纪初有人认为从法氏囊间质的“原始成血细胞”侵入上皮分化而成的(Jolly,1915)。直到六十年代初,Ackerman和Knouff(1959),Ackerman(1962),还认为法氏囊髓部的淋巴细胞是上皮细胞发生的,而皮部的淋巴细胞是法氏囊间质细胞及未分化的上皮发生的。用染色体标记等技术证明生血干细胞是法氏囊淋巴细胞的先躯细胞(Moore和Owm1965,1966;Jaffe和Fechhelmer,1966;Le Douarin和Houssaint,1974以及Houssaint等,1976)。生血干细胞在鸡胚发育三天到四天就存在于血液中,只有在法氏囊原基发育到一定阶段才开始侵入(Le Douarin等,1976)。在鸡胚从孵化8天到14天侵入法氏囊原基  相似文献   

13.
Application of the myosin competition test (Lehman, W., and Szent-Gy?rgyi, A. G. (1975) J. Gen. Physiol. 66, 1-30) to chicken gizzard actomyosin indicated that this smooth muscle contains a thin filament-linked regulatory mechanism. Chicken gizzard thin filaments, isolated as described previously (Marston, S. B., and Lehman, W. (1985) Biochem. J. 231, 517-522), consisted almost exclusively of actin, tropomyosin, caldesmon, and an unidentified 32-kilodalton polypeptide in molar ratios of 1:1/6:1/26:1/17, respectively. When reconstituted with phosphorylated gizzard myosin, these thin filaments conferred Ca2+ sensitivity (67.8 +/- 2.1%; n = 5) on the myosin Mg2+-ATPase. On the other hand, no Ca2+ sensitivity of the myosin Mg2+-ATPase was observed when purified gizzard actin or actin plus tropomyosin was reconstituted with phosphorylated gizzard myosin. Native thin filaments were rendered essentially free of caldesmon and the 32-kilodalton polypeptide by extraction with 25 mM MgCl2. When reconstituted with phosphorylated gizzard myosin, caldesmon-free thin filaments and native thin filaments exhibited approximately the same Ca2+ sensitivity (45.1 and 42.7%, respectively). The observed Ca2+ sensitivity appears, therefore, not to be due to caldesmon. Only trace amounts of two Ca2+-binding proteins could be detected in native thin filaments. These were identified as calmodulin (present at a molar ratio to actin of 1:733) and the 20-kilodalton light chain of myosin (present at a molar ratio to actin of 1:270). The Ca2+ sensitivity observed in an in vitro system reconstituted from gizzard thin filaments and either skeletal myosin or phosphorylated gizzard myosin is due, therefore, to calmodulin and/or an unidentified minor protein component of the thin filaments which may be an actin-binding protein involved in regulating actin filament structure in a Ca2+-dependent manner.  相似文献   

14.
To determine whether mesenchyme plays a part in the differentiation of gut endocrine cells, proventricular endoderm from 4- to 5-day chick or quail embryos was associated with mesenchyme from the dorsal pancreatic bud of chick embryos of the same age. The combinations were grown on the chorioallantoic membranes of host chick embryos until they reached a total incubation age of 21 days. Proventricular or pancreatic endoderm of the appropriate age and species reassociated with its own mesenchyme provided the controls. Morphogenesis in the experimental grafts corresponded closely to that in proventricular controls, i.e. the pancreatic mesenchyme supported the development of proventricular glands from proventricular endoderm. Insulin, glucagon and somatostatin cells and cells with pancreatic polypeptide-like immunoreactivity differentiated in the pancreatic controls. The latter three endocrine cell types, together with neurotensin and bombesin/gastrin-releasing polypeptide (GRP) cells, developed in proventricular controls and experimental grafts. The proportions of the major types common to proventriculus and pancreas (somatostatin and glucagon cells) were in general similar when experimental grafts were compared with proventricular controls but different when experimental and pancreatic control grafts were compared. Hence pancreatic mesenchyme did not materially affect the proportions of these three cell types in experimental grafts, induced no specific pancreatic (insulin) cell type and allowed the differentiation of the characteristic proventricular endocrine cell types, neurotensin and bombesin/GRP cells. However, an important finding was a significant reduction in the proportion of bombesin/GRP cells, attributable in part to a decrease in their number and in part to an increase in the numbers of endocrine cells of the other types. This indicates that mesenchyme may well play a part in determining the regional specificity of populations of gut endocrine cells.  相似文献   

15.
To explore the suggestion that alpha-actinin cross-links actin filaments to the microvillar membrane (Mooseker and Tilney, 1975, J. Cell Biol. 67:725--743; Mooseker, 1976, J. Cell Biol. 71-417--433), we have assessed the possible relatedness of alpha-actinin and the brush- border 95-kdalton protein by four independent criteria: antigenicity, mobility on SDS gels, extractability in nonionic detergents, and peptide maps. We have found that anti-chicken gizzard alpha-actinin stains the junctional complex region of intact cells (Craig and Pardo, 1979, J. Cell Biol. 80:203--210) but does not stain isolated brush borders even though these structures contain a 95-kdalton polypeptide. Lack of staining is not caused by failure of the antibody to penetrate, as antiactin stains both the terminal web and the microvilli of isolated brush borders. By the antibody SDS gel overlay technique, we have established that anti-gizzard alpha-actinin recognizes homologous molecules in chicken skeletal and cardiac muscles, as well as in intestinal epithelial cells, but fails to recognize the brush-border 95- kdalton polypeptide. Conversely, anti-95-kdalton polypeptide does not recognize gizzard alpha-actinin. On high-resolution SDS polyacrylamide gel electrophoresis, alpha-actinin and brush-border 95-kdalton protein exhibit distinct mobilities. The two proteins also differ in their ability to be extracted in nonionic mobilities. The two proteins also differ in their ability to be extracted in nonionic detergent: epithelial cell immunoreactive alpha-actinin is soluble in NP-40, whereas 95-kdalton protein is insoluble. Finally, two-dimensional peptide mapping of iodinated tryptic peptides, as well as one- dimensional fingerprinting of partial tryptic, chymotryptic, papain, and S. aureus V8 protease digests, have revealed less than 5% homology between gizzard alpha-actinin and brush-border 95-kdalton polypeptide. The data suggest that there is no major structural homology between gizzard alpha-actinin and brush-border 95-kdalton protein. We conclude that it is unlikely that alpha-actinin cross-links actin filaments to the microvillar membrane.  相似文献   

16.
11 endocrine cell types immunoreactive for either 5-hydroxytryptamine (5-HT), somatostatin, gastrin, cholecystokinin (CCK), gastric inhibitory peptide (GIP), motilin, secretin, neurotensin, pancreatic glucagon, enteroglucagon or bovine pancreatic polypeptide (BPP) were found in gastrointestinal tract of 2 species of insectivorous bats. 5 of these 11 types of endocrine cells were located in the stomach and all 11 types of endocrine cells were found in the intestine. However, the distribution and relative frequency of each immunoreactive endocrine cell varied among the cell types and between the 2 species of bats examined. In Brunner's glands, gastrin- and 5-HT-immunoreactive cells were detected very rarely in Pipistrellus and only occasionally in Plecotus. The present results obtained from the insectivorous bats were compared with those of the sanguivorous vampire bats.  相似文献   

17.
应用ABC免疫组化技术,用抑胃多肽、5-羟色胺和内啡肽3种哺乳动物抗血清对鲢、鳙、银鲫和团头鲂的肠粘膜中内分泌细胞进行了检测。结果4种鱼的肠粘膜中均有抑胃多肽免疫反应内分泌细胞存在,但未发现5-羟色胺和内啡肽的免疫反应。抑胃多肽免疫反应内分泌细胞主要分布在前肠前段,并单个地散布在肠褶顶部上皮细胞与杯状细胞之间,多呈长梭形。本文比较了不同食性鱼类和其他动物肠道抑胃多肽免疫反应内分泌细胞的分布规律,讨论了用5-羟色胺和内啡肽免疫染色的结果。  相似文献   

18.
The expression of secretogranin III (SgIII) in chicken endocrine cells has not been investigated. There is limited data available for the immunohistochemical localization of SgIII in the brain, pituitary, and pancreatic islets of humans and rodents. In the present study, we used immunoblotting to reveal the similarities between the expression patterns of SgIII in the common endocrine glands of chickens and rats. The protein–protein interactions between SgIII and chromogranin A (CgA) mediate the sorting of CgA/prohormone core aggregates to the secretory granule membrane. We examined these interactions using co-immunoprecipitation in chicken endocrine tissues. Using immunohistochemistry, we also examined the expression of SgIII in a wide range of chicken endocrine glands and gastrointestinal endocrine cells (GECs). SgIII was expressed in the pituitary, pineal, adrenal (medullary parts), parathyroid, and ultimobranchial glands, but not in the thyroid gland. It was also expressed in GECs of the stomach (proventriculus and gizzard), small and large intestines, and pancreatic islet cells. These SgIII-expressing cells co-expressed serotonin, somatostatin, gastric inhibitory polypeptide, glucagon-like peptide-1, glucagon, or insulin. These results suggest that SgIII is expressed in the endocrine cells that secrete peptide hormones, which mature via the intragranular enzymatic processing of prohormones and physiologically active amines in chickens.  相似文献   

19.
几种激素在鳜胃肠道内分泌细胞中存在的免疫细胞化学证据   总被引:24,自引:2,他引:22  
用链酶亲和素-生物素过氧化物酶(Strept Avidin-Biotin-Complex,SABC)免疫细胞化学方法,使用4种兔抗消化 道激血清对鳜胃肠道中的内分泌细胞进行鉴别和定位。结果在鳜鱼胃的贲门、幽门及肠道中均发现不同程度地存在着生长抑素和五羟色胺免疫活性内分泌细胞。在鳜的贲门上皮和贲门腺之间,幽门上皮和幽门腺之间均分布有生长抑素免疫活性阳性细胞,在贲门腺和幽门腺处的分布较密。这些含五羟色胺的肽能神经元具有典型的APUD(Amine Precursor Uptake and Decarboxylation)细胞特征,提示鱼类的胃肠道同哺乳动物的胃肠道一样富含肽能神经元;为神经-内分泌系统的研究提供有力的形态学依据,另外两种抗血清-高血糖素和胃泌素的免疫细胞化学染色在鳜的胃肠道的各部位均未发现阳性反应。  相似文献   

20.
Summary Vasoactive intestinal polypeptide (VIP)-immunoreactive nerves were abundant along the entire digestive tract of the chicken. In the proventriculus, gizzard and small intestine VIP nerves were numerous around glands and less numerous in the smooth muscle. Submucosal blood vessels were often encircled by VIP nerves. VIP nerves were also seen in the submucosal and myenteric plexus. In the large intestines the VIP innervation of the smooth muscle was more predominant, while there was a rather sparse supply of VIP nerves around the base of the crypts. This innervation pattern was a consistent finding with four different VIP antisera. VIP-immunoreactive cells, however, were demonstrated with only three of the antisera. They were found scattered in the epithelium of the proventriculus and small and large intestines. The failure of one of the antisera to demonstrate endocrine cells suggests that the VIP-immunoreactive material in these cells differs from that in nerves. Conceivably, the material present in nerves represents VIP, while that in endocrine cells represents cross-reacting peptides or other molecular forms of VIP.VIP nerves appeared comparatively early in embryonic development. They appeared in the upper part of the digestive tract at 13 days of incubation and in the colon a few days before hatching; at this stage, only smooth muscle received VIP nerves. The adult pattern of innervation was established about two to four weeks after hatching. VIP-immunoreactive endocrine cells appeared in the intestines a few days before hatching. The adult frequency of occurrence was established about one week after hatching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号