首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolactin and arachidonic acid increase milk casein secretion in mammary gland slices. These effects do not necessitate Ca2+ in the incubation medium. Prolactin does not modify the influx or the efflux of 45Ca2+. The Ca2+ channel blocking agent D600 (6 micrograms/ml) decreases the stimulatory effect of prolactin on casein secretion, but does not interfere in the stimulatory effect of arachidonic acid. The calmodulin inhibitor trifluoperazine (100 microM) inhibits stimulation of casein secretion by both prolactin and arachidonic acid. From these data, it is concluded that a flow of Ca2+ from the outside into the cell is not a requisite for the stimulation of casein secretion. However, stimulation by prolactin, but not stimulation by arachidonic acid, requires Ca2+ movement through calcium pathways. Intracellular transport of Ca2+ seems necessary for the stimulation of secretion.  相似文献   

2.
TRH stimulation of prolactin release from GH3 cells is dependent on Ca2+; however, whether TRH-induced influx of extracellular Ca2+ is required for stimulated secretion remains controversial. We studied prolactin release from cells incubated in medium containing 110 mM K+ and 2 mM EGTA which abolished the electrical and Ca2+ concentration gradients that usually promote Ca2+ influx. TRH caused prolactin release and 45Ca2+ efflux from cells incubated under these conditions. In static incubations, TRH stimulated prolactin secretion from 11.4 +/- 1.2 to 19 +/- 1.8 ng/ml in control incubations and from 3.2 +/- 0.6 to 6.2 +/- 0.8 ng/ml from cells incubated in medium with 120 mM K+ and 2 mM EGTA. We conclude that Ca2+ influx is not required for TRH stimulation of prolactin release from GH3 cells.  相似文献   

3.
The neuropeptide somatostatin inhibits prolactin release from GH4C1 pituitary cells via two mechanisms, inhibition of stimulated adenylate cyclase activity and an undefined cAMP-independent process. Somatostatin also hyperpolarizes GH4C1 cells and reduces their intracellular free Ca2+ concentration ([Ca2+]i) in a cAMP-independent manner. To determine whether these ionic changes were involved in the cAMP-independent mechanism by which somatostatin inhibited secretion, changes in cAMP levels were prevented from having any biological consequences by performing experiments in the presence of a maximal concentration of a cAMP analog. Under these conditions, inhibition of prolactin release by somatostatin required a transmembrane concentration gradient for K+ but not one for either Na+ or Cl-. However, elimination of the outward K+ gradient did not prevent somatostatin inhibition of vasoactive intestinal peptide-stimulated hormone release. Therefore, somatostatin's cAMP-mediated mechanism does not require a K+ gradient, whereas its cAMP-independent inhibition of secretion appears to result from a change in K+ conductance. Consistent with this conclusion, membrane hyperpolarization with gramicidin (1 microgram/ml) mimicked somatostatin inhibition of prolactin release. In addition, the K+ channel blocker tetrabutylammonium prevented the effects of somatostatin on the membrane potential, the [Ca2+]i and hormone secretion. Nonetheless, a K+ gradient was not sufficient for somatostatin action. Even in the presence of a normal K+ gradient, somatostatin was only able to inhibit prolactin release when the extracellular Ca2+ concentration was at least twice the [Ca2+]i. Furthermore, the calcium channel blocker, nifedipine (10 microM), which prevents the action of somatostatin to reduce the [Ca2+]i, specifically blocked inhibition of prolactin release via somatostatin's cAMP-independent mechanisms. Therefore, a decrease in Ca2+ influx through voltage-dependent Ca2+ channels produces both the fall in [Ca2+]i and inhibition of hormone secretion in response to somatostatin.  相似文献   

4.
Dual effects of manganese on prolactin secretion   总被引:1,自引:0,他引:1  
The effect of Mn2+ (a commonly used Ca2+ antagonist) on prolactin secretion from pituitary cells was investigated. In the presence of normal extracellular Ca2+ levels (2.5mM), Mn2+ inhibited basal, TRH- and K+- stimulated prolactin secretion. The Ca2+ ionophore, A23187, partially overcame the inhibitory effect of Mn2+. However, in the presence of low extracellular Ca2+ (less than 100 microM), which decreased basal prolactin secretion and abolished any stimulatory effects of TRH or K+, a paradoxical stimulatory effect was observed with Mn2+ in the presence of A23187. In the presence of Ca2+, Mn2+ appeared to be inhibitory due to its Ca2+ antagonistic effects, but at low Ca2+ levels, intracellular stimulatory effects of Mn2+ became apparent.  相似文献   

5.
6.
Measurements of concentrations of cytosolic free Ca2+ ([Ca2+]c) in individual cells has frequently demonstrated periodic transients in [Ca2+]c rather than sustained elevated levels. To determine in anterior pituitary cells if such short and repetitive [Ca2+]c transients stimulated prolactin release, we used a perifusion system with cells loaded with the fluorescent Ca2+-indicator, indo-1. A one second pulse of 100 mM KCl caused an increase in [Ca2+]c with a half peak width of about 18 seconds and an almost coincident increase in prolactin secretion. Subsequent pulses of KCl each caused increases in [Ca2+]c and prolactin release that were the same as the first, up to a pulse frequency of one every two minutes. Increasing the frequency to 1 pulse every minute or 1 pulse every 30 seconds, however, resulted in a serial decline in the amount of prolactin released by each pulse even though each pulse caused a similar peak Ca2+ response. These findings demonstrate that cells become adapted to transient increases in [Ca2+]c of the same magnitude so that they no longer release prolactin if the increases in [Ca2+]c occur frequently enough. Cells may use frequency-encoded Ca2+ signals to stimulate release of prolactin at low frequency to prevent the adaptation that occurs at higher frequencies.  相似文献   

7.
Thyrotropin-releasing hormone (TRH) stimulation of prolactin secretion from GH3 cells, cloned rat pituitary tumor cells, is associated with 1) hydrolysis of phosphatidylinositol 4,5-bisphosphate to yield inositol trisphosphate (InsP3) and 2) elevation of cytoplasmic free Ca2+ concentration [( Ca2+]i), caused in part by mobilization of cellular calcium. We demonstrate, in intact cells, that TRH mobilizes calcium and, in permeabilized cells, that InsP3 releases calcium from a nonmitochondrial pool(s). In intact cells, TRH caused a loss of 16 +/- 2.7% of cell-associated 45Ca which was not inhibited by depleting the mitochondrial calcium pool with uncoupling agents. Similarly, TRH caused an elevation of [Ca2+]i from 127 +/- 6.3 nM to 375 +/- 54 nM, as monitored with Quin 2, which was not inhibited by depleting mitochondrial calcium. Saponin-permeabilized cells accumulated Ca2+ in an ATP-dependent manner into a nonmitochondrial pool, which exhibited a high affinity for Ca2+ and a small capacity, and into a mitochondrial pool which had a lower affinity for Ca2+ but was not saturated under the conditions tested. Permeabilized cells buffered free Ca2+ to 129 +/- 9.2 nM when incubated in a cytosol-like solution initially containing 200 to 1000 nM free Ca2+. InsP3, but not other inositol sugars, released calcium from the nonmitochondrial pool(s); half-maximal effect occurred at approximately 1 microM InsP3. Ca2+ release was followed by reuptake into a nonmitochondrial pool(s). These data suggest that InsP3 serves as an intracellular mediator (or second messenger) of TRH action to mobilize calcium from a nonmitochondrial pool(s) leading to an elevation of [Ca2+]i and then to prolactin secretion.  相似文献   

8.
Thyrotropin-releasing hormone stimulation of prolactin secretion from rat pituitary (GH3) cells is biphasic with a secretory burst (0-2 min) at a higher rate, followed by sustained secretion (beyond 2 min) at a lower rate. Based on the effects of calcium ionophores, K+ depolarization, and diacylglycerol (or phorbol esters), it was suggested that the secretory burst is dependent on elevation of cytoplasmic free calcium concentration [( Ca2+]i) whereas sustained secretion is mediated by lipid-activated protein phosphorylation. In this study, we pretreated GH3 cells with 0.03 mM arachidonic acid to abolish thyrotropin-releasing hormone-induced elevation of [Ca2+]i (Kolesnick, R. N., and Gershengorn, M. C. (1985) J. Biol. Chem. 260, 707-713). In control cells, basal secretion was 0.7 +/- 0.2 ng/10(6) cells/min which increased to 8.3 +/- 0.8 between 0 and 2 min after TRH and remained elevated at 3.3 +/- 0.2 between 2-10 min. In cells pretreated with arachidonic acid, TRH stimulated prolactin secretion to only 2.6 +/- 0.3 ng/10(6) cells/min between 0 and 2 min and to 3.2 +/- 0.2 between 2 to 10 min; these values are not different from each other nor from the response between 2 and 10 min in control cells. K+ depolarization, which elevates [Ca2+]i even in arachidonic acid-pretreated cells but does not affect lipid metabolism, caused only a secretory burst. Bovine serum albumin, which binds free arachidonic acid and reverses arachidonic acid inhibition of TRH-induced elevation of [Ca2+]i, reversed the inhibition of the secretory burst stimulated by TRH. These studies present direct evidence that the burst of prolactin secretion stimulated by TRH is dependent on an elevation of [Ca2+]i whereas the sustained phase of secretion is independent of such elevation.  相似文献   

9.
G R Hart  K P Ray  M Wallis 《FEBS letters》1986,203(1):77-81
Intracellular free Ca2+ concentrations [Ca2+]i were measured in ovine anterior pituitary cells using the quin 2 technique. Thyrotropin-releasing hormone (TRH) increased, dopamine decreased and growth hormone-releasing hormone (GHRH) had no detectable effect on [Ca2+]i. Loading the cells with quin 2, at an intracellular concentration less than that used during calcium determination, reduced both basal growth hormone (GH) and (to a small extent) prolactin secretion. Loading cells with quin 2 also markedly reduced GHRH-stimulated GH secretion. However, TRH-stimulated prolactin secretion was 3-times basal irrespective of quin 2 loading. The results indicate that the use of quin 2 to measure [Ca2+]i in some cell types may be complicated by actions of quin 2 on cellular function.  相似文献   

10.
Tetraethylammonium (TEA), a K+ channel blocker, induced prolactin (PRL) secretion in GH4C1 cells in a dose-dependent manner when applied at a concentration from 1-20 mM. During continuous exposure to TEA, a significant increase in PRL secretion occurred by 20 min and the response was sustained until the end of a 60-min exposure. Blocking Ca2+ influx by employing a Ca(2+)-depleted medium or the Ca2+ channel blocker, nifedipine, prevented induction of PRL secretion by 20 mM TEA. Preincubation of the cells for 10 min with 20 mM TEA did not inhibit PRL secretion induced by thyrotropin-releasing hormone (TRH), phorbol 12-myristate 13-acetate (TPA) or by cell swelling produced by 30% medium hyposmolarity, but significantly depressed that induced by depolarizing 30 mM K+. BaCl2, another K+ channel blocker, had the same effect on PRL secretion as TEA. The data suggest that blocking K+ channels may cause membrane depolarization, thereby inducing Ca2+ influx which is a potent stimulus for PRL secretion in GH4C1 cells.  相似文献   

11.
Activation of pituitary angiotensin (ANG II) type 1 receptors (AT1) mobilizes intracellular Ca2+, resulting in increased prolactin secretion. We first assessed desensitization of AT1 receptors by testing ANG II-induced intracellular Ca2+ concentration ([Ca2+](i)) response in rat anterior pituitary cells. A period as short as 1 min with 10(-7) M ANG II was effective in producing desensitization (remaining response was 66.8 +/- 2.1% of nondesensitized cells). Desensitization was a concentration-related event (EC(50): 1.1 nM). Although partial recovery was obtained 15 min after removal of ANG II, full response could not be achieved even after 4 h (77.6 +/- 2.4%). Experiments with 5 x 10(-7) M ionomycin indicated that intracellular Ca2+ stores of desensitized cells had already recovered when desensitization was still significant. The thyrotropin-releasing hormone (TRH)-induced intracellular Ca2+ peak was attenuated in the ANG II-pretreated group. ANG II pretreatment also desensitized ANG II- and TRH-induced inositol phosphate generation (72.8 +/- 3.5 and 69.6 +/- 6.1%, respectively, for inositol triphosphate) and prolactin secretion (53.4 +/- 2.3 and 65.1 +/- 7.2%), effects independent of PKC activation. We conclude that, in pituitary cells, inositol triphosphate formation, [Ca2+](i) mobilization, and prolactin release in response to ANG II undergo rapid, long-lasting, homologous and heterologous desensitization.  相似文献   

12.
The effects of guanine nucleotides and protein kinase C on prolactin-stimulated Ca2+ release from intracellular stores of pig oocytes were studied using the fluorescent dye chlorotetracycline. The effect of prolactin was related to the protein kinase C activation. Inhibition of protein kinase C stimulated Ca2+ release from intracellular stores of the pig oocytes treated with 5 ng/ml prolactin in the presence of extracellular Ca2+ and inhibited Ca2+ release from intracellular stores of the pig oocytes treated with 50 ng/ml prolactin. In a Ca2+-free medium, prolactin did not stimulate Ca2+ release from intracellular stores of the oocytes treated with GDP in the presence of GDP. GTP inhibition of protein kinase C activated Ca2+ release from intracellular stores of the pig oocytes treated with 5 ng/ml prolactin and inhibited Ca2+ release from intracellular stores of the pig oocytes treated with 50 ng/ml prolactin. These data suggest the influence of guanine nucleotides and protein kinase C on calcium metabolism, stimulated by prolactin.  相似文献   

13.
Depolarizing K+ and medium hyposmolarity caused striking rises in both cytosolic free Ca2+ concentration [( Ca2+]i) and prolactin (PRL) secretion in GH4C1 cells, which were completely blocked by removal of medium Ca2+. However, the increase in [Ca2+]i and PRL secretion induced by hyposmolarity was clearly slower than that induced by K+. Although there was a good correlation between the zenith of PRL secretion and [Ca2+]i induced by various intensities of K+ or hyposmolarity, the regression slopes were significantly different between the K(+)-and hyposmolarity-induced changes (P less than 0.01). There was a good correlation between the maximum rate of change in PRL secretion and that of the increase in [Ca2+]i when the data from the 2 secretagogues were combined (r = 0.994, P less than 0.001, N = 9). We suggest that the rate of increase in [Ca2+]i may be more important than the amplitude of [Ca2+]i in stimulating PRL secretion.  相似文献   

14.
Effect of progesterone on theophylline and prolactin stimulated Ca2+ exit from intracellular stores of pig oocytes was investigated using a fluorescent dye chlortetracycline. It is shown that in progesterone treated oocytes prolactin in concentration 50 ng/ml inhibits Ca2+ exit from intracellular stores of pig oocytes. Theophylline exerts the effect on prolactin Ca2+ exit from intracellular stores of pig oocytes. Employment of protein kinase C inhibitor cancelled inhibitory effect of prolactin and theophylline on Ca2+ exit from intracellular stores of pig oocytes. Ca2+ exit from intracellular stores of pig oocytes caused a joint influence of prolactin and GDP, and that of theophylline and GTP. The influence of protein kinase C inhibitor cancelled the stimulating effect of prolactin and GDP on Ca2+ exit from intracellular stores of pig oocytes also did not render any influence on the action of theophylline and GTP. These data suggest the influence of progesterone on theophylline and prolactin stimulated Ca2+ exit from intracellular stores of pig oocytes.  相似文献   

15.
Using a fluorescent dye chlortetracycline, a study was made of the effect of estradiol on the interaction of theophylline and prolactin in the course of Ca2+ exit from intracellular stores of pig oocytes, isolated from ovaries at the stage of follicle growth. It is shown that in the presence of estradiol, prolactin does not stimulate Ca2+ exit from intracellular stores of pig oocytes. The action of theophylline similarly does not stimulate Ca2+ exit. Unlike, a joint effect of theophylline and prolactin on pig oocytes in the presence estradiol stimulated Ca2+ exit from intracellular stores of pig oocytes. These data demonstrated the influence of estradiol on theophylline and prolactin stimulated Ca2+ exit from intracellular stores of pig oocytes.  相似文献   

16.
We have used GH3 cells permeabilized by electric field discharge to examine the effects of Ca2+ and protein kinase C activators (phorbol ester and diacylglycerol) on prolactin (PRL) release. Ca2+ was found to stimulate PRL release approximately 4 fold at 3 microM Ca2+ with a half-maximal response at approximately .5 microM estimated free Ca2+. 12-O-tetradecanoyl phorbol-13-acetate and 1-oleoyl-2-acetyl-sn-glycerol stimulated PRL release throughout a range of Ca2+ concentrations (1 nM -3 microM), but stimulation was greater at higher Ca2+ concentrations (.1 microM to 1 microM). Both agents decreased by 1.8 fold the apparent [Ca2+] at which half-maximal stimulation of secretion occurred. Quin 2 was used to measure the free [Ca2+] of intact and permeable cells; PRL secretion at a free [Ca2+] corresponding to resting cytoplasmic [Ca2+] was 10% of maximal, while secretion at the [Ca2+] corresponding to the Ca2+ spike induced by thyrotropin-releasing hormone was approximately 25% of maximal.  相似文献   

17.
Hyposmolar stimulation of thyroid-stimulating hormone, prolactin, and luteinizing hormone secretion by dispersed perifused rat pituitary cells was not depressed by removal of Ca2+ from the perifusion medium or by 0.1 mM colchicine, 20 microM cytochalasin B, 0.1 mM ouabain, or 3 microM tetrodotoxin. The secretory response induced by medium hyposmolarity or by thyrotropin-releasing hormone was not appreciably different at 23, 37, or 43 degrees C, but was markedly reduced or abolished when the experiments were performed at 1 degree C. These data indicate that microtubules or microfilaments, transport of extracellular Ca2+ into the cytoplasm, and plasmalemma ion transport mechanisms sensitive to ouabain or tetrodotoxin are not essential components of the mechanism by which extracellular hyposmolarity induces secretion.  相似文献   

18.
Thyrotropin-releasing hormone (TRH) stimulates biphasic prolactin (PRL) secretion from rat pituitary GH3 cells. The pretreatment of cells with EGTA (100 microM) plus arachidonic acid (15 microM), a condition which decreased TRH-responsive intracellular Ca2+ pools, eliminated the activity of TRH on burst PRL secretion (2 min) but did not alter that on sustained PRL secretion (30 min). However, the treatment of cells with EGTA, arachidonic acid and H-7 (300 microM), a potent inhibitor of protein kinase C (PKC), almost completely suppressed the activity of TRH for sustained PRL secretion. In cells down-modulated for PKC, TRH abolished this Ca2(+)-independent sustained PRL secretion. These results suggest that TRH acts through a separate, Ca2(+)-independent secretory mechanism, besides by modulating the Ca2(+)-dependent mechanism and that PKC is involved in this Ca2(+)-independent secretory pathway.  相似文献   

19.
The G protein-coupled receptors in excitable cells have prominent roles in controlling Ca2+-triggered secretion by modulating voltage-gated Ca2+ influx. In pituitary lactotrophs, spontaneous voltage-gated Ca2+ influx is sufficient to maintain prolactin release high. Here we show that endothelin in picomolar concentrations can interrupt such release for several hours downstream of spontaneous and high K+-stimulated voltage-gated Ca2+ influx. This action occurred through the Gz signaling pathway; the adenylyl cyclase-signaling cascade could mediate sustained inhibition of secretion, whereas rapid inhibition also occurred at elevated cAMP levels regardless of the status of phospholipase C, tyrosine kinases, and protein kinase C. In a nanomolar concentration range, endothelin also inhibited voltage-gated Ca2+ influx through the G i/o signaling pathway. Thus, the coupling of seven-transmembrane domain endothelin receptors to Gz proteins provided a pathway that effectively blocked hormone secretion distal to Ca2+ entry, whereas the cross-coupling to G i/o proteins reinforced such inhibition by simultaneously reducing the pacemaking activity.  相似文献   

20.
Role of calcium (Ca2+) in the effects of thyroliberin (TRH) and somatostatin (SRIF) on the release of growth hormone (GH), prolactin (PRL) and thyroid stimulating hormone (TSH) from the rat adenohypophyseal cells in primary monolayer cultures has been studied. Decrease of extracellular Ca2+ diminished the stimulatory effects of TRH on TSH and PRL release. Ca2+ is also an important factor in the mechanism of SRIF action. Data obtained in the experiments with high Ca2+ levels in the medium indicate that some antagonistic interrelationship exists between Ca2+ and SRIF. These results suggest that the participation of cAMP alone is not sufficient for stimulus-secretion coupling. Another messenger, namely Ca2+, is necessary for the effects of hypothalamic hormones. On the other hand, the contribution of Ca2+ to the secretory process in mammotrophs, somatotrophs and thyrotrophs is not equal. PRL and TSH secretion is more dependent on the presence of extracellular Ca2+ than the release of GH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号