首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several previous reports have indicated that a number of dopaminergic antagonists paradoxically inhibit prolactin secretion at micromolar concentrations. It is well known that some of these drugs, including pimozide and the phenothiazines, are inhibitors of calmodulin activity. Here we report that micromolar concentrations of several dopaminergic antagonists inhibit prolactin secretion from isolated rat anterior pituitary cells and calmodulin activity (calmodulin-activated cyclic GMP phosphodiesterase). Inhibition of calmodulin activity may thus, at least partially, explain the inhibitory effect of these drugs on prolactin secretion.  相似文献   

2.
The effects of dopamine on pituitary prolactin secretion and pituitary cyclic AMP accumulation were studied by using anterior pituitary glands from adult female rats, incubated in vitro. During 2h incubations, significant inhibition of prolactin secretion was achieved at concentrations between 1 and 10nm-dopamine. However, 0.1–1μm-dopamine was required before a significant decrease in pituitary cyclic AMP content was observed. In the presence of 1μm-dopamine, pituitary cyclic AMP content decreased rapidly to reach about 75% of the control value within 20min and there was no further decrease for at least 2h. Incubation with the phosphodiesterase inhibitors theophylline (8mm) or isobutylmethylxanthine (2mm) increased pituitary cyclic AMP concentrations 3- and 6-fold respectively. Dopamine (1μm) had no effect on the cyclic AMP accumulation measured in the presence of theophylline, but inhibited the isobutylmethylxanthine-induced increase by 50%. The dopamine inhibition of prolactin secretion was not affected by either inhibitor. Two derivatives of cyclic AMP (dibutyryl cyclic AMP and 8-bromo cyclic AMP) were unable to block the dopamine (1μm) inhibition of prolactin secretion, although 8-bromo cyclic AMP (2mm) significantly stimulated prolactin secretion and both compounds increased somatotropin (growth hormone) release. Cholera toxin (3μg/ml for 4h) increased pituitary cyclic AMP concentrations 4–5-fold, but had no effect on prolactin secretion. The inhibition of prolactin secretion by dopamine was unaffected by cholera toxin, despite the fact that dopamine had no effect on the raised pituitary cyclic AMP concentration caused by this factor. Dopamine had no significant effect on either basal or stimulated somatotropin secretion under any of the conditions tested. We conclude that the inhibitory effects of dopamine on prolactin secretion are probably not mediated by lowering of cyclic AMP concentration, although modulation of the concentration of this nucleotide in some other circumstances may alter the secretion of the hormone.  相似文献   

3.
To examine the previous suggestion that the endogenous dopaminergic activity would be increased in patients with primary aldosteronism, dose-response curves of aldosterone and prolactin stimulation by the dopamine antagonist metoclopramide were established in a pilot study by injecting metoclopramide 1, 2.5, and 10 mg i.v. consecutively at hourly intervals to 6 patients with primary aldosteronism and 14 healthy volunteers. All three metoclopramide doses induced clear-cut rises in aldosterone levels both in patients with primary aldosteronism and healthy controls. Basal aldosterone concentration was higher in range in the patients but the dose-response curves were nearly parallel one with the other. Prolactin responsiveness was also very similar. Thus, the present findings do not support the hypothesis of an increase in endogenous dopaminergic activity in primary aldosteronism.  相似文献   

4.
5.
Catecholamine-stimulated salivary fluid secretion (in vitro) by ixodid ticks is reduced by deletion or lowering the concentration of exogenous bathing medium Ca++. The Ca++ antagonist, verapamil, reversibly inhibits dopamine-stimulated secretion. Ionophore A-23187 is unable to induce glands to secrete. Studies in which labeled and unlabeled Ca++ flux were measured indicate that catecholamines induce release of calcium from intracellular stores during secretion. Cyclic AMP/theophylline-stimulated secretion is inhibited by verapamil, and the exclusion of calcium from the support medium. It is concluded that the primary catecholamine stimulus induces cyclic AMP formation and mobilization of Ca++ (intra- and extracellular). Cyclic AMP and calcium are thought to interact to control secretion within the fluid transporting cells of types II and III alveoli.  相似文献   

6.
7.
The possible involvement of tubulin in transduction of the prolactin signal   总被引:1,自引:0,他引:1  
Prolactin has many different biological functions. It stimulates Nb2 cell multiplication through the kinase C transduction mechanism, casein secretion through the phospholipase A2-arachidonic acid-leukotrienes cascade and milk protein gene expression through an unknown mechanism. Colchicine and other tubulin binding drugs inhibit casein gene expression and DNA synthesis stimulated by prolactin whereas chemical compound which alter microtubule without binding tubulin exert no inhibitory effect. Myo-inositol which suppresses some of the colchicine actions in several biological systems does not restore prolactin action after an inhibition by the drug. These data suggest that a tubulin molecule in the vicinity of the prolactin receptor, rather than actual microtubules, is involved in the transduction of the prolactin message from its receptor to milk protein genes.  相似文献   

8.
Acetylcholine, oxotremorine and carbachol, compounds that exhibit muscarinic agonist activity, maximally inhibited basal prolactin secretion from GH3 cells by approx. 50% and intracellular cyclic AMP levels by approx. 20%. Both parameters were inhibited with similar potencies by each agonist. These inhibitory effects were blocked by a muscarinic but not by a nicotinic receptor antagonist. In the presence of VIP or IBMX, which raise intracellular cyclic AMP levels and stimulate hormone release, the degree of muscarinic inhibition was increased, but the potency remained unchanged. Similar changes in the secretory rate of prolactin and growth hormone occurred in these and in cell perifusion experiments. These results suggest that the inhibition of hormone secretion from GH3 cells by muscarinic agonists is mediated by a decrease in intracellular cyclic AMP levels.  相似文献   

9.
Cholinergic muscarinic receptors were identified in AtT-20/D16-16 (AtT-20) cell membranes by receptor binding techniques and the effect of carbachol on basal and stimulated cyclic AMP formation and ACTH release was investigated. Carbachol markedly decreased the stimulatory effect of the adenylate cyclase activator, forskolin, on both cyclic AMP formation and ACTH secretion. Carbachol also reduced forskolin-stimulated adenylate cyclase activity. The stimulatory effects of (-) isoproterenol on cyclic nucleotide formation and ACTH secretion were also blocked by carbachol. The inhibitory effects of carbachol on (-) isoproterenol-stimulated cyclic AMP synthesis and ACTH secretion were reversed by the muscarinic antagonist, atropine, and not by the nicotinic antagonist, gallamine. These data suggest that in AtT-20 cells, inhibition of ACTH secretion may be regulated by activation of muscarinic receptors coupled negatively to adenylate cyclase.  相似文献   

10.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5–1 μg/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 μg/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 μg/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 μg/ml). Somatostatin (1 μg/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated.The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

11.
J F Ropert  M E Quigley  S S Yen 《Life sciences》1984,34(21):2067-2073
To assess the potential inhibitory role of hypothalamic dopaminergic input on the LRF-LH system, the gonadotropin response to a dopamine receptor antagonist, metoclopramid (MCP, 10 mg iv bolus) was examined during different phases of the menstrual cycle in 12 women. In addition, the role of dopamine infusion on naloxone (opiate receptor antagonist) induced LH increments was examined. MCP induced an abrupt increase in circulating LH levels in the mid-luteal phases but not in the early and late follicular phase subjects. No significant changes in serum FSH levels were observed. Dopamine, when infused concomitantly with naloxone, completely suppressed the naloxone induced pulsatile increments of LH in mid-luteal subjects. These findings support the contention that an increased dopaminergic inhibition of LRF-LH system occurs during the high estrogen-progesterone phase of the menstrual cycle, and provide preliminary evidence that the inhibitory role of endogenous opioids on LRF release may involve the dopaminergic system.  相似文献   

12.
The regulation of cell proliferation by calcium and cyclic AMP   总被引:10,自引:0,他引:10  
Calcium, in partnership with cyclic AMP, controls the proliferation of non-tumorigenic cells in vitro and in vivo. While it does not seem to be involved in the proliferative activation of cells such as hepatocytes (in vivo) or small lymphocytes (in vitro), it does control two later stages of prereplicative (G1) development. It must be one of the very many regulatory and permissive factors affecting early prereplicative development, because severe calcium deprivation reversibly arrests some types of cell early in the G1 phase of their growth-division cycle in vitro. However, calcium more specifically and much more often regulates a later (mid or late G1) stage of prereplicative development. Thus, regardless of its severity or the type of cell, calcium deprivation in vitro or in vivo reversibly stops proliferative development at that part of the G1 phase in which the cellular cyclic AMP content transiently rises and the synthesis of the four deoxyribonucleotides begins. The evidence points to calcium and the cyclic AMP surge being co-generators of the signal committing the cell to DNA synthesis. The evidence is best explained so far by the cyclic AMP surge causing a surge of calcium ions which combine with molecules of the multi-purpose, calcium-dependent, regulator protein calmodulin (CDR) somewhere between the cell surface and the cytosol. The resulting Ca-calmodulin complexes then stimulate many different (and possibly membrane-associated) enzymes such as protein kinases, one of which produces the DNA-synthetic initiator. Calcium has little or no influence on the proliferation of tumor cells. Some possible explanations of this very important loss of control are considered.  相似文献   

13.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumulation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5--1 microgram/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 microgram/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 microgram/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 microgram/ml). Somatostatin (1 microgram/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated. The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

14.
The possible role of cyclic AMP in the control of genetic tumor induction   总被引:1,自引:0,他引:1  
Ames  Ira H. 《Plant & cell physiology》1976,17(5):1059-1066
Young seedlings of the tumor-prone amphiploid Nicotiana suaveolensx N. langsdorffii, grown aseptically on nutrient medium, weretreated with 1x10–2 M cyclic adenosine 3': 5'-monophosphate(cyclic AMP). The incidence of tumor formation was scored atregular intervals subsequent to exposure. Cyclic AMP causeda significant reduction in the rate of tumor formation. In addition,untreated plants grown on nutrient medium were harvested atregular intervals after the seeds had been sown. Cyclic AMPwas extracted, partially purified, and assayed radioimmunologically.The endogenous level of cyclic AMP in stem tissue was highestin young seedlings, rapidly fell reaching a low point in 18day-old plants, and eventually leveled off. The presence ofindoleacetic acid (IAA) in the growth medium at a final concentrationof 2x10–5 M prevented the decline in cyclic AMP that occurredin seedlings grown on unsupplemented medium. (Received May 21, 1976; )  相似文献   

15.
The effects of histamine on prolactin secretion and the activity of tuberoinfundibular dopaminergic (DA) neurons were examined in male rats. Tuberoinfundibular DA neuronal activity was estimated in situ by measuring the metabolism [concentration of 3,4-dihydroxyphenylacetic acid (DOPAC)] and synthesis [accumulation of 3,4-dihydroxyphenylalanine (DOPA) after administration of a decarboxylase inhibitor] of dopamine in the median eminence. Intracerebroventricular (icv) injection of histamine produced a dose- and time-dependent increase in plasma prolactin levels but had no effect on DOPA accumulation or DOPAC concentrations in the median eminence. These results indicate that the stimulation of prolactin secretion following icv histamine is not mediated by an inhibition of tuberoinfundibular DA neurons.  相似文献   

16.
We investigated whether prolactin acts at the ovarian level by interfering with the accumulation of gonadotrophin-induced ovarian cyclic AMP. Mouse ovaries were incubated with hCG and varying doses of prolactin. At the end of the incubation, the cyclic AMP which accumulated in the tissue + medium was measured. In ovaries devoid of corpora lutea, a significant inverse correlation (r = -0.93, P less than 0.05) was obtained between the doses of prolactin (0.1-25.6 micrograms ovine prolactin) and hCG-induced accumulation of ovarian cyclic AMP. In the presence of the phosphodiesterase inhibitor IBMX, however, the same doses of prolactin failed to exhibit any restricting influence on the accumulation of cyclic AMP. In luteinized ovaries, the same doses of prolactin in the absence of IBMX did not inhibit the hCG-induced cyclic AMP accumulation.  相似文献   

17.
18.
19.
The possibility that chronic hyperprolactinaemia results in loss of the ability of hypothalamic dopamine activity to inhibit prolactin secretion was studied in rats. Two degrees of hyperprolactinaemia (moderate and gross) were induced in the animals following the chronic administration of two different doses of oestradiol valerate. In rats with high chronic serum prolactin concentrations (approximately 20 times normal) there was a profound increase in prolactin secretion following inhibition of brain dopamine (DA) synthesis by 3-iodo-L-tyrosine, indicating intact and highly active hypothalamic DA-inhibitory control of prolactin release. However, the degree of hypothalamic inhibition of prolactin release relative to normal controls was significantly reduced. In animals with grossly elevated chronic serum prolactin concentrations (approximately 100 times normal) a prolactin response to DA synthesis inhibition was absent despite a highly significant reduction in hypothalamic DA concentrations induced by 3-iodo-L-tyrosine. These observations show that chronic and gross hyperprolactinaemia in the rat results in loss of hypothalamic DA inhibitory control of prolactin secretion. The use of 3-iodo-L-tyrosine to block brain DA synthesis in these studies has provided significant new data relating to prolactin control in hyperprolactinaemic states and indicates that this compound could be a useful clinical tool in the study of human hyperprolactinaemia.  相似文献   

20.
Serum-starved chick osteoblast-like cells (OB cells) and periosteal fibroblasts (PF cells) were used to study the proliferative effects of parathyroid hormone (PTH) and prostaglandin E2 (PGE2). Both PTH (10(-11) to 10(-8) M) and PGE2 (10(-9) to 10(-5) M) had a direct, dose-related effect on the de novo synthesis of DNA in OB cells. The PF cells only showed a dose-dependent effect in the presence of PGE2 (10(-9) to 10(-5) M). The hormonally induced proliferation of these cells was shown to be dependent on cell density and stimulation time. An optimal response for both cell types was observed in the cell density range 1.5 to 3.5 micrograms DNA/2 cm2, when stimulated for 18 hours. As cAMP-enhancing substances (N6-dBcAMP, forskolin and IBMX) could mimic the PTH- and PGE2-induced proliferation in OB cells, the increased DNA synthesis was concluded to be mainly caused by enhanced cAMP concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号