首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the course of incubation, in vitro, in a saline medium, we found an increase of cell volume and Na+ content in human neonatal erythrocytes (NNE), from the umbilical cord. The increased cell volume was dependent on the major anion in the medium in that replacement of Cl- by NO-3 abolished the cell volume increase. In erythrocytes from adults neither the cell volume nor the sodium content were altered under similar incubation conditions. Furosemide-sensitive Na+ and K+ fluxes were at variance from those reported from adult erythrocytes. The differences here presented between both cell types would be another instance of changes observed to occur in erythrocytes during the postnatal period.  相似文献   

2.
Previous work has suggested the presence of galactosyltransferases on the outer surface of the plasma membrane of a malignant and a nonmalignant cell line. This paper summarizes data indicating that three other classes of glycosyltransfeases are similarly located on cell surfaces. In addition to the original two cell lines examined, BALB/c 3T3 and BALB/c 3T12, two other lines of BALB/c origin have been investigated. These are the SV40–transformed 3T3 line and one of the revertants of the virally infected cells that is no longer malignant but retains a viral genome.  相似文献   

3.
4.
3T3-4E cells formed multinucleate cells with high frequency when incubated in methocel medium. The experiment with hydroxyurea and the cytological observation of mitoses showed that multinucleate cells were produced by nuclear division in the absence of cytokinesis. When transferred onto a solid substratum, most of the multinucleate cells divided within seven hours into mononucleate cells through the process of cytoplasmic division, indicating that cell spreading induced cytokinesis. Other mouse fibroblast lines examined so far showed only the low frequency of multinucleation. These findings indicate that in 3T3-4E cells cultivated in methocel, nuclear division occurred independently of cytokinesis, and that cytokinesis was also anchorage-dependent. This system will be available for studying cytoplasmic division of mammalian cells.  相似文献   

5.
L-929 mouse fibroblast growth is arrested by the glucocorticosteroid dexamethasone (dex), which also decreases adhesiveness to culture plates. Both dex effects were abolished when RU 486, a new synthetic anti-hormonal steroid, was added to the culture medium. Using [3H]RU 486, binding studies revealed that RU 486 bound approximately 25,000 sites/cell of the glucocorticosteroid receptor (GR) with affinity higher than that of dex and translocated GR to the nucleus. However, the distribution of steroid-receptor complexes between cytosol and nuclei was different for the agonist and the antagonist, with more nuclear accumulation in the case of dex. Estradiol increases L-929 cell growth and adhesiveness to culture plates, but not if the anti-estrogen tamoxifen (tam) was added. These observations initially made in serum containing medium, were confirmed in serum-free, chemically defined culture medium (SF). In SF medium, tam (1 microM) provoked death of most L-929 cells after 10 days of culture, leading to the selection of a variant clone LB of tam-resistant cells. Tam binds to the estrogen receptor (ER), but with less affinity than estradiol. ER concentration, estimated by the binding of 4-hydroxytamoxifen (OH-tam) and of estradiol was lower in LB cells than in original tam-sensitive L-929 cells. The concentration of specific anti-estrogen binding sites in the particulate fraction of the cells, measured by OH-tam binding, non competed by estradiol, was also significantly diminished in tam-resistant LB cells.  相似文献   

6.
The new system for the transfer and expression of foreign genes based on retroviral vectors pPS-neo, conferring neomycin resistance was constructed. The BALB/c mouse cell lines producing highly active human growth hormone (more than 7 micrograms/ml into culture medium) were constructed using these vectors. An antibody column was used to purify the growth hormone from cell culture medium. Possibilities of producers to be applied for gene therapy are discussed.  相似文献   

7.
8.
The hydrolysis of sphingomyelin from cellular plasma membranes imposes many consequences on cellular cholesterol homeostasis by causing a rapid and dramatic redistribution of plasma membrane cholesterol within the cells (Slotte, J.P. and Bierman, E.L. (1988) Biochem. J. 250, 653-658). The objective of this study was to examine the effects of an extracellular cholesterol acceptor on the directions of the sphingomyelinase-induced cholesterol flow in cultured fibroblasts. We have used HDL3 as a physiological acceptor for cholesterol, and measured the effects of sphingomyelin hydrolysis on efflux and endogenous esterification of cellular [3H]cholesterol. Treatment of cells with sphingomyelinase did induce a dramatically increased esterification of plasma-membrane-derived [3H]cholesterol. The presence of HDL3 in the medium (100 micrograms/ml) did not prevent or reduce the extent of the sphingomyelinase-induced cellular esterification of [3H]cholesterol. Degradation of cellular sphingomyelin (75% hydrolysis) also did not enhance the rate of [3H]cholesterol efflux from the plasma membranes to HDL3. In addition, we also observed that the degradation of sphingomyelin in the HDL3 particles (complete degradation) did not change the apparent rate of [3H]cholesterol transfer from HDL3 to the cells. These findings together indicate that hydrolysis of sphingomyelin did not markedly affect the rates of cholesterol surface transfer between HDL3 and cells. By whatever mechanism cholesterol is forced to be translocated from the plasma membranes subsequent to the degradation of sphingomyelin, it appears that the sterol flow is specifically directed towards the interior of the cells.  相似文献   

9.
10.
Reactive oxygen species (ROS) are produced in NIH3T3 fibroblasts during hypotonic stress, and H(2)O(2) potentiates the concomitant release of the organic osmolyte taurine (Lambert IH. J Membr Biol 192: 19-32, 2003). The increase in ROS production [5-(and-6)-carboxy-2', 7'-dichlorodihydrofluorescein diacetate fluorescence] is detectable after a reduction in the extracellular osmolarity from 335 mosM (isotonic) to 300 mosM and reaches a maximal value after a reduction to 260 mosM. The swelling-induced ROS production is reduced by the flavoprotein inhibitor diphenylene iodonium chloride (25 microM) but is unaffected by the nitric oxide synthase inhibitor N omega-nitro-l-arginine methyl ester, indicating that the volume-sensitive ROS production is NADPH oxidase dependent. NIH3T3 cells express the NADPH oxidase components: p22 phox, a NOX4 isotype; p47 phox; and p67 phox (real-time PCR). Exposure to the Ca2+-mobilizing agonist ATP (10 microM) potentiates the release of taurine but has no effect on ROS production under hypotonic conditions. On the other hand, addition of the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 100 nM) or the lipid messenger lysophosphatidic acid (LPA, 10 nM) potentiates the swelling-induced taurine release as well as the ROS production. Overexpression of Rac1 or p47 phox or p47 phox knockdown [small interfering (si)RNA] had no effect on the swelling-induced ROS production or taurine release. NOX4 knockdown (siRNA) impairs the increase in the ROS production and the concomitant taurine release following osmotic exposure. It is suggested that a NOX4 isotype plus p22 phox account for the swelling-induced increase in the ROS production in NIH3T3 cells and that the oxidase activity is potentiated by PKC and LPA but not by Ca2+.  相似文献   

11.
With the aid of autoradiography, the effect of insulin on entering S- from G1-period of the mitotic cycle and on the rate of DNA synthesis of the mouse fibroblasts (L), was studied,--in the cells incubated for 24 hr in serum-free medium. In these conditions the cells were temporarily blocked in G1-period. Insulin (100 mcU/ml) increased by 1.5-fold the amount of cells in S-period as well as caused a marked stimulation of DNA synthesis.  相似文献   

12.
Binding of high-density lipoproteins to cultured mouse Ob1771 adipose cells was studied, using labeled human HDL3, mouse HDL and apolipoprotein AI- or AII-containing liposomes. In each case, saturation curves were obtained, yielding linear Scatchard plots. The Kd values were found to be respectively 18, 42, 30 and 3.4 micrograms/ml, whereas the maximal binding capacities were found to be 160, 100, 90 and 21 ng/mg of cell protein. Apoprotein AI not inserted into liposomes did not bind. The binding of 125I-HDL3 was competitively inhibited by apolipoprotein AI-containing liposomes greater than mouse HDL greater than HDL3. The binding of 125I-labeled apolipoprotein AI- and 125I-labeled apolipoprotein AII-containing liposomes was competitively inhibited by HDL3, apolipoprotein AI- and apolipoprotein AII-containing liposomes. Dimyristoylphosphatidylcholine liposomes containing or not cholesterol did not interfere with the binding of labeled HDL3 or apolipoprotein-containing liposomes. Binding studies on crude membranes of Ob1771 adipose cells revealed the presence of intracellular binding sites for LDL and HDL3. Thus, adipose cells have specific binding sites for apolipoprotein E-free HDL and apolipoprotein AI (or AII) is the ligand for these binding sites. Long-term exposure of adipose cells to LDL cholesterol as a function of LDL concentration led to an accumulation of cellular unesterified cholesterol. This process was saturable and reversible as a function of time and concentration by exposure to HDL3 or apolipoprotein AI-containing liposomes, whereas apolipoprotein AII-containing liposomes did not promote any cholesterol efflux. Since long-term exposure of adipose cells to LDL and HDL3 did not affect the number of apolipoprotein B,E receptors and apolipoprotein E-free binding sites, respectively, it appears that adipose cells do not show efficient cholesterol homeostasis and thus could accumulate or mobilize unesterified cholesterol.  相似文献   

13.
Summary It is known that human and animal fibroblasts are able to induce the retraction of a fibrin clot. In the present study the correlation between (i) fibrinclot retractile (FCR) activity, (ii) the number of actin stress-lines in mouse fibroblasts during growth in culture, and (iii) the sensitivity of actin stress-lines to a powerful actin-depolymerizing factor (ADF), present in plasma and serum of humans and laboratory animals was investigated. Fibroblasts at early passages (2–4) were tested for these parameters at various intervals after seeding (24, 96, and 168 h). The number of actin stress-lines was progressively higher, while the sensitivity to ADF action was progressively lower in cells cultured from 24 to 168 h; the FCR capacity was significantly decreased at 168 h. These data suggest that cells containing weakly polymerized and/or stabilized actin are more active than those containing highly polymerized and/or stabilized actin in triggering fibroblast contraction.  相似文献   

14.
15.
16.
Myosin in cultured fibroblasts   总被引:10,自引:0,他引:10  
  相似文献   

17.
Programmed cell death (apoptosis) occurs in nearly all cell types examined, including mammalian oocytes and embryos, where it may underlie some forms of infertility in humans. Although the molecular machinery participating in apoptosis have been intensely investigated, the accompanying physiological changes have not received similar attention. In this study, a novel electrophysiology technique has been employed to monitor real-time perturbations in the physiology of mouse embryos undergoing apoptosis evoked by hydrogen peroxide, diamide, and staurosporine. Despite differences in their mode of action, these agents evoked a similar early change in cellular physiology; namely, a pronounced, transient, potassium efflux through tetraethylammonium-sensitive potassium channels accompanied by cell shrinkage. Mouse zygotes exposed to 200 microM H(2)O(2) exhibited potassium efflux that elevated the potassium concentration of the media surrounding embryos by 1.4 +/- 0.1 microM. Pretreatment with tetraethylammonium inhibited this increase (0.2 +/- 0.1 microM). Our results indicate that potassium efflux through potassium channels and concurrent cell shrinkage are early indicators of cell death in embryos and that noninvasive measurements of potassium pathophysiology may identify embryos undergoing cell death prior to the manifestation of other morphological or molecular hallmarks of cell death.  相似文献   

18.
19.
Malondialdehyde modification and copper ion-induced autooxidation of the apo E-free HDL3 fraction of high-density lipoproteins were studied with respect to physico-chemical characteristics and physiological properties of the lipoprotein. Cu(2+)-oxidized HDL was much less modified than MDA-treated HDL, in terms of electrophoretic mobility, lipid peroxidation product content, Lys and Trp amino acid residue level and polymerization of apo A-I. With [3H]cholesteryl linoleate-labeled LDL, an inhibition of cholesterol efflux was observed in the presence of modified HDL, with a more marked effect with MDA-modified HDL. Competition studies with iodinated native HDL demonstrated a decreased binding of modified HDL to cell surface receptors. The decrease in cholesterol intracellular content, determined either by the isotopic equilibrium method or by the enzymatic cholesterol oxidase technic, was less marked in the presence of modified HDL than in the presence of native HDL. MDA-modified HDL was the less effective in decreasing cellular cholesterol content. It is thus suggested that malondialdehyde-induced alteration of HDL, or HDL peroxidation, if occurring in vivo, could contribute to the progress of atherogenesis by decreasing cholesterol efflux from peripheral tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号