首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In multiple myeloma (MM), malignant plasma cells produce large amounts of antibodies and have highly active protein translational machinery. It is not known whether regulation of the abundance and aminoacylation (charging) of transfer RNA (tRNA) takes place in myeloma cells to accommodate for the increased amount of protein translation. Using tRNA-specific microarrays, we demonstrate that tRNA levels are significantly elevated in MM cell lines compared to normal bone marrow cells. We furthermore show that the addition of the proteasome inhibitor, bortezomib (Velcade™, PS-341) results in decreased charging levels of tRNAs, in particular those coding for hydrophobic amino acids. These results suggest that tRNA properties are altered in MM to accommodate for its increased need for protein translation, and that proteasome inhibition directly impacts protein synthesis in MM through effects on tRNA charging.  相似文献   

2.
目的:探讨雷公藤内酯醇(TPL)对多发性骨髓瘤RPMI8226细胞增殖、凋亡和组蛋白H3K4甲基化的影响。方法:以人多发性骨髓瘤细胞株RPMI8226为研究对象,在不同浓度(10、20、40、80、160 nmol/L) TPL中共培养不同时间(24 h、48 h、72 h)后,采用噻唑蓝(MTT)法检测细胞增殖活性;流式细胞术检测细胞凋亡和细胞周期;Western blot法检测组蛋白H3K4me2、H3K4me3的甲基化状态,实时荧光定量RT-PCR分析组蛋白甲基化酶SMYD3和组蛋白去甲基化酶LSD1的表达水平。结果:TPL对RPMI8226细胞有明显的增殖抑制作用,呈剂量和时间依赖性(P<0.05);TPL对RPMI8226细胞有明显诱导凋亡的作用,并且随着TPL作用浓度的增加,细胞凋亡比例逐渐增加(P<0.05);同时TPL还可以诱导RPMI8226细胞周期阻滞于G2/M期;TPL以浓度依赖性降低组蛋白H3K4me2、H3K4me3的甲基化水平(P<0.05,P<0.01),并抑制SMYD3和上调LSD1的表达(P<0.05)。结论:TPL可抑制RPMI8226细胞增殖、引起细胞周期阻滞于G2/M期,并诱导其凋亡;通过抑制组蛋白甲基化酶SMYD3和增强组蛋白去甲基化酶LSD1的表达,降低组蛋白H3K4me3和H3K4me2的甲基化水平,这可能是TPL诱导多发性骨髓瘤细胞凋亡和抗肿瘤作用的机制之一。  相似文献   

3.
Multiple myeloma (MM) is defined as the second most common hematological tumor in the globe. Long noncoding RNAs (lncRNAs) have been reported to play stimulative or suppressive role in the progression of different carcinomas. The investigation of lncRNAs in MM is still inadequate. LncRNA HOXB cluster antisense RNA 1 (HOXB-AS1) was once revealed to facilitate glioma progression by affecting cellular activities of glioma cells. However, whether HOXB-AS1 participates in the development of MM still remains an enigma. In this study, we unveiled that HOXB-AS1 was highly expressed in MM and loss-of-function assays certified that HOXB-AS1 obstruction suppressed MM cell proliferation, and stimulated cell apoptosis. In addition, HOXB-AS1 could modulate fucosyltransferase 4 (FUT4) and FUT4-mediated Wnt/β-catenin pathway. In subsequence, it was observed from mechanism assays that HOXB-AS1 enhanced the interaction between ELAVL1 and FUT4 so as to stabilize FUT4 messenger RNA. In the end, rescue experiments affirmed that HOXB-AS1 affected the cell growth through FUT4 in MM. In conclusion, the whole modulation mechanism of HOXB-AS1/ELAVL1/FUT4 axis in MM was validated in this study, which suggested that HOXB-AS1 might function as a powerful and promising therapeutic biomarker for the clinical treatment of patients with MM.  相似文献   

4.
Histone deacetylase inhibitors (HDACi) are novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with multiple myeloma (MM). Although HDACi have demonstrable synergy when combined with proteasome inhibitors (PIs), recent evidence indicates that combination of HDACi and PI is beneficial only in a subset of patients with advanced MM, clearly indicating that other rational combinations should be explored. In this context we hypothesized that understanding the molecular signature associated with inherent resistance to HDACi would provide a basis for the identification of therapeutic combinations with improved clinical efficacy. Using human myeloma cell lines (HMCL) categorized as sensitive, intermediate or resistant to HDACi, gene expression profiling (GEP) and gene ontology enrichment analyses were performed to determine if a genetic signature associated with inherent resistance to HDACi-resistance could be identified. Correlation of GEP to increasing or decreasing sensitivity to HDACi indicated a unique 35-gene signature that was significantly enriched for two pathways – regulation of actin cytoskeleton and protein processing in endoplasmic reticulum. When HMCL and primary MM samples were treated with a combination of HDACi and agents targeting the signaling pathways integral to the actin cytoskeleton, synergistic cell death was observed in all instances, thus providing a rationale for combining these agents with HDACi for the treatment of MM to overcome resistance. This report validates a molecular approach for the identification of HDACi partner drugs and provides an experimental framework for the identification of novel therapeutic combinations for anti-MM treatment.  相似文献   

5.
Multiple myeloma (MM) is an incurable cancer that is characterized by malignant plasma cell proliferation. Approximately 10% of all blood cancers are MM, and there is no standard curative therapy. In this work, we intended to synthesize, characterize, and assess the anticancer effects of selenium/chitosan/polyethylene glycol–carvacrol nanocomposites (SCP-Car-NCs) on MM U266 cells in vitro. Various characterization techniques were used to characterize the synthesized SCP-Car-NCs. Several in vitro free radical scavenging experiments were conducted to test the ability of synthesized SCP-Car-NCs to scavenge the different free radicals. The cytotoxicity of SCP-Car-NCs was assessed on Vero and U266 cells using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. By using various fluorescence staining techniques, the amount of reactive oxygen species (ROS) generation, MMP, and apoptosis were measured. Using commercial test kits, the levels of oxidative stress and apoptotic biomarkers in control and treated U266 cells were assessed. The highest peak in the UV spectral analysis was found to be at 271 nm, demonstrating the development of SCP-Car-NCs. Fourier transform infrared analysis showed that the synthesized SCP-Car-NCs contained a variety of stretching and bonding. The X-ray diffraction study confirmed the crystallinity of SCP-Car-NCs. The dynamic light scattering analysis showed that the SCP-Car-NCs had an average size of 171 nm. The different free radicals, such as the 2,2-diphenyl-1-picrylhydrazyl, hydroxyl, and peroxyl radicals, were significantly scavenged by the SCP-Car-NCs. According to the MTT assay results, the SCP-Car-NCs decreased the viability of U266 cells while having no impact on the proliferation of Vero cells. The SCP-Car-NCs significantly boosted ROS production, decreased the MMP level, and promoted apoptosis, as evidenced by the fluorescence staining experiments. In U266 cells treated with SCP-Car-NCs, the level of thiobarbituric acid reactive substances increased while superoxide dismutases and glutathione levels were reduced. In the SCP-Car-NCs treated U266 cells, it was found that the Bax, caspase-3, and −9 activities had increased while the Bcl-2 level had decreased. In conclusion, our findings show that SCP-Car-NCs treatment reduced the viability and increased apoptosis in the U266 cells, providing a new insight on SCP-Car-NCs' potential for usage in the future to treat MM.  相似文献   

6.
The content of stem cells was analysed in bone marrow samples from 75 multiple myeloma patients. In unstimulated bone marrow the percentage of CD34+cells was significantly reduced in 11 patients previously treated with melphalan-prednisolone (MP)(median= 0.15%) compared to median 0.87% in 31 untreated patients (P=0.0001). The bone marrow cellularity in the two groups did not differ. There was no correlation between the number of courses or total dose of melphalan and content of CD34+cells in the bone marrow. The clonogenicity as, well as the ability to expand the marrow stem cell pool during growth factor treatment were also reduced in MP treated patients compared to untreated patients. Analysis of different subsets of CD34+ cells revealed no influence on the pre B cell compartment in the bone marrow by MP treatment, but the committed stem cells (CD34+CD38+) were reduced more than the uncommitted stem cells (CD34+CD38—) in the MP treated group compared to the untreated patients. Mobilisation to and harvest of total number of CD34+ cells from peripheral blood was also reduced in the MP treated group. There was, however, no difference in the distribution between CD34+CD38+and CD34+CD38—populations in the leukapheresis products in the untreated and the melphalan-treated group, suggesting selective mobilisation of CD34+CD38+ cells and/or differentiation of CD34+ CD38-cells during growth factor stimulation. We conclude that melphalan decreased the number of stem cells in the bone marrow, the ability to expand the stem cell pool and mobilise stem cells to the pheripheral blood.  相似文献   

7.
DNA甲基化是目前肿瘤领域研究中研究最多的表观遗传学机制之一.主要发生在DNA的CpG岛.DNA的甲基化通过甲基转移酶(DNA methyltransfeases,DNMTs)完成.DNA甲基化在多种肿瘤的发生、发展中都起到了重要的作用.大量研究发现,甲基化与多发性骨髓瘤的发生、发展及诊断治疗等有密切关系.深入探讨多发性骨髓瘤(MM)相关的甲基化可为MM发病机制的研究及治疗提供新的思路.  相似文献   

8.
Multiple myeloma (MM) comprises 1% of all malignancies and 10% of all hematological malignancies. MM is a malignancy of plasma cells in the bone marrow where complex and dynamic interactions with the bone marrow microenvironment lead to tumor progression, skeletal destruction and angiogenesis. Despite the discovery of several novel treatments against MM, including the proteasome inhibitor bortezomib, it is considered to be an incurable disease with an average 4–5 years overall survival.  相似文献   

9.
Cladribine (2CdA), a synthetic purine analog interfering with DNA synthesis, is a medication used to treat hairy cell leukemia (HCL) and B-cell chronic lymphocytic leukemia. Entinostat, a selective class I histone deacetylase (HDAC) inhibitor, shows antitumor activity in various human cancers, including hematological malignancies. The therapeutic potential of cladribine and entinostat against multiple myeloma (MM) remains unclear. Here we investigate the combinatorial effects of cladribine and entinostat within the range of their clinical achievable concentrations on MM cells. While either agent alone inhibited MM cell proliferation in a dose-dependent manner, their combinations synergistically induced anti-proliferative/anti-survival effects on all MM cell lines (RPMI8226, U266, and MM1.R) tested. Further studies showed that the combinations of cladribine and entinostat as compared to either agent alone more potently induced mitotic catastrophe in the MM cells, and resulted in a marked increase of the cells at G1 phase associated with decrease of Cyclin D1 and E2F-1 expression and upregulation of p21waf?1. Apoptotic ELISA and western blot analyses revealed that the combinations of cladribine and entinostat exerted a much more profound activity to induce apoptosis and DNA damage response, evidenced by enhanced phosphorylation of histone H2A.X and the DNA repair enzymes Chk1 and Chk2. Collectively, our data demonstrate that the combinations of cladribine and entinostat exhibit potent activity to induce anti-proliferative/anti-survival effects on MM cells via induction of cell cycle G1 arrest, apoptosis, and DNA damage response. Regimens consisting of cladribine and/or entinostat may offer a new treatment option for patients with MM.

Abbreviations: MM, multiple myeloma; HCL, hairy cell leukemia; HDAC, histone deacetylase; Ab, antibody; mAb, monoclonal Ab; FBS, fetal bovine serum; CI, combination index; PAGE, polyacrylamide gel electrophoresis; ELISA, enzyme-linked immunosorbent assay; PARP, poly(ADP-ribose) polymerase; MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,inner salt  相似文献   

10.
11.
12.
13.
Apoptosis in multiple myeloma: Therapeutic implications   总被引:2,自引:0,他引:2  
Apoptosis is the primary means by which most radio- and chemotherapy modalities kill cancer cells, and abnormalities in the apoptotic pathways may contribute to disease pathogenesis of cancer. Multiple Myeloma (MM) is a hematological malignancy which will affect 14,000 new individuals in the United States in 2001 and remains irreversibly fatal despite all available therapies. The current review focuses on the studies of apoptotic and survival signaling pathways in MM cells, which have both identified novel apoptotic and anti-apoptotic proteins and provided targets for novel therapeutics.  相似文献   

14.
15.
Multiple myeloma (MM) remains fatal despite all available therapies. Initial treatment with conventional drugs such as, Dexamethasone (Dex) effectively induces MM cell death; however, prolonged drug exposures results in the development of chemoresistance. Our prior study demonstrated that 2-Methoxyestradiol (2ME2) induces apoptosis in multiple myeloma (MM) cells resistant to Dexamethasone (Dex). Here, we show the mechanism whereby 2ME2 overcomes Dex-resistance. The oligonucleotide array analysis demonstrates that Heat Shock Protein-27 (Hsp27) is upregulated in Dex-resistant, but not in Dex-sensitive MM cells. Proteomics analysis of Hsp27-immunocomplexes revealed the presence of actin in Dex-resistant, but not in Dex-sensitive cells. Biochemical interaction between Hsp27 and actin was examined by co-immunoprecipitation with anti-Hsp27 or actin Abs. Far western blot analysis using GST-Hsp27 fusion protein showed a direct association with actin both in vitro and in vivo. Importantly, 2ME2- or Bortezomib/Proteasome inhibitor (PS-341)-induced apoptosis in Dex-resistant MM cell lines and MM patient cells is associated with disruption of the Hsp27-actin complexes. Finally, blockade of Hsp27 by anti-sense strategy enhanced anti-MM activity of both 2ME2 and PS-341. These findings provide the clinical application of novel therapeutics targeting Hsp27 to improve patient outcome in MM.  相似文献   

16.
17.
Increased use of the glycolytic pathway, even in the presence of oxygen, has recently been recognized as a key characteristic of malignant cells. However, the glycolytic phenotype results in increased lactic acid production and, in order to prevent cellular acidosis, tumor cells must increase proton efflux via upregulation of pH regulators such as proton-pumps, sodium-proton exchangers, and/or monocarboxylate transporters (MCT) (e.g., MCT1, MCT4). Interestingly, expression of MCT1 and MCT4 has been previously shown to be dependent upon expression of the transmembrane glycoprotein CD147. Recently, we demonstrated that primary patient multiple myeloma (MM) cells and human MM cell lines (HMCLs) overexpress CD147. Therefore, the goal of the current study was to specifically determine if MCT1 and MCT4 were also overexpressed in MM cells. RT-PCR analysis demonstrated both primary patient MM cells and HMCLs overexpress MCT1 and MCT4 mRNA. Notably, primary MM cells or HMCLs were found to express variable levels of MCT1 and/or MCT4 at the protein level despite CD147 expression. In those HMCLs positive for MCT1 and/or MCT4 protein expression, MCT1 and/or MCT4 were found to be associated with CD147. Specific siRNA-mediated downregulation of MCT1 but not MCT4 resulted in decreased HMCL proliferation, decreased lactate export, and increased cellular media pH. However, western blot analysis revealed that downregulation of MCT1 also downregulated CD147 and vice versa despite no effect on mRNA levels. Taken together, these data demonstrate the association between MCT1 and CD147 proteins in MM cells and importance of their association for lactate export and proliferation in MM cells.  相似文献   

18.
B‐cell maturation antigen (BCMA) is expressed on normal and malignant plasma cells and represents a potential target for therapeutic intervention. In this study, we characterized the mechanism underlying the protein kinase B (Akt) and c‐Jun N‐terminal kinase (JNK) pathways and BCMA interactions in regulating multiple myeloma (MM) cell survival. It was found that the expression levels of B cell‐activating factor (BAFF) and BCMA were increased in MM cells as compared with those in normal controls. The proliferation of U266 cells was induced by recombinant human BAFF (rhBAFF) and could also be decreased by BCMA siRNA. The expression of Bcl‐2 protein was up‐regulated, and Bax protein was down‐regulated after rhBAFF treatment, which could be reversed by BCMA siRNA. Similarly, the protein p‐JNK and p‐Akt were activated by rhBAFF and could be changed by BCMA siRNA. In addition, the BCMA mRNA and protein expression levels were decreased after treatment with Akt and JNK pathway inhibitors. These results suggest that Akt and JNK pathways are involved in the regulation of BCMA. A novel BAFF/BCMA signalling pathway in MM may be a new therapeutic target for MM. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Multiple myeloma is the most common form of plasma cell dyscrasia and virtually all cases of myeloma exhibit osteolytic lesions, which result in bone pain, pathological fractures, spinal cord compression, and hypercalcaemia. Malignant plasma cells disrupt the delicate balance between bone formation and bone resorption, which ultimately leads to the debilitating osteolytic lesions. This review focuses principally on mechanisms of osteoblast inhibition by malignant plasma cells with emphasis placed on our experimental findings, which support a model for abnormal Wnt signaling in osteoblast suppression. We describe how excessive amounts of soluble Wnt inhibitors secreted by malignant plasma cells in multiple myeloma could promote osteolytic lesions, tumor growth, suppress hematopoiesis, prevent proper engraftment, and expansion of transplanted stem cells. Finally, we detail current therapies shown to disrupt the interaction between the myeloma cell and the microenvironment, leading to activation of osteoblasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号