首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Antigenic homology of eukaryotic RNA polymerases   总被引:6,自引:0,他引:6  
Facilitated by an improved enzyme purification procedure, antisera to calf thymus DNA-dependent RNA polymerase II was prepared in hens. Using immunoprecipitation and inhibition of enzymatic activity the immunological properties of several eukaryotic RNA polymerases were examined. Purified calf thymus and rat liver polymerase II exhibited antigenic homology. The partially purified amphibian (Xenopus laevis) and protozoan (Tetrahymena pyriformis) polymerase II had reduced crossreactivities. Calf thymus polymerase I also shared antigenic homology with the form II enzymes.  相似文献   

3.
4.
5.
6.
The interaction between antibodies directed against RNA polymerase I purified from Morris hepatoma 3924A and homologous RNA polymerase II was investigated. The activity of partially purified polymerase II was inhibited by the antibodies. In contrast, the reaction catalyzed by the purified enzyme was not affected. Partially purified polymerase II preparations contained a protein kinase activity. Sucrose gradient centrifugation in the presence of 0.3 M KCl resulted in complete separation of RNA polymerase II from protein kinase as well as in complete loss of sensitivity to the anti-RNA polymerase I antibodies. The protein kinase possessed reaction characteristics similar to those of the NII protein kinase (Rose, K.M., Bell, L.E., Siefken, D.A. and Jacob, S.T. (1981) J. Biol. Chem. 256, 7468–7477) which is associated with hepatoma RNA polymerase I (Rose, K.M., Stetler, D.A. and Jacob, S.T. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2833–2837). The activities of both kinases were inhibited to the same extent by anti-RNA polymerase I antibodies and polypeptides of Mr 42000 and 25000, present in both kinase preparations, formed immune complexes with the antisera. Readdition of protein kinase NII to purified polymerase II resulted in phosphorylation of the polymerase and a concomitant enhancement of RNA synthesis. After addition of the kinase, RNA polymerase II activity was again sensitive to anti-RNA polymerase I antibodies. Upon reacting with protein kinase NII, RNA polymerase II polypeptides could be detected in immune complexes with anti-RNA polymerase I antibodies. These data indicate that protein kinase NII is associated with RNA polymerase II during early stages of purification and is at least partially responsible for the immunological cross-reactivity of RNA polymerases I and II.  相似文献   

7.
RNA polymerase II (RNAPII) is a complex multisubunit enzyme responsible for the synthesis of pre-mRNA in eucaryotes. The enzyme is made of two large subunits associated with at least eight smaller polypeptides, some of which are common to all three RNA polymerase species. We have initiated a genetic analysis of RNAPII by introducing mutations in RPO21, the gene encoding the largest subunit of RNAPII in Saccharomyces cerevisiae. We have used a yeast genomic library to isolate plasmids that can suppress a temperature-sensitive mutation in RPO21 (rpo21-4), with the goal of identifying gene products that interact with the largest subunit of RNAPII. We found that increased expression of wild-type RPO26, a single-copy, essential gene encoding a 155-amino-acid subunit common to RNAPI, RNAPII, and RNAPIII, suppressed the rpo21-4 temperature-sensitive mutation. Mutations were constructed in vitro that resulted in single amino acid changes in the carboxy-terminal portion of the RPO26 gene product. One temperature-sensitive mutation, as well as some mutations that did not by themselves generate a phenotype, were lethal in combination with rpo21-4. These results support the idea that the RPO26 and RPO21 gene products interact.  相似文献   

8.
Two subunits of eukaryotic RNA polymerase II, Rpb7 and Rpb4, form a subcomplex that has counterparts in RNA polymerases I and III. Although a medium resolution structure has been solved for the 12-subunit RNA polymerase II, the relative contributions of the contact regions between the subcomplex and the core polymerase and the consequences of disrupting them have not been studied in detail. We have identified mutations in the N-terminal ribonucleoprotein-like domain of Saccharomyces cerevisiae Rpb7 that affect its role in certain stress responses, such as growth at high temperature and sporulation. These mutations increase the dependence of Rpb7 on Rpb4 for interaction with the rest of the polymerase. Complementation analysis and RNA polymerase pulldown assays reveal that the Rpb4.Rbp7 subcomplex associates with the rest of the core RNA polymerase II through two crucial interaction points: one at the N-terminal ribonucleoprotein-like domain of Rpb7 and the other at the partially ordered N-terminal region of Rpb4. These findings are in agreement with the crystal structure of the 12-subunit polymerase. We show here that the weak interaction predicted for the N-terminal region of Rpb4 with Rpb2 in the crystal structure actually plays a significant role in interaction of the subcomplex with the core in vivo. Our mutant analysis also suggests that Rpb7 plays an essential role in the cell through its ability to interact with the rest of the polymerase.  相似文献   

9.
10.
Multiple forms of DNA-dependent RNA polymerases have been isolated and characterized from Leishmania strain UR6 promastigotes. RNA polymerases from this organism fail to resolve into multiple forms by conventional chromatography on DEAE-Sephadex A25, but could be separated by a modification of the method using CM-Sephadex C25. The CM-Sephadex bound enzyme is resistant toamanitin even up to a concentration of 250g/ml. The activity which flows through CM-Sephadex further resolves into two forms upon chromatography on DEAE-Sephadex A25. These forms are sensitive to -amanitin to different extent. Enzyme activity in peak I is 50% inhibited by 3g/ml and in peak II by 50g/ml of the drug respectively. The enzyme in peak I has been further purified by heparin agarose and fast performance liquid chromatography (FPLC) on MonoQ. The enzyme has Stoke's radius of 70å, a sedimentation coefficient of 17.6S and an f/fo of 1.35. Analysis of ammonium sulfate and met n peak I, relative activities with Mn+2 versus Mg+2 and template specificities gave results similar to those reported for other type II RNA polymerases in eukaryotes. The MonoQ purified enzyme resolves into 16 polypeptides on denaturing polyacrylamide gel and densitometric analysis suggests that 9 major bands are present in the stoichiometry expected of RNA polymerase subunits having molecular weights: 154000; 104000; 77000; 64000; 52000; 48000; 46000; 45000 and 39000 respectively.  相似文献   

11.
12.
RNA polymerase II from larvae of the brine shrimp, Artemia salina, was highly purified by two cycles of DEAE-cellulose chromatography followed by centrifugation through discontinuous sucrose gradients. Gradient fractions were subjected to elctrophoresis is polyacrylamide gels containing sodium dodecyl sulfate. The subunit structure of RNA polymerase II was determined by quantitative comparison of the polypeptides and enzyme activity present in each gradient fraction. The enzyme contains one copy of each of four subunits with estimated molecular weights of 170,000, 130,000, 36,000 and 24,000. The total molecular weight agrees well with the molecular weight estimated for the native enzyme by density gradient centrifugation.  相似文献   

13.
14.
15.
16.
17.
18.

   

Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases.  相似文献   

19.
N4 virion RNA polymerase sites of transcription initiation   总被引:9,自引:0,他引:9  
L L Haynes  L B Rothman-Denes 《Cell》1985,41(2):597-605
Coliphage N4 virion encapsulated RNA polymerase shows a marked preference for denatured N4 DNA as a template. We show that initiation on denatured N4 virion DNA occurs with in vivo specificity. The location of the in vivo and in vitro initiation sites and the corresponding DNA sequences were determined. The N4 virion RNA polymerase promoters contain extensive sequence homology from position -18 to position 1, with a conserved GC-rich heptamer centered at -12, and two sets of short inverted repeats. We suggest that the N4 virion RNA polymerase recognizes the promoter only in a novel single-stranded form, and that the formation of the initiation complex is facilitated in vivo by supercoiling and E. coli single-stranded DNA binding protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号