首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A small library of 2,5-diketopiperazines based on previously reported calpain inhibitors was synthesized. In addition, a concise total synthesis of the structurally related natural product phevalin (2) was accomplished. Despite literature reports that some of the compounds prepared were calpain inhibitors, none of the library members were found to have significant activity against recombinant human calpain I.  相似文献   

2.
Abstract: The potencies of three peptide aldehyde inhibitors of calpain (calpain inhibitors 1 and 2 and calpeptin) as inhibitors of four catalytic activities of the multicatalytic proteinase complex (MPC) were compared with their potencies as inhibitors of m-calpain. The chymotrypsinlike activity (cleavage after hydrophobic amino acids) and the caseinolytic activity (degradation of β-casein) of MPC were strongly inhibited by calpain inhibitors 1 and 2 (IC50 values in the low micromolar range). Cleavage by MPC after acidic amino acids (peptidylglutamyl-peptide bond hydrolyzing activity) and basic amino acids (trypsinlike activity) was inhibited less effectively, declining moderately with increasing concentrations of calpain inhibitors 1 and 2. Calpeptin only weakly inhibited the four MPC activities, yet was the most potent inhibitor of m-calpain. These results indicate that caution must be exercised when calpain inhibitors 1 and 2 are used to infer calpain function. Calpeptin may be a better choice for such studies, although its effect on other cysteine or serine proteinases remains to be determined.  相似文献   

3.
With the objective to understand structural features responsible for the biological activity, novel nonelectrophilic biphenyl derivatives and peptide-biphenyl hybrids have been synthesized and evaluated as calpain I inhibitors. The preliminary results indicate that the presence of additional aromatic rings (besides the biphenyl system) makes these compounds potent calpain inhibitors with IC50 values in the nanomolar range.  相似文献   

4.
The cellular pathways of apoptosis have not been fully characterized; however, calpain, a cytosolic calcium-activated cysteine protease, has been implicated in several forms of programmed cell death. Reoviruses induce apoptosis both in vitro and in vivo and serve as a model for studying virus-induced cell death. We investigated the potential role of calpain in reovirus-induced apoptosis in vitro by measuring calpain activity as well as evaluating the effects of calpain inhibitors. L929 cells were infected with reovirus type 3 Abney (T3A), and calpain activity, measured as cleavage of the fluorogenic calpain substrate Suc-Leu-Leu-Val-Tyr-AMC, was monitored. There was a 1.6-fold increase in calpain activity in T3A-infected cells compared to mock-infected cells; this increase was completely inhibited by preincubation with calpain inhibitor I (N-acetyl-leucyl-leucyl-norleucinal [aLLN]), an active-site inhibitor. Both aLLN and PD150606, a specific calpain inhibitor that interacts with the calcium-binding site, inhibited reovirus-induced apoptosis in L929 cells by 54 to 93%. Apoptosis induced by UV-inactivated reovirus was also reduced 65 to 69% by aLLN, indicating that inhibition of apoptosis by calpain inhibitors is independent of effects on viral replication. We conclude that calpain activation is a component of the regulatory cascade in reovirus-induced apoptosis.  相似文献   

5.
Normal processing of Alzheimer's beta-amyloid precursor protein (APP) is markedly stimulated by phorbol esters, but the underlying mechanisms have yet to be fully understood. In this study, we observed that: (a) Phorbol 12,13-dibutyrate (PDBu)-stimulated APP secretion in cultured SH-SY5Y neuroblastoma and fibroblast cells was blocked by EGTA and calpain inhibitors in a concentration-dependent manner, but not by other protease inhibitors. (b) Secretion of fibronectin, another secretory protein tested for comparison, was enhanced by PDBu, but insensitive to calpain inhibitors. (c) PDBu stimulated intracellular calpain activity as measured by the hydrolysis of a fluorogenic calpain substrate. (d) PDBu also induced rapid proteolysis of two endogenous substrates of calpains, i.e., tau and microtubule-associated protein-2 (MAP-2) and the proteolysis was blocked by EGTA and calpain inhibitors. Taken together, these results suggest that stimulation of APP alpha-processing by PDBu is through a mechanism that involves the activation of Ca(2+) and, most notably, calpain. The implications of the findings are discussed in relation to the regulatory mechanism of APP alpha-processing.  相似文献   

6.
Calpain 1 and 2 are required for RNA replication of echovirus 1   总被引:1,自引:1,他引:0       下载免费PDF全文
Calpains are calcium-dependent cysteine proteases that degrade cytoskeletal and cytoplasmic proteins. We have studied the role of calpains in the life cycle of human echovirus 1 (EV1). The calpain inhibitors, including calpeptin, calpain inhibitor 1, and calpain inhibitor 2 as well as calpain 1 and calpain 2 short interfering RNAs, completely blocked EV1 infection in the host cells. The effect of the inhibitors was not specific for EV1, because they also inhibited infection by other picornaviruses, namely, human parechovirus 1 and coxsackievirus B3. The importance of the calpains in EV1 infection also was supported by the fact that EV1 increased calpain activity 3 h postinfection. Confocal microscopy and immunoelectron microscopy showed that the EV1/caveolin-1-positive vesicles also contain calpain 1 and 2. Our results indicate that calpains are not required for virus entry but that they are important at a later stage of infection. Calpain inhibitors blocked the production of EV1 particles after microinjection of EV1 RNA into the cells, and they effectively inhibited the synthesis of viral RNA in the host cells. Thus, both calpain 1 and calpain 2 are essential for the replication of EV1 RNA.  相似文献   

7.
8.
Muscle wasting in sepsis is a significant clinical problem because it results in muscle weakness and fatigue that may delay ambulation and increase the risk for thromboembolic and pulmonary complications. Treatments aimed at preventing or reducing muscle wasting in sepsis, therefore, may have important clinical implications. Recent studies suggest that sepsis-induced muscle proteolysis may be initiated by calpain-dependent release of myofilaments from the sarcomere, followed by ubiquitination and degradation of the myofilaments by the 26S proteasome. In the present experiments, treatment of rats with one of the calpain inhibitors calpeptin or BN82270 inhibited protein breakdown in muscles from rats made septic by cecal ligation and puncture. The inhibition of protein breakdown was not accompanied by reduced expression of the ubiquitin ligases atrogin-1/MAFbx and MuRF1, suggesting that the ubiquitin-proteasome system is regulated independent of the calpain system in septic muscle. When incubated muscles were treated in vitro with calpain inhibitor, protein breakdown rates and calpain activity were reduced, consistent with a direct effect in skeletal muscle. Additional experiments suggested that the effects of BN82270 on muscle protein breakdown may, in part, reflect inhibited cathepsin L activity, in addition to inhibited calpain activity. When cultured myoblasts were transfected with a plasmid expressing the endogenous calpain inhibitor calpastatin, the increased protein breakdown rates in dexamethasone-treated myoblasts were reduced, supporting a role of calpain activity in atrophying muscle. The present results suggest that treatment with calpain inhibitors may prevent sepsis-induced muscle wasting.  相似文献   

9.
10.
Osteoclast motility is thought to depend on rapid podosome assembly and disassembly. Both mu-calpain and m-calpain, which promote the formation and disassembly of focal adhesions, were observed in the podosome belt of osteoclasts. Calpain inhibitors disrupted the podosome belt, blocked the constitutive cleavage of the calpain substrates filamin A, talin, and Pyk2, which are enriched in the podosome belt, induced osteoclast retraction, and reduced osteoclast motility and bone resorption. The motility and resorbing activity of mu-calpain(-/-) osteoclast-like cells were also reduced, indicating that mu-calpain is required for normal osteoclast activity. Histomorphometric analysis of tibias from mu-calpain(-/-) mice revealed increased osteoclast numbers and decreased trabecular bone volume that was apparent at 10 weeks but not at 5 weeks of age. In vitro studies suggested that the increased osteoclast number in the mu-calpain(-/-) bones resulted from increased osteoclast survival, not increased osteoclast formation. Calcitonin disrupted the podosome ring, induced osteoclast retraction, and reduced osteoclast motility and bone resorption in a manner similar to the effects of calpain inhibitors and had no further effect on these parameters when added to osteoclasts pretreated with calpain inhibitors. Calcitonin inhibited the constitutive cleavage of a fluorogenic calpain substrate and transiently blocked the constitutive cleavage of filamin A, talin, and Pyk2 by a protein kinase C-dependent mechanism, demonstrating that calcitonin induces the inhibition of calpain in osteoclasts. These results indicate that calpain activity is required for normal osteoclast activity and suggest that calcitonin inhibits osteoclast bone resorbing activity in part by down-regulating calpain activity.  相似文献   

11.
Excessive calpain activations contribute to serious cellular damage and have been found in many pathological conditions. Novel chromone carboxamides derived from ketoamides were prepared and evaluated for mu-calpain inhibition. Among synthesized, compound 2i was the most potent calpain inhibitor with an IC(50) value of 0.24 +/- 0.11 microM comparable to the activity of peptide aldehyde calpain inhibitor MDL 28,170. Furthermore, compound 2i showed higher selectivity for mu-calpain over two related cysteine proteases cathepsin B and cathepsin L, suggesting the chromone ring as a good scaffold for selective mu-calpain inhibitors.  相似文献   

12.
BACKGROUND: Calpains are intracellular, calcium-sensitive, neutral cysteine proteases that play crucial roles in many physiological and pathological processes. Calpain regulation is complex and activity is poorly correlated with calpain protein levels. Therefore a full understanding of calpain function requires robust methods for measuring activity. METHODS: We describe and characterize a flow cytometric method for measuring calpain activity in live cells. This method uses the BOC-LM-CMAC reagent that readily diffuses into cells where it reacts with free thiols to enhance retention. RESULTS: We show that the reagent is cleaved specifically by calpains and follows saturation kinetics. We use the assay to measure calpain activation following PDGF stimulation of rat fibroblasts. We also show that the calpain inhibitor PD150606 inhibits calpain with a K(i) of 12.5 muM and show that Mek inhibitors PD89059 and U0126 also suppress calpain activity. We also show that the assay can measure calpain activity in subpopulations of cells present in unfractionated cord blood or in HL60 human myelomonocytic leukemia cells. CONCLUSION: Taken together, these experiments demonstrate that this assay is a reliable and useful method for measuring calpain activity in multiple cell types.  相似文献   

13.
There is increasing evidence that calpain contributes to the reorganization of the cytoskeleton in the integrin-mediated signaling pathway. Osteoclastic bone resorption requires cell-matrix contact, an event mediated by integrin alphavbeta3, and subsequent cytoskeletal reorganization to form characteristic membrane domains such as the sealing zone and ruffled border. In this study, therefore, we investigated whether calpain is involved in osteoclastic bone resorption. Membrane-permeable calpain inhibitors suppress the resorption activity of human osteoclasts, but an impermeable inhibitor does not. Upon the attachment of osteoclasts to bone, micro-calpain is translocated from the cytosolic to the cytoskeletal fraction and is autolytically activated. Both the activation of micro-calpain and the formation of actin-rings, the cytoskeletal structures essential for bone resorption, are inhibited by membrane-permeable calpain inhibitors. The activated micro-calpain in osteoclasts selectively cleaves talin, which links the matrix-recognizing integrin to the actin cytoskeleton. These findings suggest that calpain is a regulator of the bone resorption activity of osteoclasts through reorganization of the cytoskeleton related to actin-ring formation.  相似文献   

14.
Programmed cell death is an active process wherein the cell initiates a sequence of events culminating in the fragmentation of its DNA, nuclear collapse, and disintegration of the cell into small, membrane-bound apoptotic bodies. Examination of the death program in various models has shown common themes, including a rise in cytoplasmic calcium, cytoskeletal changes, and redistribution of membrane lipids. The calcium-dependent neutral protease calpain has putative roles in cytoskeletal and membrane changes in other cellular processes; this fact led us to test the role of calpain in a well-known model of apoptotic cell death, that of thymocytes after treatment with dexamethasone. Assays for calcium-dependent proteolysis in thymocyte extracts reveal a rise in activity with a peak at about 1 hr of incubation with dexamethasone, falling to background at approximately 2 hr. Western blots indicate autolytic cleavage of the proenzyme precursor to the calpain I isozyme, providing additional evidence for calpain activation. We have also found that apoptosis in thymocytes, whether induced by dexamethasone or by low-level irradiation, is blocked by specific inhibitors of calpain. Apoptosis of metamyelocytes incubated with cycloheximide is also blocked by calpain inhibitors. These studies suggest a required role for calpain in both “induction” and “release” models of apoptotic cell death. © 1994 wiley-Liss, Inc.  相似文献   

15.
Calpains, Ca2+-activated cysteine proteases, are cytosolic enzymes implicated in numerous cellular functions and pathologies. We identified a mitochondrial Ca2+-inducible protease that hydrolyzed a calpain substrate (SLLVY-AMC) and was inhibited by active site-directed calpain inhibitors as calpain 10, an atypical calpain lacking domain IV. Immunoblot analysis and activity assays revealed calpain 10 in the mitochondrial outer membrane, intermembrane space, inner membrane, and matrix fractions. Mitochondrial staining was observed when COOH-terminal green fluorescent protein-tagged calpain 10 was overexpressed in NIH-3T3 cells and the mitochondrial targeting sequence was localized to the NH2-terminal 15 amino acids. Overexpression of mitochondrial calpain 10 resulted in mitochondrial swelling and autophagy that was blocked by the mitochondrial permeability transition (MPT) inhibitor cyclosporine A. With the use of isolated mitochondria, Ca2+-induced MPT was partially decreased by calpain inhibitors. More importantly, Ca2+-induced inhibition of Complex I of the electron transport chain was blocked by calpain inhibitors and two Complex I proteins were identified as targets of mitochondrial calpain 10, NDUFV2, and ND6. In conclusion, calpain 10 is the first reported mitochondrially targeted calpain and is a mediator of mitochondrial dysfunction through the cleavage of Complex I subunits and activation of MPT. protease; respiration  相似文献   

16.
A series of irreversible inhibitors of recombinant calpain has been synthesized and their rates of inactivation have been evaluated against calpain and cathepsin B, respectively. The design of the inhibitors was based on the quiescent affinity label concept. By choosing the appropriate affinity group and by employing leaving groups derived from N-hydroxy coupling reagents, good inhibitors of calpain with high rates of inactivation have been identified. However, poor aqueous stability limits their therapeutic utility.  相似文献   

17.
Mycoplasmas are frequent contaminants of cell cultures. Contamination leads to altered synthetic and metabolic pathways. We have found that contamination of neuroblastoma SH-SY5Y cells by a strain of Mycoplasma hyorhinis derived from SH-SY5Y cell culture (NDMh) leads to increased levels of calpastatin (the endogenous inhibitor of the Ca(2+)-dependent protease, calpain) in NDMh-infected cells. We have now examined effects of amyloid-β-peptide (Aβ) (central to the pathogenesis of Alzheimer's disease) on uncontaminated (clean) and NDMh-infected SH-SY5Y cells. Aβ was toxic to clean cells, resulting in necrotic cell damage. Aβ treatment led to activation of calpain and enhanced proteolysis, cell swelling, cell membrane permeability to propidium iodide (PI) (without nuclear apoptotic changes), and diminished mitochondrial enzyme activity (XTT reduction). Aβ-toxicity was attenuated in the high calpastatin-containing NDMh-infected cells, as shown by inhibition of calpain activation and activity, no membrane permeability, normal cell morphology, and maintenance of mitochondrial enzyme activity (similar to attenuation of Aβ-toxicity in non-infected cells overexpressing calpastatin following calpastatin-plasmid introduction into the cells). By contrast, staurosporine affected both clean and infected cells, causing apoptotic damage (cell shrinkage, nuclear apoptotic alterations, caspase-3 activation and caspase-promoted proteolysis, without PI permeability, and without effect on XTT reduction). The results indicate that mycoplasma protects the cells against certain types of insults involving calpain. The ratio of calpastatin to calpain is an important factor in the control of calpain activity. Exogenous pharmacological means, including calpastatin-based inhibitors, have been considered for therapy of various diseases in which calpain is implicated. Mycoplasmas provide the first naturally occurring biological system that upregulates the endogenous calpain inhibitor, and thus may be of interest in devising treatments for some disorders, such as neurodegenerative diseases.  相似文献   

18.
Glutamate-induced neurotoxicity and calpain activity were studied in primary cultures of rat cerebellar granule neurons and glial cells. Calpain activation, as monitored by quantitative immunoblotting of spectrin, required micromolar concentrations of Ca2+ in neuronal homogenates (calpain I) and millimolar Ca2+ concentrations in glial homogenates (calpain II). Glutamate-induced toxicity and calpain activation were observed in neuronal, but not in glial, cultures. In neurons, calpain I activation by glutamate was dose-dependent and persisted after withdrawal of neurotoxic doses of glutamate. Natural (GM1) and semisynthetic (LIGA4) gangliosides or the glutamate receptor blocker MK-801 prevented calpain I activation and delayed neuronal death elicited by glutamate. GM1 and LIGA4 had no effect on calpain I activity in neuronal homogenates, however. Furthermore, two calpain I inhibitors (leupeptin and N-acetyl-Leu-Leu-norleucinal) prevented glutamate-induced spectrin degradation, but failed to affect glutamate neurotoxicity. These results thus suggest that glutamate-induced neurotoxicity is independent of calpain I activation.  相似文献   

19.
In ischemic retinopathies, underlying hypoxia drives abnormal neovascularization that damages retina and causes blindness. The abnormal neovasculature is tortuous and leaky and fails to alleviate hypoxia, resulting in more pathological neovascularization and retinal damage. With an established model of ischemic retinopathy we found that calpain inhibitors, when administered in moderation, reduced architectural abnormalities, reduced vascular leakage, and most importantly reduced retinal hypoxia. Mechanistically, these calpain inhibitors improved stability and organization of the actin cytoskeleton in retinal endothelial cells undergoing capillary morphogenesis in vitro, and they similarly improved organization of actin cables within new blood vessels in vivo. Hypoxia induced calpain activity in retinal endothelial cells and severely disrupted the actin cytoskeleton, whereas calpain inhibitors preserved actin cables under hypoxic conditions. Collectively, these findings support the hypothesis that hyper-activation of calpains by hypoxia contributes to disruption of the retinal endothelial cell cytoskeleton, resulting in formation of neovessels that are defective both architecturally and functionally. Modest suppression of calpain activity with calpain inhibitors restores cytoskeletal architecture and promotes formation of a functional neovasculature, thereby reducing underlying hypoxia. In sharp contrast to “anti-angiogenesis” strategies that cannot restore normoxia and may aggravate hypoxia, the therapeutic strategy described here does not inhibit neovascularization. Instead, by improving the function of neovascularization to reduce underlying hypoxia, moderate calpain inhibition offers a method for alleviating retinal ischemia, thereby suggesting a new treatment paradigm based on improvement rather than inhibition of new blood vessel growth.  相似文献   

20.
Abstract: We examined the interdependence of calpain and protein kinase C (PKC) activities on neurite outgrowth in SH-SY-5Y human neuroblastoma cells. SH-SY-5Y cells elaborated neurites when deprived of serum or after a specific thrombin inhibitor, hirudin, was added to serum-containing medium. The extent of neurite outgrowth under these conditions was enhanced by treatment of cells with the cell-permeant cysteine protease inhibitors N-acetyl-leucyl-leucyl-norleucinal (“C1”) and calpeptin or by the phospholipid-mediated intracellular delivery of either a recombinant peptide corresponding to a conserved inhibitory sequence of human calpastatin or a neutralizing anti-calpain antisera. Calpain inhibition in intact cells was confirmed by immunoblot analysis showing inhibition of calpain autolysis and reduced proteolysis of the known calpain substrates fodrin and microtubule-associated protein 1. The above inhibitory peptides and antiserum did not induce neurites in medium containing serum but lacking hirudin, suggesting that increased surface protein adhesiveness is a prerequisite for enhancement of neurite outgrowth by calpain inhibition. Treatment of cells with the PKC inhibitor H7, staurosporine, or sphingosine induced neurite outgrowth independently of serum concentration. Because calpain is thought to regulate PKC activity, we examined this potential interrelationship during neurite outgrowth. Simultaneous treatment with calpain and PKC inhibitors did not produce additive or synergistic effects on neurite outgrowth. PKC activation by 2-O-tetradecanoylphorbol 13-acetate (TPA) prevented and reversed both neurite initiation by serum deprivation and its enhancement by calpain inhibitors. Treatment of cells with the calpain inhibitor C1 retarded PKC down-regulation following TPA treatment. Cell-free analyses demonstrated the relative specificity of various protease and kinase inhibitors for calpain and PKC and confirmed the ability of millimolar calcium-requiring calpain to cleave the SH-SY-5Y PKC regulatory subunit from the catalytic subunit, yielding a free catalytic subunit (protein kinase M). These findings suggest that the influence of PKC on neurite outgrowth is downstream from that of surface adhesiveness and calpain activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号