首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Little is currently known concerning the mechanisms responsible for the excessive deposition of redox-active iron in the substantia nigra of subjects with Parkinson's disease (PD). In the present study, we demonstrate that dopamine promotes the selective sequestration of non-transferrin-derived iron by the mitochondrial compartment of cultured rat astroglia and that the mechanism underlying this novel dopamine effect is oxidative in nature. We also provide evidence that up-regulation of the stress protein heme oxygenase-1 (HO-1) is both necessary and sufficient for mitochondrial iron trapping in dopamine-challenged astroglia. Finally, we show that opening of the mitochondrial transition pore (MTP) mediates the influx of non-transferrin-derived iron into mitochondria of dopamine-stimulated and HO-1-transfected astroglia. Our findings provide an explanation for the pathological iron sequestration, mitochondrial insufficiency, and amplification of oxidative injury reported in the brains of PD subjects. Pharmacological blockade of transition metal trapping by "stressed" astroglial mitochondria (e.g., using HO-1 inhibitors or modulators of the MTP) may afford effective neuroprotection in patients with PD and other neurological afflictions.  相似文献   

2.
Oxidative stress, deposition of non-transferrin iron, and mitochondrial insufficiency occur in the brains of patients with Alzheimer disease (AD) and Parkinson disease (PD). We previously demonstrated that heme oxygenase-1 (HO-1) is up-regulated in AD and PD brain and promotes the accumulation of non-transferrin iron in astroglial mitochondria. Herein, dynamic secondary ion mass spectrometry (SIMS) and other techniques were employed to ascertain (i) the impact of HO-1 over-expression on astroglial mitochondrial morphology in vitro , (ii) the topography of aberrant iron sequestration in astrocytes over-expressing HO-1, and (iii) the role of iron regulatory proteins (IRP) in HO-1-mediated iron deposition. Astroglial hHO-1 over-expression induced cytoplasmic vacuolation, mitochondrial membrane damage, and macroautophagy. HO-1 promoted trapping of redox-active iron and sulfur within many cytopathological profiles without impacting ferroportin, transferrin receptor, ferritin, and IRP2 protein levels or IRP1 activity. Thus, HO-1 activity promotes mitochondrial macroautophagy and sequestration of redox-active iron in astroglia independently of classical iron mobilization pathways. Glial HO-1 may be a rational therapeutic target in AD, PD, and other human CNS conditions characterized by the unregulated deposition of brain iron.  相似文献   

3.
Proinflammatory cytokines, pathological iron deposition, and oxidative stress have been implicated in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). HO-1 mRNA levels and mitochondrial uptake of [(55)Fe]Cl(3)-derived iron were measured in rat astroglial cultures exposed to interleukin-1beta (IL-1beta) or tumor necrosis factor-alpha (TNF-alpha) alone or in combination with the heme oxygenase-1 (HO-1) inhibitors, tin mesoporphyrin (SnMP) or dexamthasone (DEX), or interferon beta1b (INF-beta). HO-1 expression in astrocytes was evaluated by immunohistochemical staining of spinal cord tissue derived from MS and control subjects. IL-1beta or TNF-alpha promoted sequestration of non-transferrin-derived (55)Fe by astroglial mitochondria. HO-1 inhibitors, mitochondrial permeability transition pore (MTP) blockers and antioxidants significantly attenuated cytokine-related mitochondrial iron sequestration in these cells. IFN-beta decreased HO-1 expression and mitochondrial iron sequestration in IL-1beta- and TNF-alpha-challenged astroglia. The percentage of astrocytes coexpressing HO-1 in affected spinal cord from MS patients (57.3% +/- 12.8%) was significantly greater (p < 0.05) than in normal spinal cord derived from controls subjects (15.4% +/- 8.4%). HO-1 is over-expressed in MS spinal cord astroglia and may promote mitochondrial iron deposition in MS plaques. In MS, IFN-beta may attenuate glial HO-1 gene induction and aberrant mitochondrial iron deposition accruing from exposure to proinflammatory cytokines.  相似文献   

4.
Glial heme oxygenase-1 is over-expressed in the CNS of subjects with Alzheimer disease (AD), Parkinson disease (PD) and multiple sclerosis (MS). Up-regulation of HO-1 in rat astroglia has been shown to facilitate iron sequestration by the mitochondrial compartment. To determine whether HO-1 induction promotes mitochondrial oxidative stress, assays for 8-epiPGF(2alpha) (ELISA), protein carbonyls (ELISA) and 8-OHdG (HPLC-EC) were used to quantify oxidative damage to lipids, proteins, and nucleic acids, respectively, in mitochondrial fractions and whole-cell compartments derived from cultured rat astroglia engineered to over-express human (h) HO-1 by transient transfection. Cell viability was assessed by trypan blue exclusion and the MTT assay, and cell proliferation was determined by [3H] thymidine incorporation and total cell counts. In rat astrocytes, hHO-1 over-expression (x 3 days) resulted in significant oxidative damage to mitochondrial lipids, proteins, and nucleic acids, partial growth arrest, and increased cell death. These effects were attenuated by incubation with 1 microM tin mesoporphyrin, a competitive HO inhibitor, or the iron chelator, deferoxamine. Up-regulation of HO-1 engenders oxidative mitochondrial injury in cultured rat astroglia. Heme-derived ferrous iron and carbon monoxide (CO) may mediate the oxidative modification of mitochondrial lipids, proteins and nucleic acids in these cells. Glial HO-1 hyperactivity may contribute to cellular oxidative stress, pathological iron deposition, and bioenergetic failure characteristic of degenerating and inflamed neural tissues and may constitute a rational target for therapeutic intervention in these conditions.  相似文献   

5.
Recent studies indicate that the deposition of β-amyloid peptide (Aβ) is related to the pathogenesis of Alzheimer disease (AD); however, the underlying mechanism is still not clear. The abnormal interactions of Aβ with metal ions such as iron are implicated in the process of Aβ deposition and oxidative stress in AD brains. In this study, we observed that Aβ increased the levels of iron content and oxidative stress in SH-SY5Y cells overexpressing the Swedish mutant form of human β-amyloid precursor protein (APPsw) and in Caenorhabditis elegans Aβ-expressing strain CL2006. Intracellular iron and calcium levels and reactive oxygen species and nitric oxide generation significantly increased in APPsw cells compared to control cells. The activity of superoxide dismutase and the antioxidant levels of APPsw cells were significantly lower than those of control cells. Moreover, iron treatment decreased cell viability and mitochondrial membrane potential and aggravated oxidative stress damage as well as the release of Aβ1-40 from the APPsw cells. The iron homeostasis disruption in APPsw cells is very probably associated with elevated expression of the iron transporter divalent metal transporter 1, but not transferrin receptor. Furthermore, the C. elegans with Aβ-expression had increased iron accumulation. In aggregate, these results demonstrate that Aβ accumulation in neuronal cells correlated with neuronal iron homeostasis disruption and probably contributed to the pathogenesis of AD.  相似文献   

6.
Ha C  Ryu J  Park CB 《Biochemistry》2007,46(20):6118-6125
The abnormal deposition and aggregation of beta-amyloid (Abeta) on brain tissues are considered to be one of the characteristic neuropathological features of Alzheimer's disease (AD). Environmental conditions such as metal ions, pH, and cell membranes are associated with Abeta deposition and plaque formation. According to the amyloid cascade hypothesis of AD, the deposition of Abeta42 oligomers as diffuse plaques in vivo is an important earliest event, leading to the formation of fibrillar amyloid plaques by the further accumulation of soluble Abeta under certain environmental conditions. In order to characterize the effect of metal ions on amyloid deposition and plaque growth on a solid surface, we prepared a synthetic template by immobilizing Abeta oligomers onto a N-hydroxysuccinimide ester-activated solid surface. According to our study using ex situ atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), and thioflavin T (ThT) fluorescence spectroscopy, Cu2+ and Zn2+ ions accelerated both Abeta40 and Abeta42 deposition but resulted only in the formation of "amorphous" aggregates. In contrast, Fe3+ induced the deposition of "fibrillar" amyloid plaques at neutral pH. Under mildly acidic environments, the formation of fibrillar amyloid plaques was not induced by any metal ion tested in this work. Using secondary ion mass spectroscopy (SIMS) analysis, we found that binding Cu ions to Abeta deposits on a solid template occurred by the possible reduction of Cu ions during the interaction of Abeta with Cu2+. Our results may provide insights into the role of metal ions on the formation of fibrillar or amorphous amyloid plaques in AD.  相似文献   

7.
Manganese superoxide dismutase (MnSOD) is an antioxidant enzyme that reduces superoxide anion to hydrogen peroxide in cell mitochondria. MnSOD is overexpressed in normal aging brain and in various central nervous system disorders; however, the mechanisms mediating the upregulation of MnSOD under these conditions remain poorly understood. We previously reported that cysteamine (CSH) and other pro-oxidants rapidly induce the heme oxygenase-1 (HO-1) gene in cultured rat astroglia followed by late upregulation of MnSOD in these cells. In the present study, we demonstrate that antecedent upregulation of HO-1 is necessary and sufficient for subsequent induction of the MnSOD gene in neonatal rat astroglia challenged with CSH or dopamine, and in astroglial cultures transiently transfected with full-length human HO-1 cDNA. Treatment with potent antioxidants attenuates MnSOD expression in HO-1-transfected astroglia, strongly suggesting that intracellular oxidative stress signals MnSOD gene induction in these cells. Activation of this HO-1-MnSOD axis may play an important role in the pathogenesis of Alzheimer disease, Parkinson disease and other free radical-related neurodegenerative disorders. In these conditions, compensatory upregulation of MnSOD may protect mitochondria from oxidative damage accruing from heme-derived free iron and carbon monoxide liberated by the activity of HO-1.  相似文献   

8.
Considerable circumstantial evidence suggests that Abeta42 is the initiating molecule in Alzheimer's disease (AD) pathogenesis. However, the absolute requirement for Abeta42 for amyloid deposition has never been demonstrated in vivo. We have addressed this by developing transgenic models that express Abeta1-40 or Abeta1-42 in the absence of human amyloid beta protein precursor (APP) overexpression. Mice expressing high levels of Abeta1-40 do not develop overt amyloid pathology. In contrast, mice expressing lower levels of Abeta1-42 accumulate insoluble Abeta1-42 and develop compact amyloid plaques, congophilic amyloid angiopathy (CAA), and diffuse Abeta deposits. When mice expressing Abeta1-42 are crossed with mutant APP (Tg2576) mice, there is also a massive increase in amyloid deposition. These data establish that Abeta1-42 is essential for amyloid deposition in the parenchyma and also in vessels.  相似文献   

9.
研究表明,脑内金属离子代谢失衡与阿尔茨海默病(AD)有关,但其机理尚需深入探讨.结合本实验室研究结果,作者对金属离子代谢紊乱与氧化应激,金属离子代谢紊乱与β-淀粉样蛋白、转铁蛋白和转铁蛋白受体、铁调节蛋白、二价金属离子转运体以及天然抗氧化剂通过调节金属离子代谢平衡缓解β-淀粉样蛋白的毒性和保护细胞的作用进行探讨.提出:铁、铜等金属离子缺乏可能主要与AD早期关系密切,而铁、铜等金属离子过载可能主要与AD后期损伤关系密切的学术观点.  相似文献   

10.
Oxidative stress is observed in Alzheimer's disease (AD) brain, including protein oxidation and lipid peroxidation. One of the major pathological hallmarks of AD is the brain deposition of amyloid beta-peptide (Abeta). This 42-mer peptide is derived from the beta-amyloid precursor protein (APP) and is associated with oxidative stress in vitro and in vivo. Mutations in the PS-1 and APP genes, which increase production of the highly amyloidogenic amyloid beta-peptide (Abeta42), are the major causes of early onset familial AD. Several lines of evidence suggest that enhanced oxidative stress, inflammation, and apoptosis play important roles in the pathogenesis of AD. In the present study, primary neuronal cultures from knock-in mice expressing mutant human PS-1 and APP were compared with those from wild-type mice, in the presence or absence of various oxidizing agents, viz, Abeta(1-42), H2O2 and kainic acid (KA). APP/PS-1 double mutant neurons displayed a significant basal increase in oxidative stress as measured by protein oxidation, lipid peroxidation, and 3-nitrotyrosine when compared with the wild-type neurons (p < 0.0005). Elevated levels of human APP, PS-1 and Abeta(1-42) were found in APP/PS-1 cultures compared with wild-type neurons. APP/PS-1 double mutant neuron cultures exhibited increased vulnerability to oxidative stress, mitochondrial dysfunction and apoptosis induced by Abeta(1-42), H2O2 and KA compared with wild-type neuronal cultures. The results are consonant with the hypothesis that Abeta(1-42)-associated oxidative stress and increased vulnerability to oxidative stress may contribute significantly to neuronal apoptosis and death in familial early onset AD.  相似文献   

11.
Metals, oxidative stress and neurodegenerative disorders   总被引:1,自引:0,他引:1  
The neurodegenerative diseases, Alzheimer’s disease (AD) and Parkinson’s disease (PD), are age-related disorders characterized by the deposition of abnormal forms of specific proteins in the brain. AD is characterized by the presence of extracellular amyloid plaques and intraneuronal neurofibrillary tangles in the brain. Biochemical analysis of amyloid plaques revealed that the main constituent is fibrillar aggregates of a 39–42 residue peptide referred to as the amyloid-β protein (Aβ). PD is associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta. One of the pathological hallmarks of PD is the presence of intracellular inclusions called Lewy bodies that consist of aggregates of the presynaptic soluble protein called α-synuclein. There are various factors influencing the pathological depositions, and in general, the cause of neuronal death in neurological disorders appears to be multifactorial. However, it is clear, that the underlying factor in the neurological disorders is increased oxidative stress substantiated by the findings that the protein side-chains are modified either directly by reactive oxygen species (ROS) or reactive nitrogen species (RNS), or indirectly, by the products of lipid peroxidation. The increased level of oxidative stress in AD brain is reflected by the increased brain content of iron (Fe) and copper (Cu) both capable of stimulating free radical formation (e.g. hydroxyl radicals via Fenton reaction), increased protein and DNA oxidation in the AD brain, enhanced lipid peroxidation, decreased level of cytochrome c oxidase and advanced glycation end products (AGEs), carbonyls, malondialdehyde (MDA), peroxynitrite, and heme oxygenase-1 (HO-1). AGEs, mainly through their interaction with receptors for advanced glycation end products (RAGEs), further activate signaling pathways, inducing formation of proinflammatory cytokines such as interleukin-6 (IL-6). The conjugated aromatic ring of tyrosine residues is a target for free-radical attack, and accumulation of dityrosine and 3-nitrotyrosine has also been reported in AD brain. The oxidative stress linked with PD is supported by both postmortem studies and by studies showing the increased level of oxidative stress in the substantia nigra pars compacta, demonstrating thus the capacity of oxidative stress to induce nigral cell degeneration. Markers of lipid peroxidation include 4-hydroxy-trans-2-nonenal (HNE), 4-oxo-trans-2-nonenal (4-ONE), acrolein, and 4-oxo-trans-2-hexenal, all of which are well recognized neurotoxic agents. In addition, other important factors, involving inflammation, toxic action of nitric oxide (NO·), defects in protein clearance, and mitochondrial dysfunction all contribute to the etiology of PD. It has been suggested that several individual antioxidants or their combinations can be neuroprotective and decrease the risk of AD or slow its progression. The aim of this review is to discuss the role of redox metals Fe and Cu and non-redox metal zinc (Zn) in oxidative stress-related etiology of AD and PD. Attention is focused on the metal-induced formation of free radicals and the protective role of antioxidants [glutathione (GSH), vitamin C (ascorbic acid)], vitamin E (α-Tocopherol), lipoic acid, flavonoids [catechins, epigallocatechin gallate (EGCG)], and curcumin. An alternate hypothesis topic in AD is also discussed.  相似文献   

12.
Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD): tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2) die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau) in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576) with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.  相似文献   

13.
The heme oxygenases (HOs), responsible for the degradation of heme to biliverdin/bilirubin, free iron and CO, have been heavily implicated in mammalian CNS aging and disease. In normal brain, the expression of HO-2 is constitutive, abundant and fairly ubiquitous, whereas HO-1 mRNA and protein are confined to small populations of scattered neurons and neuroglia. In contradistinction to HO-2, the ho-1 gene ( Hmox1 ) is exquisitely sensitive to induction by a wide range of pro-oxidant and other stressors. In Alzheimer disease and mild cognitive impairment, immunoreactive HO-1 protein is over-expressed in neurons and astrocytes of the cerebral cortex and hippocampus relative to age-matched, cognitively intact controls and co-localizes to senile plaques, neurofibrillary tangles, and corpora amylacea. In Parkinson disease, HO-1 is markedly over-expressed in astrocytes of the substantia nigra and decorates Lewy bodies in affected dopaminergic neurons. HMOX1 is also up-regulated in glial cells surrounding human cerebral infarcts, hemorrhages and contusions, within multiple sclerosis plaques, and in other degenerative and inflammatory human CNS disorders. Heme-derived free ferrous iron, CO, and biliverdin/bilirubin are biologically active substances that have been shown to either ameliorate or exacerbate neural injury contingent upon specific disease models employed, the intensity and duration of HO-1 expression and the nature of the prevailing redox microenvironment. In 'stressed' astroglia, HO-1 hyperactivity promotes mitochondrial sequestration of non-transferrin iron and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure amply documented in Alzheimer disease, Parkinson disease and other aging-related neurodegenerative disorders. Glial HO-1 expression may also impact cell survival and neuroplasticity in these conditions by modulating brain sterol metabolism and proteosomal degradation of neurotoxic protein aggregates.  相似文献   

14.
In this study, we report a detailed analysis of the different variants of amyloid-β (Aβ) peptides in the brains and the cerebrospinal fluid from APP23 transgenic mice, expressing amyloid precursor protein with the Swedish familial Alzheimer disease mutation, at different ages. Using one- and two-dimensional gel electrophoresis, immunoblotting, and mass spectrometry, we identified the Aβ peptides Aβ(1-40), -(1-42), -(1-39), -(1-38), -(1-37), -(2-40), and -(3-40) as well as minor amounts of pyroglutamate-modified Aβ (Aβ(N3pE)) and endogenous murine Aβ in brains from 24-month-old mice. Chemical modifications of the N-terminal amino group of Aβ were identified that had clearly been introduced during standard experimental procedures. To address this issue, we additionally applied amyloid extraction in ultrapure water. Clear differences between APP23 mice and Alzheimer disease (AD) brain samples were observed in terms of the relative abundance of specific variants of Aβ peptides, such as Aβ(N3pE), Aβ(1-42), and N-terminally truncated Aβ(2/3-42). These differences to human AD amyloid were also noticed in a related mouse line transgenic for human wild type amyloid precursor protein. Taken together, our findings suggest different underlying molecular mechanisms driving the amyloid deposition in transgenic mice and AD patients.  相似文献   

15.
Alzheimer's disease (AD) is characterized by the massive deposition in the brain of the 40-42-residue amyloid beta protein (A(beta)). While A(beta)1-40 predominates in the vascular system, A(beta)1-42 is the major component of the senile plaques in the neuropil. The concentration of both A(beta) species required to form amyloid fibrils in vitro is micromolar, yet soluble A(betas) found in normal and AD brains are in the low nanomolar range. It has been recently proposed that the levels of A(beta) sufficient to trigger amyloidogenesis may be reached intracellularly. To study the internalization and intracellular accumulation of the major isoforms of A(beta), we used THP-1 and IMR-32 neuroblastoma cells as models of human monocytic and/or macrophagic and neuronal lineages, respectively. We tested whether these cells were able to internalize and accumulate 125I-A(beta)1-40 and 125I-A(beta)1-42 differentially when offered at nanomolar concentrations and free of large aggregates, conditions that mimic a prefibrillar stage of A(beta) in AD brain. Our results showed that THP-1 monocytic cells internalized at least 10 times more 125I-A(betas) than IMR-32 neuroblastoma cells, either isolated or in a coculture system. Moreover, 125I-A(beta)1-42 presented a higher adsorption, internalization, and accumulation of undigested peptide inside cells, as opposed to 125I-A(beta)1-40. These results support that A(beta)1-42, the major pathogenic form in AD, may reach supersaturation and generate competent nuclei for amyloid fibril formation intracellularly. In light of the recently reported strong neurotoxicity of soluble, nonfibrillar A(beta)1-42, we propose that intracellular amyloidogenesis in microglia is a protective mechanism that may delay neurodegeneration at early stages of the disease.  相似文献   

16.
Heme oxygenase expression in human central nervous system disorders   总被引:11,自引:0,他引:11  
In the normal mammalian CNS, heme oxygenase-2 (HO-2) is constitutively, abundantly, and fairly ubiquitously expressed, whereas heme oxygenase-1 (HO-1) mRNA and protein are confined to small populations of scattered neurons and neuroglia. Unlike ho-2, the ho-1 gene in neural (and many systemic) tissues is exquisitely sensitive to upregulation by a host of pro-oxidant and other noxious stimuli. In Alzheimer disease, HO-1 immunoreactivity is significantly augmented in neurons and astrocytes of the hippocampus and cerebral cortex relative to age-matched, nondemented controls and colocalizes to senile plaques, neurofibrillary tangles, and corpora amylacea. In Parkinson disease, HO-1 decorates Lewy bodies of affected dopaminergic neurons and is highly overexpressed in astrocytes residing within the substantia nigra. The ho-1 gene is also upregulated in glial cells within multiple sclerosis plaques; in the vicinity of human cerebral infarcts, hemorrhages, and contusions; and in various other degenerative and nondegenerative human CNS disorders. The products of the heme oxygenase reaction, free ferrous iron, carbon monoxide, and biliverdin/bilirubin, are all biologically active molecules that may profoundly influence tissue redox homeostasis under a wide range of pathophysiological conditions. Evidence adduced from whole animal and in vitro studies indicates that enhanced HO-1 activity may either ameliorate or exacerbate neural injury, effects likely contingent upon the specific model employed, the duration and intensity of HO-1 induction, and the chemistry of the local redox microenvironment. HO-1 hyperactivity also promotes mitochondrial sequestration of nontransferrin iron in oxidatively challenged astroglia and may thereby contribute to the pathological iron deposition and bioenergetic failure amply documented in aging and degenerating human neural tissues.  相似文献   

17.
Alzheimer's disease (AD) brain is characterized by excess deposition of the 42-amino acid amyloid beta-peptide [A(beta)(1-42)]. AD brain is under intense oxidative stress, and we have previously suggested that A(beta)(1-42) was associated with this increased oxidative stress. In addition, we previously demonstrated that the single methionine residue of A(beta)(1-42), residue 35, was critical for the oxidative stress and neurotoxic properties of this peptide. Others have shown that the C-terminal region of A(beta)(1-42) is helical in aqueous micellar solutions, including that part of the protein containing Met35. Importantly, Cu(II)-binding induces alpha-helicity in A(beta) in aqueous solution. Invoking the i + 4 rule of helices, we hypothesized that the carbonyl oxygen of Ile31 would interact with the S atom of Met35 to change the electronic environment of the sulfur such that molecular oxygen could lead to the production of a sulfuramyl free radical on Met35. If this hypothesis is correct, a prediction would be that breaking the helical interaction of Ile31 and Met35 would abrogate the oxidative stress and neurotoxic properties of A(beta)(1-42). Accordingly, we investigated A(beta)(1-42) in which the Ile31 residue was replaced with the helix-breaking amino acid, proline. The alpha-helical environment around Met35 was completely abolished as indicated by circular dichroism (CD)-spectroscopy. As a consequence, the aggregation, oxidative stress, Cu(II) reduction, and neurotoxic properties of A(beta)(1-42)I31P were completely altered compared to native A(beta)(1-42). The results presented here are consistent with the notion that interaction of Ile31 with Met35 may play an important role in the oxidative processes of Met35 contributing to the toxicity of the peptide.  相似文献   

18.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cerebral deposition of amyloid fibrils formed by the amyloid β (Aβ) peptide. Aβ has a length of 39-43 amino acid residues; the predominant Aβ isoforms are Aβ1-40 and Aβ1-42. While the majority of AD cases occur spontaneously, a subset of early-onset familial AD cases is caused by mutations in the genes encoding the Aβ precursor protein or presenilin 1/presenilin 2. Recently, a deletion of glutamic acid at position 22 within the Aβ sequence (E22Δ) was identified in Japanese patients with familial dementia, but the aggregation properties of the deletion variant of Aβ are not well understood. We investigated the aggregation characteristics and neurotoxicity of recombinantly expressed Aβ isoforms 1-40 and 1-42 with and without the E22Δ mutation. We show that the E22Δ mutation strongly accelerates the fibril formation of Aβ1-42 E22Δ compared to Aβ1-42 wild type (wt). In addition, we demonstrate that fibrils of Aβ1-40 E22Δ form a unique quaternary structure characterized by a strong tendency to form fibrillar bundles and a strongly increased thioflavin T binding capacity. Aβ1-40 E22Δ was neurotoxic in rat primary neuron cultures as compared to nontoxic Aβ1-40 wt. Aβ1-42 E22Δ was less toxic than Aβ1-42 wt, but it significantly decreased neurite outgrowth per cell in neuronal primary cultures. Because Aβ1-40 is the major Aβ form in vivo, the gain of toxic function caused by the E22 deletion may explain the development of familial AD in mutation carriers.  相似文献   

19.
Mitochondrial dysfunction and oxidative stress are involved in Alzheimer disease (AD) pathogenesis. In human AD brains, the activity of the α-ketoglutarate dehydrogenase enzyme complex (α-KGDHC) is reduced. KGDHC is mostly involved in NADH production. It can also participate in oxidative stress and reactive oxygen species (ROS) production. The mitochondrial dihydrolipoyl succinyltransferase enzyme (DLST) is a key subunit specific to the α-KGDHC. In cultured cells, reduction of DLST increased H2O2-induced ROS generation and cell death. Thus, we asked whether partial genetic deletion of DLST could accelerate the onset of AD pathogenesis, using a transgenic mouse model of amyloid deposition crossed with DLST+/− mice. Tg19959 mice, which carry the human amyloid precursor protein with two mutations, develop amyloid deposits and progressive behavioral abnormalities. We compared Tg19959 mice to Tg19959-DLST+/− littermates at 2–3 months of age and studied the effects of DLST deficiency on amyloid deposition, spatial learning and memory, and oxidative stress. We found that α-KGDHC activity was reduced in DLST+/− mice. We also found that DLST deficiency increased amyloid plaque burden, Aβ oligomers, and nitrotyrosine levels and accelerated the occurrence of spatial learning and memory deficits in female Tg19959 mice. Our data suggest that α-KGDHC may be involved in AD pathogenesis through increased mitochondrial oxidative stress.  相似文献   

20.
Cerebral amyloid angiopathy (CAA) due to amyloid beta (A beta) deposition is a key pathological feature of Alzheimer's disease (AD), especially in some form of familial Alzheimer's disease (FAD) including hereditary cerebral hemorrhage with amyloidosis-Dutch type. A beta mainly consists of 40- and 42-mer peptides (Abeta 1-40 and A beta 1-42), which accumulate in senile plaques of AD brains and show neurotoxicity for cultured nerve cells. We synthesized all variant forms of A beta 1-42 associated with reported FAD, such as A21G (Flemish), E22Q (Dutch), E22K (Italian), E22G (Arctic), and D23N (Iowa) along with three potential mutants by one point missense mutation (E22A, E22D, and E22V) in a highly pure form, and examined their ability to aggregate and their neurotoxicity in PC12 cells. The mutants at positions 22 and 23 showed potent aggregative ability and neurotoxicity whereas the potential mutants did not, indicating that A beta 1-42 mutants at positions 22 and 23 play a critical role in FAD of Dutch-, Italian-, Arctic-, and Iowa-types. However, Flemish-type FAD needs alternative explanation except the aggregation and neurotoxicity of the corresponding A beta 1-42 mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号