首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1:1 complex of the mutant Antp(C39----S) homeodomain with a 14 bp DNA fragment corresponding to the BS2 binding site was studied by nuclear magnetic resonance (NMR) spectroscopy in aqueous solution. The complex has a molecular weight of 17,800 and its lifetime is long compared with the NMR chemical shift time scale. Investigations of the three-dimensional structure were based on the use of the fully 15N-labelled protein, two-dimensional homonuclear proton NOESY with 15N(omega 2) half-filter, and heteronuclear three-dimensional NMR experiments. Based on nearly complete sequence-specific resonance assignments, both the protein and the DNA were found to have similar conformations in the free form and in the complex. A sufficient number of intermolecular 1H-1H Overhauser effects (NOE) could be identified to enable a unique docking of the protein on the DNA, which was achieved with the use of an ellipsoid algorithm. In the complex there are intermolecular NOEs between the elongated second helix in the helix-turn-helix motif of the homeodomain and the major groove of the DNA. Additional NOE contacts with the DNA involve the polypeptide loop immediately preceding the helix-turn-helix segment, and Arg5. This latter contact is of special interest, both because Arg5 reaches into the minor groove and because in the free Antp(C39----S) homeodomain no defined spatial structure could be found for the apparently flexible N-terminal segment comprising residues 0-6.  相似文献   

2.
Abstract

We investigated protein/DNA interactions, using molecular dynamics simulations computed between a 10 Angstom water layer model of the estrogen receptor (ER) protein DNA binding domain (DBD) amino acids and DNA of a non-consensus estrogen response element (ERE) consisting of 29 nucleotide base pairs. This ERE nucleotide sequence occurs naturally upstream of the Xenopus laevis Vitelligenin AI gene. The ER DBD is encoded by three exons. Namely, exons 2 and 3 which encode the two zinc binding motifs and a sequence of exon 4 which encodes a predicted alpha helix. We generated a computer model of the ER DBD using atomic coordinates derived from the average of 30 nuclear magnetic resonance (NMR) spectroscopy coordinate sets. Amino acids on the carboxyl end of the ER DBD were disordered in both X-ray crystallography and NMR determinations and no coordinates were reported. This disordered region includes 10 amino acids of a predicted alpha helix encoded in exon 4 at the exon 3/4 splice junction. These amino acids are known to be important in DNA binding and are also believed to function as a nuclear translocation signal sequence for the ER protein. We generated a computer model of the predicted alpha helix consisting of the 10 amino acids encoded in exon 4 and attached this helix to the carboxyl end of the ER DBD at the exon 3/4 splice junction site. We docked the ER DBD model within the DNA major groove halfsites of the 29 base pair non-consensus ERE and flanking nucleotides. We constructed a solvated model with the ER DBD/ERE complex surrounded by a ten Angstrom water layer and conducted molecular dynamics simulations. Hydrogen bonding interactions were monitored. In addition, van der Waals and electrostatic interaction energies were calculated. Amino acids of the ER DBD DNA recognition helix formed both direct and water mediated hydrogen bonds at cognate codon-anticodon nucleotide base and backbone sites within the ERE DNA right major groove halfsite. Amino acids of the ER DBD exon 4 encoded predicted alpha helix formed direct and water mediated H-bonds with base and backbone sites of their cognate codon-anticodon nucleotides within the minor grooves flanking the ERE DNA major groove halfsites. These interactions together induced bending of the DNA into the protein.  相似文献   

3.
A Fede  A Labhardt  W Bannwarth  W Leupin 《Biochemistry》1991,30(48):11377-11388
We have investigated the interaction of the bisbenzimidazole derivative Hoechst 33258 with the self-complementary dodecadeoxynucleotide duplex d(GTGGAATTCCAC)2 using one-dimensional (1D) and two-dimensional (2D) proton nuclear magnetic resonance (1H NMR) spectroscopy. To monitor the extent of complex formation, we used the imino proton region of the 1D 1H NMR spectra acquired in H2O solution. These spectra show that the DNA duplex loses its inherent C2v symmetry upon addition of the drug, indicating that the two molecules form a kinetically stable complex on the NMR time scale (the lifetime of the complex has been measured to be around 450 ms). We obtained sequence-specific assignments for all protons of the ligand and most protons of each separate strand of the oligonucleotide duplex using a variety of homonuclear 2D 1H NMR experiments. The aromatic protons of the DNA strands, which are symmetrically related in the free duplex, exhibit exchange cross peaks in the complex. This indicates that the drug binds in two equivalent sites on the 12-mer, with an exchange rate constant of 2.2 +/- 0.2 s-1. Twenty-five intermolecular NOEs were identified, all involving adenine 2 and sugar 1' protons of the DNA and protons in all four residues of the ligand, indicating that Hoechst 33258 is located in the minor groove at the AATT site. Only protons along the same edge of the two benzimidazole moieties of the drug show NOEs to DNA protons at the bottom of the minor groove. Using molecular mechanics, we have generated a unique model of the complex using distance constraints derived from the intermolecular NOEs. We present, however, evidence that the piperazine group may adopt at least two locally different conformations when the drug is bound to this dodecanucleotide.  相似文献   

4.
A structural model for the interaction of the LexA repressor DNA binding domain (DBD) with operator DNA is derived by means of Monte Carlo docking. Protein–DNA complexes were generated by docking the LexA repressor DBD NMR solution structure onto both rigid and bent B-DNA structures while giving energy bonuses for contacts in agreement with experimental data. In the resulting complexes, helix III of the LexA repressor DBD is located in the major groove of the DNA and residues Asn-41, Glu-44, and Glu-45 form specific hydrogen bonds with bases of the CTGT DNA sequence. Ser-39, Ala-42, and Asn-41 are involved in a hydrophobic interaction with the methyl group of the first thymine base. Residues in the loop region connecting the two β-sheet strands are involved in nonspecific contacts near the dyad axis of the operator. The contacts observed in the docked complexes cover the entire consensus CTGT half-site DNA operator, thus explaining the specificity of the LexA repressor for such sequences. In addition, a large number of nonspecific interactions between protein and DNA is observed. The agreement between the derived model for the LexA repressor DBD/DNA complex and experimental biochemical results is discussed. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Two-dimensional homonuclear and heteronuclear NMR and minimized potential energy calculations have been combined to define the structure of the antitumor agent mitomycin C (MC) cross-linked to deoxyguanosines on adjacent base pairs in the d(T1-A2-C3-G4-T5-A6).d(T7-A8-C9-G10-T11-A12) duplex. The majority of the mitomycin and nucleic acid protons in the MC-X 6-mer complex have been assigned from through-bond and through-space two-dimensional proton NMR studies in aqueous solution at 5 and 20 degrees C. The C3.G10 and G4.C9 base pairs are intact at the cross-link site and stack on each other in the complex. The amino protons of G4 and G10 resonate at 9.36 and 8.87 ppm and exhibit slow exchange with solvent H2O. The NMR experimental data establish that the mitomycin is cross-linked to the DNA through the amino groups of G4 and G10 and is positioned in the minor groove. The conformation of the cross-link site is defined by a set of NOEs between the mitomycin H1" and H2" protons and the nucleic acid imino and amino protons of G4 and the H2 proton of A8 and another set of NOEs between the mitomycin geminal H10" protons and the nucleic acid imino and amino protons of G10 and the H2 proton of A2. Several phosphorus resonances of the d(T-A-C-G-T-A) duplex shift dramatically on mitomycin cross-link formation and have been assigned from proton-detected phosphorus-proton two-dimensional correlation experiments. The proton chemical shifts and NOEs establish fraying at the ends of the d(T-A-C-G-T-A) duplex, and this feature is retained on mitomycin cross-link formation. The base-base and base-sugar NOEs exhibit similar patterns for symmetry-related steps on the two nucleic acid strands in the MC-X 6-mer complex, while the proton and phosphorus chemical shifts are dramatically perturbed at the G10-T11 step on cross-link formation. The NMR distance constraints have been included in minimized potential energy computations on the MC-X 6-mer complex. These computations were undertaken with the nonplanar five-membered ring of mitomycin in each of two pucker orientations. The resulting low-energy structures MX1 and MX2 have the mitomycin cross-linked in a widened minor groove with the chromophore ring system in the vicinity of the G10-T11 step on one of the two strands in the duplex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
7.
One- and two-dimensional proton NMR methods are being used to study the synthetic lambda operator site O-L1, a 17 base-pair DNA duplex recognized by lambda repressor and Cro protein. The complete assignment of the 17 imino protons, which participate in Watson-Crick hydrogen bonding, and of the eight adenine H2 protons, which lie in the minor groove of the double helix, is presented.  相似文献   

8.
9.
Integration Host Factor, IHF, is an E. coli DNA binding protein that imposes a substantial bend on DNA. Previous footprinting studies and bending assays have characterized several recognition sequences in the bacterial and lambda phage genome as unique in the way they are bound by IHF. We have chosen one of the lambda phage sites, H1, for study because it presents a small yet sequence-specific substrate for NMR analysis of the complex. A 19 base-pair duplex, H19, corresponding to the recognition sequence at the H1 site was constructed by isotopically labeling one of the strands with 15N. (1H, 15N) heteronuclear NMR experiments aided in assigning the imino proton resonances of the DNA alone and in complex with IHF. The NMR results are consistent with a mode of binding observed in the recent crystal structure of IHF bound to another of its sites from the lambda phage genome. Additionally, the dramatic change that IHF imposes on the imino proton chemical shifts is indicative of a severe deviation from canonical B-DNA structure. In order to understand the dynamic properties of the DNA in the complex with IHF, the exchange rates of the imino protons with the solvent have been measured for H19 with and without IHF bound. A drastic reduction in exchange is observed for the imino protons in the IHF bound DNA. In the DNA-protein complex, groups of adjacent base-pair exchange at the same rate, and appear to close more slowly than the rate of imino proton exchange with bulk water, since their exchange rate is independent of catalyst concentration. We infer that segments of the double helix as large as 6 bp open in a cooperative process, and remain open much longer than is typical for opening fluctuations in naked duplex DNA. We discuss these results in terms of the specific protein-DNA contacts observed in the crystal structure.  相似文献   

10.
Polyamides composed of N-methylpyrrole (Py), N-methylimidazole (Im) and N-methylhydroxypyrrole (Hp) amino acids linked by beta-alanine (beta) bind the minor groove of DNA in 1:1 and 2:1 ligand to DNA stoichiometries. Although the energetics and structure of the 2:1 complex has been explored extensively, there is remarkably less understood about 1:1 recognition beyond the initial studies on netropsin and distamycin. We present here the 1:1 solution structure of ImPy-beta-Im-beta-ImPy-beta-Dp bound in a single orientation to its match site within the DNA duplex 5'-CCAAAGAGAAGCG-3'.5'-CGCTTCTCTTTGG-3' (match site in bold), as determined by 2D (1)H NMR methods. The representative ensemble of 12 conformers has no distance constraint violations greater than 0.13 A and a pairwise RMSD over the binding site of 0.80 A. Intermolecular NOEs place the polyamide deep inside the minor groove, and oriented N-C with the 3'-5' direction of the purine-rich strand. Analysis of the high-resolution structure reveals the ligand bound 1:1 completely within the minor groove for a full turn of the DNA helix. The DNA is B-form (average rise=3.3 A, twist=38 degrees ) with a narrow minor groove closing down to 3.0-4.5 A in the binding site. The ligand and DNA are aligned in register, with each polyamide NH group forming bifurcated hydrogen bonds of similar length to purine N3 and pyrimidine O2 atoms on the floor of the minor groove. Each imidazole group is hydrogen bonded via its N3 atom to its proximal guanine's exocyclic amino group. The important roles of beta-alanine and imidazole for 1:1 binding are discussed.  相似文献   

11.
The DNA binding domain (DBD) of gamma delta resolvase (residues 141-183) is responsible for the interaction of this site-specific DNA recombinase with consensus site DNA within the gamma delta transposable element in Escherichia coli. Based on chemical-shift comparisons, the proteolytically isolated DBD displays side-chain interactions within a hydrophobic core that are highly similar to those of this domain when part of the intact enzyme (Liu T, Liu DJ, DeRose EF, Mullen GP, 1993, J Biol Chem 268:16309-16315). The structure of the DBD in solution has been determined using restraints obtained from 2-dimensional proton NMR data and is represented by 17 conformers. Experimental restraints included 458 distances based on analysis of nuclear Overhauser effect connectivities, 17 phi and chi 1 torsion angles based on analysis of couplings, and 17 backbone hydrogen bonds determined from NH exchange data. With respect to the computed average structure, these conformers display an RMS deviation of 0.67 A for the heavy backbone atoms and 1.49 A for all heavy atoms within residues 149-180. The DBD consists of 3 alpha-helices comprising residues D149-Q157, S162-T167, and R172-N183. Helix-2 and helix-3 form a backbone fold, which is similar to the canonical helix-turn-helix motif. The conformation of the NH2-terminal residues, G141-R148, appears flexible in solution. A hydrophobic core is formed by side chains donated by essentially all hydrophobic residues within the helices and turns. Helix-1 and helix-3 cross with a right-handed folding topology. The structure is consistent with a mechanism of DNA binding in which contacts are made by the hydrophilic face of helix-3 in the major groove and the amino-terminal arm in the minor groove. This structure represents an important step toward analysis of the mechanism of DNA interaction by gamma delta resolvase and provides initial structure-function comparisons among the divergent DBDs of related resolvases and invertases.  相似文献   

12.
13.
L R Comolli  J G Pelton    I Tinoco  Jr 《Nucleic acids research》1998,26(20):4688-4695
An RNA 'kissing' complex is formed by the association of two hairpins via base pairing of their complementary loops. This sense-antisense RNA motif is used in the regulation of many cellular processes, including Escherichia coli ColE1 plasmid copy number. The RNA one modulator protein (Rom) acts as a co-regulator of ColE1 plasmid copy number by binding to the kissing hairpins and stabilizing their interaction. We have used heteronuclear two-dimensional NMR spectroscopy to map the interface between Rom and a kissing complex formed by the loop of the trans -activation response (Tar) element of immunodeficiency virus 1 (HIV-1) and its complement. The protein binding interface was obtained from changes in amide proton signals of uniformly 15N-labeled Rom with increasing concentrations of unlabeled Tar-Tar*. Similarly, the RNA-binding interface was obtained from changes in imino proton signals of uniformly 15N-labeled Tar with increasing concentrations of unlabeled Rom. Our results are in agreement with previous mutagenesis studies and provide additional information on Rom residues involved in RNA binding. The kissing hairpin interface with Rom leads to a model in which the protein contacts the minor groove of the loop-loop helix and, to a lesser extent, the major groove of the stems.  相似文献   

14.
The non-exchangeable and imino proton NMR resonances have been assigned of the 1:1 complex of an analogue 2 of Hoechst 33258 1 bound to the decadeoxyribonuycleotide d-[CATGGCCATG]2 by a combination of NOE difference, COSY and NOESYPH techniques. In contrast to Hoechst 33258 which recognizes 5'-AATT sequences exclusively, analogue 2 possesses structural features designed to permit the recognition of GC sites. The NOESY and 1D-NOE experiments place the drug in the minor groove and it is located on the 5'-CCAT sequence. The orientation of the drug in the groove is such as to place the N-methylpiperazine terminus at a GC site. Cross-correlation peaks in the NOESY experiment show that the DNA duplex retains its right-handed B form, similar to that in the free decamer. Specific NOEs locate the benzoxazole moiety on the 5'-CCAT and are consistent with the pyridine nitrogen forming a new hydrogen bond to G(4)-2NH2 at 5'-CCAT. The drug appears to undergo rotation around the C9-C10 bond, at a rate comparable with NMR time scale, even after binding. Variable temperature 1H-NMR studies established that the DNA is thermally stabilized as a result of the drug binding. The drug binding is a dynamic process involving exchange between the equivalent 5'-CCAT sites at approximately 60s-1 with delta G degree of 65 kJ mol-1 at 308K. The experimental evidence is in accord with a slide-swing mechanism for this process.  相似文献   

15.
16.
17.
The conformation of two hexanucleotides, d(GGATCC) and d(GGm6ATCC), has been studied by proton nuclear magnetic resonance. Nuclear Overhauser effect (NOE) measurements on d(GGATCC) are in agreement with a normal B form right-handed helical structure. The single- and double-strand resonances are in fast exchange on a proton NMR time scale. The exchange is observed to be slow for d(GGm6ATCC); up to the Tm, separate resonances are observed for each state, though above the Tm exchange becomes more rapid. The preferred orientation of the adenosine methylamino group (methyl cis to N1) hinders base-pair formation. At 0 degree C irradiation of the m6A-T imino proton gives an NOE to AH2, showing that base pairing is Watson-Crick. Intra- and interresidue NOEs show that the helix is right handed and in the B form. Comparing results on the two oligomers demonstrates that adenosine methylation induces little or no change in the conformation of the helix but reduces the Tm from 45 to 32 degrees C. All of the amino proton resonances, as well as the imino resonances, have been assigned. From NOE experiments on the unmethylated oligomer we have located the Watson-Crick and non-Watson-Crick adenosine amino protons. At 0 degree C these resonances show broadening due to rotation of the amino group, and their rotation is slightly slower than for the adjacent guanosine amino group, though both these amino groups have lifetimes of less than 10 ms at 0 degree C. The imino protons show normal behavior, disappearing from the spectra ca. 20 degrees C below the Tm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The non-exchangeable and imino proton NMR resonances of the non self-complementary decadeoxyribonucleotide d-[(GATCCGTATG).(GATACGGATC)] as well as those of the 1:1 complex of the monocatonic bis-imidazole lexitropsin 1 to this sequence have been assigned by using a combination of NOE difference, COSY and NOESY techniques. Confirmation of complete annealing of the two non self-complementary decamer strands to give the duplex decadeoxyribonucleotide is obtained by the detection of ten imino protons. It is established that the sugar-base orientations of all the bases in the duplex decamer are anti. From NOE studies, it is concluded that the duplex oligomer is right-handed and adopts a conformation in solution that belongs to the B family. A population analysis reveals that the sugar moieties exist predominantly in the S-form (2'-endo-3'-exo). Addition of 1 to the DNA solution leads to doubling of the resonances for CH6(4,5), GH8(6), TH6(7) and T-CH3(7). The base, anomeric H1' and imino proton signals for the base sequence 5'-CCGT undergo the most marked drug-induced chemical shift changes. These results provide evidence that the lexitropsin is bound to the sequence 5'-CCGT in the minor groove of the DNA. NOE measurements between the amide protons (NH1 and NH4) and the imino proton (IV and V) signals confirmed the location and orientation of 1 in the 1:1 complex, with the imino terminus oriented to C(4). The specific binding of 1 to the sequence 5'-CCGT-3' deduced in this study is in agreement with the footprinting data obtained using the Hind III/Nci fragment from pBR322 DNA [Kissinger et al. 1987 (13)]. Intramolecular NOEs observed between H4 and H9 of the lexitropsin suggest that the molecule is not planar, but subjected to propeller twisting, in both the free and bound forms. Furthermore, NOE measurements permit assignment of the DNA duplex in the 1:1 complex to the B-form, which is similar to that of the free DNA. The [(T7A8T9).(A12T13A14)] segment of the DNA shows better stacking, by propeller twisting, compared to the rest of the molecule in the free as well as the complex forms. The intermolecular rate of exchange of 1 between the equivalent 5'-CCGT sites, at a concentration of 12 mM, is estimated to be approximately 88s-1 at 308 degrees K with delta G not equal to of 63 +/- 5 KJ mol-1.  相似文献   

19.
Molecular dynamics simulations have been performed on the glucocorticoid receptor DNA binding domain (GR DBD) in aqueous solution as a dimer in complex with DNA and as a free monomer. In the simulated complex, we find a slightly increased bending of the DNA helix axis compared with the crystal structure in the spacer region of DNA between the two half-sites that are recognized by GR DBD. The bend is mainly caused by an increased number of interactions between DNA and the N-terminal extended region of the sequence specifically bound monomer. The recognition helices of GR DBD are pulled further into the DNA major groove leading to a weakening of the intrahelical hydrogen bonds in the middle of the helices. Many ordered water molecules with long residence times are found at the intermolecular interfaces of the complex. The hydrogen-bonding networks (including water bridges) on either side of the DNA major groove involve residues that are highly conserved within the family of nuclear receptors. Very similar hydrogen-bonding networks are found in the estrogen receptor (ER) DBD in complex with DNA, which suggests that this is a common feature for proper positioning of the recognition helix in ER DBD and GR DBD.  相似文献   

20.
The zinc finger domain of the Wilms tumor suppressor protein (WT1) contains four canonical Cys(2)His(2) zinc fingers. WT1 binds preferentially to DNA sequences that are closely related to the EGR-1 consensus site. We report the structure determination by both X-ray crystallography and NMR spectroscopy of the WT1 zinc finger domain in complex with DNA. The X-ray structure was determined for the complex with a cognate 14 base-pair oligonucleotide, and composite X-ray/NMR structures were determined for complexes with both the 14 base-pair and an extended 17 base-pair DNA. This combined approach allowed unambiguous determination of the position of the first zinc finger, which is influenced by lattice contacts in the crystal structure. The crystal structure shows the second, third and fourth zinc finger domains inserted deep into the major groove of the DNA where they make base-specific interactions. The DNA duplex is distorted in the vicinity of the first zinc finger, with a cytidine twisted and tilted out of the base stack to pack against finger 1 and the tip of finger 2. By contrast, the composite X-ray/NMR structures show that finger 1 continues to follow the major groove in the solution complexes. However, the orientation of the helix is non-canonical, and the fingertip and the N terminus of the helix project out of the major groove; as a consequence, the zinc finger side-chains that are commonly involved in base recognition make no contact with the DNA. We conclude that finger 1 helps to anchor WT1 to the DNA by amplifying the binding affinity although it does not contribute significantly to binding specificity. The structures provide molecular level insights into the potential consequences of mutations in zinc fingers 2 and 3 that are associated with Denys-Drash syndrome and nephritic syndrome. The mutations are of two types, and either destabilize the zinc finger structure or replace key base contact residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号