首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Axons use temporal and directional guidance cues at intermediate targets to set the rate and direction of growth towards their synaptic targets. Our recent studies have shown that disrupting the temporal guidance process, by unilaterally accelerating the rate at which spinal dI1 (commissural) axons grow, resulted in turning errors both in the ventral spinal cord and after crossing the floor plate. Here we investigate a mechanistic explanation for these defects: the accelerated dI1 axons arrive in the ventral spinal cord before necessary fasciculation cues from incoming dI1 axons from the opposite side of the spinal cord. The identification of such an interaction would support a model of selective fasciculation whereby the pioneering dI1 axons serve as guides for the processes of the bilaterally symmetrical population of dI1 neurons. To test this model, we first developed the ability to “double” in ovo electroporate the embryonic chicken spinal cord to independently manipulate the rate of growth of the two bilateral populations of dI1 axons. Second, we examined the requirement for a putative bilateral interaction by unilaterally ablating the dI1 population in cultured explants of chicken embryonic spinal cord. Surprisingly, we find no evidence for a bilateral dI1 axon interaction, rather dI1 axons appear to project independently of each other.  相似文献   

3.
4.
The development of connections between neurons and their target cells involves competition between axons for target-derived neurotrophic factors. Although the notion of competition is commonly used in neurobiology, the process is not well understood, and only a few formal models exist. In population biology, in contrast, the concept of competition is well developed and has been studied by means of many formal models of consumer-resource systems. Here we show that a recently formulated model of axonal competition can be rewritten as a general consumer-resource system. This allows neurobiological phenomena to be interpreted in population biological terms and, conversely, results from population biology to be applied to neurobiology. Using findings from population biology, we have studied two extensions of our axonal competition model. In the first extension, the spatial dimension of the target is explicitly taken into account. We show that distance between axons on their target mitigates competition and permits the coexistence of axons. The model can account for the fact that in many types of neurons a positive correlation exists between the size of the dendritic tree and the number of innervating axons surviving into adulthood. In the second extension, axons are allowed to respond to more than one neurotrophic factor. We show that this permits competitive exclusion among axons of one type, while at the same time there is coexistence with axons of another type innervating the same target. The model offers an explanation for the innervation pattern found on cerebellar Purkinje cells, where climbing fibres compete with each other until only a single one remains, which coexists with parallel fibre input to the same Purkinje cell.  相似文献   

5.
Proper development of neuronal networks relies on the polarization of the neurons, thus the establishment of two compartments, axons and dendrites, whose formation depends on cytoskeletal rearrangements. Rnd proteins are regulators of actin organization and they are important players in several aspects of brain development as neurite formation, axon guidance and neuron migration. We have recently demonstrated that mice lacking RhoE/Rnd3 expression die shortly after birth and have neuromotor impairment and neuromuscular alterations, indicating an abnormal development of the nervous system. In this study, we have further investigated the specific role played by RhoE in several aspects of neuronal development by using hippocampal neuron cultures. Our findings show that neurons from a mice lacking RhoE expression exhibit a decrease in the number and the total length of the neurites. We also show that RhoE-deficient neurons display a reduction in axon outgrowth and a delay in the process of neuronal polarization. In addition, our results suggest an involvement of the RHOA/ROCK/LIMK/COFILIN signaling pathway in the neuronal alterations induced by the lack of RhoE. These findings support our previous report revealing the important role of RhoE in the normal development of the nervous system and may provide novel therapeutic targets in neurodegenerative disorders.  相似文献   

6.
Polysialic acid (polySia) is mainly described as a glycan modification of the neural cell adhesion molecule NCAM1. PolySia-NCAM1 has multiple functions during the development of vertebrate nervous systems including axon extension and fasciculation. Phylogenetic analyses reveal the presence of two related gene clusters, NCAM1 and NCAM2, in tetrapods and fishes. Within the ncam1 cluster, teleost fishes express ncam1a (ncam) and ncam1b (pcam) as duplicated paralogs which arose from a second round of ray-finned fish-specific genome duplication. Tetrapods, in contrast, express a single NCAM1 gene. Using the zebrafish model, we identify Ncam1b as a novel major carrier of polySia in the nervous system. PolySia-Ncam1a is expressed predominantly in rostral regions of the developing nervous system, whereas polySia-Ncam1b prevails caudally. We show that ncam1a and ncam1b have different expression domains which only partially overlap. Furthermore, Ncam1a and Ncam1b and their polySia modifications serve different functions in axon guidance. Formation of the posterior commissure at the forebrain/midbrain junction requires polySia-Ncam1a on the axons for proper fasciculation, whereas Ncam1b, expressed by midbrain cell bodies, serves as an instructive guidance cue for the dorso-medially directed growth of axons. Spinal motor axons, on the other hand, depend on axonally expressed Ncam1b for correct growth toward their target region. Collectively, these findings suggest that the genome duplication in the teleost lineage has provided the basis for a functional diversification of polySia carriers in the nervous system.  相似文献   

7.
How axons in the developing nervous system successfully navigate to their correct targets is a fundamental problem in neurobiology. Understanding the mechanisms that mediate axon guidance will give important insight into how the nervous system is correctly wired during development and may have implications for therapeutic approaches to developmental brain disorders and nerve regeneration. Achieving this understanding will require unraveling the molecular logic that ensures the proper expression and localization of axon guidance cues and receptors, and elucidating the signaling events that regulate the growth cone cytoskeleton in response to guidance receptor activation. Studies of axon guidance at the midline of many experimental systems, from the ventral midline of Drosophila to the vertebrate spinal cord, have led to important mechanistic insights into the complex problem of wiring the nervous system. Here we review recent advances in understanding the regulation of midline axon guidance, with a particular emphasis on the contributions made from molecular genetic studies of invertebrate model systems.  相似文献   

8.
How axons in the developing nervous system successfully navigate to their correct targets is a fundamental problem in neurobiology. Understanding the mechanisms that mediate axon guidance will give important insight into how the nervous system is correctly wired during development and may have implications for therapeutic approaches to developmental brain disorders and nerve regeneration. Achieving this understanding will require unraveling the molecular logic that ensures the proper expression and localization of axon guidance cues and receptors, and elucidating the signaling events that regulate the growth cone cytoskeleton in response to guidance receptor activation. Studies of axon guidance at the midline of many experimental systems, from the ventral midline of Drosophila to the vertebrate spinal cord, have led to important mechanistic insights into the complex problem of wiring the nervous system. Here we review recent advances in understanding the regulation of midline axon guidance, with a particular emphasis on the contributions made from molecular genetic studies of invertebrate model systems.  相似文献   

9.
Feinstein P  Mombaerts P 《Cell》2004,117(6):817-831
No models fully account for how odorant receptors (ORs) function in the guidance of axons of olfactory sensory neurons (OSNs) to glomeruli in the olfactory bulb. Here, we use gene targeting in mice to demonstrate that the OR amino acid sequence imparts OSN axons with an identity that allows them to coalesce into glomeruli. Replacements between the coding regions of the M71 and M72 OR genes reroute axons to their respective glomeruli. A series of M71-M72 hybrid ORs uncover a spectrum of glomerular phenotypes, leading to the concept that the identity of OSN axons is revealed depending on what other axons are present. Naturally occurring amino acid polymorphisms in other ORs also produce distinct axonal identities. These critical amino acid residues are distributed throughout the protein and reside predominantly within transmembrane domains. We propose a contextual model for axon guidance in which ORs mediate homotypic interactions between like axons.  相似文献   

10.
During neural development, neurons extend axons to target areas of the brain. Through processes of growth, branching and retraction these axons establish stereotypic patterns of connectivity. In the visual system, these patterns include retinotopic organization and the segregation of individual axons onto different subsets of target neurons based on the eye of origin (ocular dominance) or receptive field type (ON or OFF). Characteristic disruptions to these patterns occur when neural activity or guidance molecule expression is perturbed. In this paper we present a model that explains how these developmental patterns might emerge as a result of the coordinated growth and retraction of individual axons and synapses responding to position-specific markers, trophic factors and spontaneous neural activity. This model derives from one presented earlier (Godfrey et al., 2009) but which is here extended to account for a wider range of phenomena than previously described. These include ocular dominance and ON-OFF segregation and the results of altered ephrinA and EphA guidance molecule expression. The model takes into account molecular guidance factors, realistic patterns of spontaneous retinal wave activity, trophic molecules, homeostatic mechanisms, axon branching and retraction rules and intra-axonal signaling mechanisms that contribute to the survival of nearby synapses on an axon. We show that, collectively, these mechanisms can account for a wider range of phenomena than previous models of retino-tectal development.  相似文献   

11.
12.
Quantitative modeling of Arabidopsis development   总被引:10,自引:0,他引:10       下载免费PDF全文
We present an empirical model of Arabidopsis (Arabidopsis thaliana), intended as a framework for quantitative understanding of plant development. The model simulates and realistically visualizes development of aerial parts of the plant from seedling to maturity. It integrates thousands of measurements, taken from several plants at frequent time intervals. These data are used to infer growth curves, allometric relations, and progression of shapes over time, which are incorporated into the final three-dimensional model. Through the process of model construction, we identify the key attributes required to characterize the development of Arabidopsis plant form over time. The model provides a basis for integrating experimental data and constructing mechanistic models.  相似文献   

13.
14.
Members of the Slit family of secreted ligands interact with Roundabout (Robo) receptors to provide guidance cues for many cell types. For example, Slit/Robo signaling elicits repulsion of axons during neural development, whereas in endothelial cells this pathway inhibits or promotes angiogenesis depending on the cellular context. Here, we show that miR-218 is intronically encoded in slit2 and slit3 and that it suppresses Robo1 and Robo2 expression. Our data indicate that miR-218 and multiple Slit/Robo signaling components are required for heart tube formation in zebrafish and that this network modulates the previously unappreciated function of Vegf signaling in this process. These findings suggest a new paradigm for microRNA-based control of ligand-receptor interactions and provide evidence for a novel signaling pathway regulating vertebrate heart tube assembly.  相似文献   

15.
The nervous system of Caenorhabditis elegans comprises circumferential and longitudinal axon tracts. Netrin UNC-6 is required for the guidance of circumferential axon migrations and is expressed by ventral neuroglia and neurons in temporally and spatially regulated patterns. Migrating axons mediate the UNC-6 signal through the UNC-5 and UNC-40 receptors. It is thought that UNC-6 is secreted and becomes associated with basement membranes and cell surfaces to form gradients that direct circumferentially migrating axons toward or away from the ventral UNC-6 sources. Little is known about the effects of UNC-6 on longitudinally migrating axons. In unc-6, unc-5, and unc-40 null mutants, some longitudinal nerves are dorsally or ventrally misdirected. Furthermore, the organization of axons are disrupted within nerves. We show that cells ectopically expressing UNC-6 can redirect the migrations of some neighboring longitudinal axons, suggesting that the gradients postulated to direct circumferential migration also help specify the dorsoventral positions of these longitudinal nerves. We also manipulated the temporal and spatial expression pattern of UNC-6 by two different means. First, we removed the PVT midline neuron which expresses UNC-6 for a short time during axon outgrowths. Second, we expressed UNC-6 uniformly in the nervous system throughout development. The results suggest that changing UNC-6 expression patterns modify the distribution of the cue by providing new localized sources. This new guidance information is critical for organizing the axons of longitudinal nerves.  相似文献   

16.
17.
Each adult mammalian skeletal muscle has a unique complement of fast and slow myofibers, reflecting patterns established during development and reinforced via their innervation by fast and slow motor neurons. Existing data support a model of postnatal "matching" whereby predetermined myofiber type identity promotes pruning of inappropriate motor axons, but no molecular mechanism has yet been identified. We present evidence that fiber type–specific repulsive interactions inhibit innervation of slow myofibers by fast motor axons during both postnatal maturation of the neuromuscular junction and myofiber reinnervation after injury. The repulsive guidance ligand ephrin-A3 is expressed only on slow myofibers, whereas its candidate receptor, EphA8, localizes exclusively to fast motor endplates. Adult mice lacking ephrin-A3 have dramatically fewer slow myofibers in fast and mixed muscles, and misexpression of ephrin-A3 on fast myofibers followed by denervation/reinnervation promotes their respecification to a slow phenotype. We therefore conclude that Eph/ephrin interactions guide the fiber type specificity of neuromuscular interactions during development and adult life.  相似文献   

18.
19.
20.
In the developing nervous system, pathfinding axons navigate through a series of intermediate targets in order to form synaptic connections. Vertebrate spinal commissural axons extend toward and across the floor plate (FP), a key intermediate target located at the ventral midline (VM). Subsequently, post-crossing commissural axons grow either alongside or significant distances away from the floor plate (FP), but never re-cross the VM. Consistent with this behavior, post-crossing commissural axons lose responsiveness to the FP-associated chemoattractants, Netrin-1 and SHH, and gain responsiveness to Slits, which are potent midline repellents, in vitro. In addition, the results of several in vivo studies suggest that the upregulation of Slit-binding repulsive Robo receptors, Robo1/2, alters the responsiveness of decussated commissural axons to midline guidance cues. Nevertheless, in vertebrates, it is unclear whether Robo1/2 are the sole or major repellent receptors responsible for driving these commissural axons away from the VM and preventing their re-entry into the FP. We recently re-visited these issues in the chick spinal cord by assessing the consequences of manipulating Robo expression on commissural axons in ovo. Our findings suggest that, at least in chick embryos, the upregulation of repulsive Robos on post-crossing axons alters the responsiveness of these axons to midline repellents and facilitates their expulsion from, but is not likely to have a significant role in preventing their re-entry into the VM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号