首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Histone acetylation plays an important role in chromatin remodeling and gene expression. The molecular mechanisms involved in cell-specific expression of endothelial nitric-oxide synthase (eNOS) are not fully understood. In this study we investigated whether histone deacetylation was involved in repression of eNOS expression in non-endothelial cells. Induction of eNOS expression by histone deacetylase (HDAC) inhibitors trichostatin A (TSA) and sodium butyrate was observed in all four different types of non-endothelial cells examined. Chromatin immunoprecipitation assays showed that the induction of eNOS expression by TSA was accompanied by a remarkable increase of acetylation of histone H3 associated with the eNOS 5'-flanking region in the non-endothelial cells. Moreover, DNA methylation-mediated repression of eNOS promoter activity was partially reversed by TSA treatment, and combined treatment of TSA and 5-aza-2'-deoxycytidine (AzadC) synergistically induced eNOS expression in non-endothelial cells. The proximal Sp1 site is critical for basal activity of eNOS promoter. The induction of eNOS by inhibition of HDACs in non-endothelial cells, however, appeared not mediated by the changes in Sp1 DNA binding activity. We further showed that Sp1 bound to the endogenous eNOS promoter and associated with HDAC1 in non-endothelial HeLa cells. Combined TSA and AzadC treatment increased Sp1 binding to the endogenous eNOS promoter but decreased the association between HDAC1 and Sp1 in HeLa cells. Our data suggest that HDAC1 plays a critical role in eNOS repression, and the proximal Sp1 site may serve a key target for HDCA1-mediated eNOS repression in non-endothelial cells.  相似文献   

2.
3.
Nitric oxide (NO) plays an important role in airway function, and endothelial NO synthase (eNOS) is expressed in airway epithelium. To determine the basis of cell-specific eNOS expression in airway epithelium, studies were performed in NCI-H441 human bronchiolar epithelial cells transfected with the human eNOS promoter fused to luciferase. Transfection with 1624 base pairs of sequence 5' to the initiation ATG (position -1624) yielded a 19-fold increase in promoter activity versus vector alone. No activity was found in lung fibroblasts, which do not express eNOS. 5' deletions from -1624 to -279 had modest effects on promoter activity in H441 cells. Further deletion to -248 reduced activity by 65%, and activity was lost with deletion to -79. Point mutations revealed that the GATA binding motif at -254 is mandatory for promoter activity and that the positive regulatory element between -248 and -79 is the Sp1 binding motif at -125. Electrophoretic mobility shift assays yielded two complexes with the GATA site and three with the Sp1 site. Immunodepletion with antiserum to GATA-2 prevented formation of the slowest migrating GATA complex, and antiserum to Sp1 supershifted the slowest migrating Sp1 complex. An electrophoretic mobility shift assay with H441 versus fibroblast nuclei revealed that the slowest migrating GATA complex is unique to airway epithelium. Thus, cell-specific eNOS expression in airway epithelium is dependent on the interaction of GATA-2 with the core eNOS promoter, and the proximal Sp1 binding site is also an important positive regulatory element.  相似文献   

4.
Nitric-oxide synthase (NOS) catalyzes both coupled and uncoupled reactions that generate nitric oxide and reactive oxygen species. Oxygen is often the overlooked substrate, and the oxygen metabolism catalyzed by NOS has been poorly defined. In this paper we focus on the oxygen stoichiometry and effects of substrate/cofactor binding on the endothelial NOS isoform (eNOS). In the presence of both L-arginine and tetrahydrobiopterin, eNOS is highly coupled (>90%), and the measured stoichiometry of O(2)/NADPH is very close to the theoretical value. We report for the first time that the presence of L-arginine stimulates oxygen uptake by eNOS. The fact that nonhydrolyzable L-arginine analogs are not stimulatory indicates that the occurrence of the coupled reaction, rather than the accelerated uncoupled reaction, is responsible for the L-arginine-dependent stimulation. The presence of 5,6,7,8-tetrahydrobiopterin quenched the uncoupled reactions and resulted in much less reactive oxygen species formation, whereas the presence of redox-incompetent 7,8-dihydrobiopterin demonstrates little quenching effect. These results reveal different mechanisms for oxygen metabolism for eNOS as opposed to nNOS and, perhaps, partially explain their functional differences.  相似文献   

5.
6.
It has been suggested that the mechanical forces acting on endothelial cells may be sensed in part by cell-matrix connections. We therefore studied the role of different matrix proteins, in particular laminin I, on a shear stress-dependent endothelial response, namely nitric-oxide synthase (eNOS) expression. Primary porcine aortic endothelial cells were seeded onto glass plates either noncoated (NC cells) or precoated with fibronectin (FN cells), laminin (LN cells), or collagen I (CN cells). Western blots were used to detect differences in the final matrix composition of these cells. A shear stress of 16 dyn/cm2 was applied for 6 h. Only LN cells showed detectable amounts of laminin I in their underlying matrix when they reached confluence. They reacted with a 2-fold increase of eNOS expression (n = 16, p < 0.001) to the exposure of shear stress, which went along with enhanced eNOS protein and NO release. In contrast, neither FN cells (n = 9) nor NC cells (n = 13) showed a significant increase of eNOS expression under shear stress. The increase in CN cells was borderline (1.4-fold; n = 9, p < 0.05) and was not associated with an increase of eNOS protein. The shear-induced increase in eNOS expression of LN cells was abolished by the peptide YIGSR, which blocks the cellular binding to laminin I via a 67-kDa laminin-binding protein, whereas a control peptide (YIGSK) had no effect. The induction of eNOS expression by shear stress is stimulated by an interaction of endothelial cells with laminin which is, at least in part, mediated by a 67-kDa laminin-binding protein.  相似文献   

7.
Inhibition of endothelial nitric-oxide synthase by ceruloplasmin.   总被引:1,自引:0,他引:1  
The plasma copper protein ceruloplasmin (CP) was found to inhibit endothelial nitric-oxide synthase activation in cultured endothelial cells, in line with previous evidence showing that the endothelium-dependent vasorelaxation of the aorta is impaired by physiological concentrations of ceruloplasmin. The data presented here indicate a direct relationship between the extent of inhibition of agonist-triggered endothelial nitric oxide synthase activation and CP-induced enrichment of the copper content of endothelial cells. Copper discharged by CP was mainly localized in the soluble fraction of cells. The subcellular distribution of the metal seems to be of relevance to the inhibitory effect of CP, because it was mimicked by copper chelates, like copper-histidine, able to selectively enrich the cytosolic fraction of cells, but not by copper salts, which preferentially located the metal to the particulate fraction.  相似文献   

8.
We have reported previously that the 27nt repeat polymorphism in endothelial nitric-oxide synthase (eNOS) intron 4-a source of 27nt small RNA-inhibits eNOS expression. In the current study, we have investigated how 27nt small RNA suppresses eNOS expression. Using a chromatin immunoprecipitation assay, we examined histone acetylation in the 27nt repeat element of eNOS intron 4, the promoter region up to -1486 bp, and the 5' enhancer region (-4583/-4223bp) in human aortic endothelial cells (HAECs) treated with 27nt RNA duplex. 27nt RNA duplex induced hyperacetylation in H3 (lysine8, 12, and 23) and H4 (lysine 9 and 12) at the 27nt repeat element, which then interacted with nuclear actin, histone deacetylase 3 (HDAC3), and NonO proteins. In contrast, the histone H3 and H4 became hypoacetylated at the eNOS core promoter. HAECs treated with 27nt RNA duplex had reduced eNOS expression, but treatment with either HDAC3 small interfering RNA or NonO siRNA significantly attenuated the 27nt small RNA-induced suppression. We further found that 27nt small RNA induced DNA methylation in a region approximately 750nt upstream of the intron 4 repeats, and a methyltransferase inhibitor reversed the effect on methylation and eNOS expression. Our study demonstrates that 27nt small RNA may suppress eNOS expression by altering histone acetylation and DNA methylation in regions adjacent to the 27nt repeat element and core promoter.  相似文献   

9.
High density lipoprotein (HDL) activates endothelial nitric-oxide synthase (eNOS), leading to increased production of the antiatherogenic molecule NO. A variety of stimuli regulate eNOS activity through signaling pathways involving Akt kinase and/or mitogen-activated protein (MAP) kinase. In the present study, we investigated the role of kinase cascades in HDL-induced eNOS stimulation in cultured endothelial cells and COS M6 cells transfected with eNOS and the HDL receptor, scavenger receptor B-I. HDL (10-50 microg/ml, 20 min) caused eNOS phosphorylation at Ser-1179, and dominant negative Akt inhibited both HDL-mediated phosphorylation and activation of the enzyme. Phosphoinositide 3-kinase (PI3 kinase) inhibition or dominant negative PI3 kinase also blocked the phosphorylation and activation of eNOS by HDL. Studies with genistein and PP2 showed that the nonreceptor tyrosine kinase, Src, is an upstream stimulator of the PI3 kinase-Akt pathway in this paradigm. In addition, HDL activated MAP kinase through PI3 kinase, and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibition fully attenuated eNOS stimulation by HDL without affecting Akt or eNOS Ser-1179 phosphorylation. Conversely, dominant negative Akt did not alter HDL-induced MAP kinase activation. These results indicate that HDL stimulates eNOS through common upstream, Src-mediated signaling, which leads to parallel activation of Akt and MAP kinases and their resultant independent modulation of the enzyme.  相似文献   

10.
Activation of bone morphogenetic protein (BMP) receptor II (BMPRII) promotes pulmonary artery endothelial cell (PAEC) survival, proliferation, and migration. Mutations to BMPRII are associated with the development of pulmonary arterial hypertension (PAH). Endothelial dysfunction, including decreased endothelial nitric-oxide synthase (eNOS) activity and loss of bioactive nitric oxide (NO), plays a prominent role in the development of PAH. We hypothesized that stimulation of BMPRII promotes normal PAEC function by activating eNOS. We report that BMPRII ligands, BMP2 and BMP4, (i) stimulate eNOS phosphorylation at a critical regulatory site, (ii) increase eNOS activity, and (iii) result in canonical changes in eNOS protein-protein interactions. The stimulation of eNOS activity by BMPRII ligands was largely dependent on protein kinase A (PKA) activation, as demonstrated using the PKA inhibitors H89 and myristoylated PKI(6-22) amide. PAEC migration stimulated by BMP2 and BMP4 was inhibited by the NOS inhibitor l-nitroarginine methyl ester, providing functional evidence of eNOS activation. Furthermore, BMP2 and BMP4 failed to stimulate eNOS phosphorylation when BMPRII was knocked down by siRNA. Most important to the pathophysiology of the disease, BMP2 and BMP4 failed to stimulate eNOS phosphorylation in PAECs isolated from patients with mutations in the BMPR2 gene. These data demonstrate a new action of BMPs/BMPRII in the pulmonary endothelium and provide novel mechanistic insight into the pathogenesis of PAH.  相似文献   

11.
Expression of inducible nitric-oxide (NO) synthase (iNOS) and "high-output" production of NO by macrophages mediates many cytotoxic actions of these immune cells. However, macrophages have also been shown to express a constitutive NOS isoform, the function of which remains obscure. Herein, bone marrow-derived macrophages (BMDM?s) from wild-type and endothelial NOS (eNOS) knock-out (KO) mice have been used to assess the role of this constitutive NOS isoform in the regulation of macrophage activation. BMDM?s from eNOS KO animals exhibited reduced nuclear factor-kappaB activity, iNOS expression, and NO production after exposure to lipopolysaccharide (LPS) as compared with cells derived from wild-type mice. Soluble guanylate cyclase (sGC) was identified in BMDM?s at a mRNA and protein level, and activation of cells with LPS resulted in accumulation of cyclic GMP. Moreover, the novel non-NO-based sGC activator, BAY 41-2272, enhanced BMDM? activation in response to LPS, and the sGC inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one attenuated activation. These observations provide the first demonstration of a pathophysiological role for macrophage eNOS in regulating cellular activation and suggest that NO derived from this constitutive NOS isoform, in part via activation of sGC, is likely to play a pivotal role in the initiation of an inflammatory response.  相似文献   

12.
The endothelial nitric-oxide synthase (eNOS) is regulated in part by serine/threonine phosphorylation, but eNOS tyrosine phosphorylation is less well understood. In the present study we have examined the tyrosine phosphorylation of eNOS in bovine aortic endothelial cells (BAECs) exposed to oxidant stress. Hydrogen peroxide and pervanadate (PV) treatment stimulates eNOS tyrosine phosphorylation in BAECs. Phosphorylation is blocked by the Src kinase family inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Moreover, eNOS and c-Src can be coimmunoprecipitated from BAEC lysates by antibodies directed against either protein. Domain mapping and site-directed mutagenesis studies in COS-7 cells transfected with either eNOS alone and then treated with PV or cotransfected with eNOS and constitutively active v-Src identified Tyr-83 (bovine sequence) as the major eNOS tyrosine phosphorylation site. Tyr-83 phosphorylation is associated with a 3-fold increase in basal NO release from cotransfected cells. Furthermore, the Y83F eNOS mutation attenuated thapsigargin-stimulated NO production. Taken together, these data indicate that Src-mediated tyrosine phosphorylation of eNOS at Tyr-83 modulates eNOS activity in endothelial cells.  相似文献   

13.
14.
Endothelial nitric-oxide synthase (eNOS) is regulated in part through specific protein interactions. Dynamin-2 is a large GTPase residing within similar membrane compartments as eNOS. Here we show that dynamin-2 binds directly with eNOS thereby augmenting eNOS activity. Double label confocal immunofluorescence demonstrates colocalization of eNOS and dynamin in both Clone 9 cells cotransfected with green fluorescent protein-dynamin and eNOS, as well as in bovine aortic endothelial cells (BAEC) expressing both proteins endogenously, predominantly in a Golgi membrane distribution. Immunoprecipitation of eNOS from BAEC lysate coprecipitates dynamin and, conversely, immunoprecipitation of dynamin coprecipitates eNOS. Additionally, the calcium ionophore, a reagent that promotes nitric oxide release, enhances coprecipitation of dynamin with eNOS in BAEC, suggesting the interaction between the proteins can be regulated by intracellular signals. In vitro studies demonstrate that glutathione S-transferase (GST)-dynamin-2 quantitatively precipitates both purified recombinant eNOS protein as well as in vitro transcribed (35)S-labeled eNOS from solution indicating a direct interaction between the proteins in vitro. Scatchard analysis of binding studies demonstrates an equilibrium dissociation constant (K(d)) of 27.6 nm. Incubation of purified recombinant eNOS protein with GST-dynamin-2 significantly increases eNOS activity as does overexpression of dynamin-2 in ECV 304 cells stably transfected with eNOS-green fluorescent protein. These studies demonstrate a direct protein-protein interaction between eNOS and dynamin-2, thereby identifying a new NOS-associated protein and providing a novel function for dynamin. These events may have relevance for eNOS regulation and trafficking within vascular endothelium.  相似文献   

15.
Placental blood flow, nitric-oxide (NO) levels, and endothelial NO synthase (eNOS) expression increase during human and ovine pregnancy. Shear stress stimulates NO production and eNOS expression in ovine fetoplacental artery endothelial (OFPAE) cells. Because eNOS is the rate-limiting enzyme essential for NO synthesis, its activity and expression are both closely regulated. We investigated signaling mechanisms underlying pulsatile shear stress-induced increases in eNOS phosphorylation and protein expression by OFPAE cells. The OFPAE cells were cultured at 3 dynes/cm2 shear stress, then exposed to 15 dynes/cm2 shear stress. Western blot analysis for phosphorylated ERK1/2, Akt, p38 mitogen activated protein kinase (MAPK), and eNOS showed that shear stress rapidly increased phosphorylation of ERK1/2 and Akt but not of p38 MAPK. Phosphorylation of eNOS Ser1177 under shear stress was elevated by 20 min, a response that was blocked by the phosphatidyl inositol-3-kinase (PI-3K)-inhibitors wortmannin and LY294002 but not by the mitogen activated protein kinase kinase (MEK)-inhibitor UO126. Basic fibroblast growth factor (bFGF) enhanced eNOS protein levels in static culture via a MEK-mediated mechanism, but it could not further augment the elevated eNOS protein levels otherwise induced by the 15 dynes/cm2 shear stress. Blockade of either signaling pathway changed the shear stress-induced increase in eNOS protein levels. In conclusion, shear stress induced rapid eNOS phosphorylation on Ser1177 in OFPAE cells through a PI-3K-dependent pathway. The bFGF-induced rise in eNOS protein levels in static culture was much less than those observed under flow and was blocked by inhibition of MEK. Prolonged shear stress-stimulated increases in eNOS protein were not affected by inhibition of MEK- or PI-3K-mediated pathways.  相似文献   

16.
Ascorbic acid enhances NO bioactivity in patients with vascular disease through unclear mechanism(s). We investigated the role of intracellular ascorbic acid in endothelium-derived NO bioactivity. Incubation of porcine aortic endothelial cells (PAECs) with ascorbic acid produced time- and dose-dependent intracellular ascorbic acid accumulation that enhanced NO bioactivity by 70% measured as A23187-induced cGMP accumulation. This effect was due to enhanced NO production because ascorbate stimulated both PAEC nitrogen oxide (NO(2)(-) + NO(3)(-)) production and l-arginine to l-citrulline conversion by 59 and 72%, respectively, without altering the cGMP response to authentic NO. Ascorbic acid also stimulated the catalytic activity of eNOS derived from either PAEC membrane fractions or baculovirus-infected Sf9 cells. Ascorbic acid enhanced bovine eNOS V(max) by approximately 50% without altering the K(m) for l-arginine. The effect of ascorbate was tetrahydrobiopterin (BH(4))-dependent, because ascorbate was ineffective with BH(4) concentrations >10 microm or in PAECs treated with sepiapterin to increase intracellular BH(4). The effect of ascorbic acid was also specific because A23187-stimulated cGMP accumulation in PAECs was insensitive to intracellular glutathione manipulation and only ascorbic acid, not glutathione, increased the intracellular concentration of BH(4). These data suggest that ascorbic acid enhances NO bioactivity in a BH(4)-dependent manner by increasing intracellular BH(4) content.  相似文献   

17.
Reactive oxygen species can function as intracellular messengers, but linking these signaling events with specific enzymes has been difficult. Purified endothelial nitric-oxide synthase (eNOS) can generate superoxide (O(2)) under special conditions but is only known to participate in cell signaling through NO. Here we show that eNOS regulates tumor necrosis factor alpha (TNFalpha) through a mechanism dependent on the production of O(2) and completely independent of NO. Expression of eNOS in transfected U937 cells increased phorbol 12-myristate 13-acetate-induced TNFalpha promoter activity and TNFalpha production. N(omega)-Methyl-l-arginine, an inhibitor of eNOS that blocks NO production but not its NADPH oxidase activity, did not prevent TNFalpha up-regulation. Likewise, Gln(361)eNOS, a competent NADPH oxidase that lacks NOS activity, retained the ability to increase TNFalpha. Similar to the effect of eNOS, a O(2) donor dose-dependently increased TNFalpha production in differentiated U937 cells. In contrast, cotransfection of superoxide dismutase with eNOS prevented TNFalpha up-regulation, as did partial deletion of the eNOS NADPH binding site, a mutation associated with loss of O(2) production. Thus, eNOS may straddle a bifurcating pathway that can lead to the formation of either NO or O(2), interrelated but often opposing free radical messengers. This arrangement has possible implications for atherosclerosis and septic shock where endothelial dysfunction results from imbalances in NO and O(2) production.  相似文献   

18.
Protein palmitoylation represents an important mechanism governing the dynamic subcellular localization of many signaling proteins. Palmitoylation of endothelial nitric-oxide synthase (eNOS) promotes its targeting to plasmalemmal caveolae; agonist-promoted depalmitoylation leads to eNOS translocation. Depalmitoylation and translocation of eNOS modulate the agonist response, but the pathways that regulate eNOS palmitoylation and depalmitoylation are poorly understood. We now show that the newly characterized acyl-protein thioesterase 1 (APT1) regulates eNOS depalmitoylation. Immunoblot analyses indicate that APT1 is expressed in bovine aortic endothelial cells, which express eNOS. APT1 overexpression appears to accelerate the depalmitoylation of eNOS in COS-7 cells cotransfected with eNOS and APT1 cDNAs. Additionally, purified recombinant APT1 depalmitoylates eNOS assayed in biological membranes isolated from endothelial cells biosynthetically labeled with [(3)H]palmitate or COS-7 cells transfected with eNOS cDNA. More important, the APT1-catalyzed depalmitoylation of palmitoyl-eNOS is potentiated by Ca(2+)-calmodulin (CaM), a key allosteric activator of eNOS. In contrast, APT1-catalyzed depalmitoylation of the G protein Galpha(s) is unaffected by Ca(2+)-CaM. Furthermore, caveolin, a palmitoylated membrane protein, does not appear to be a substrate for APT1. Taken together, these results support a role for APT1 in the regulation of eNOS depalmitoylation and suggest that Ca(2+)-CaM activation of eNOS renders the enzyme more susceptible to APT1-catalyzed depalmitoylation.  相似文献   

19.
Endothelial nitric-oxide synthase (eNOS) undergoes a complex pattern of post-translational modifications that regulate its activity. We have recently reported that eNOS is constitutively S-nitrosylated in endothelial cells and that agonists promote eNOS denitrosylation concomitant with enzyme activation (Erwin, P. A., Lin, A. J., Golan, D. E., and Michel, T. (2005), J. Biol. Chem. 280, 19888-19894). In the present studies, we use mass spectrometry to confirm that the zinc-tetrathiolate cysteines of eNOS are S-nitrosylated. eNOS targeting to the plasma membrane is necessary for enzyme S-nitrosylation, and we report that translocation between cellular compartments is necessary for dynamic eNOS S-nitrosylation. We transfected cells with cDNA encoding wild-type eNOS, which is membrane-targeted, or with acylation-deficient mutant eNOS (Myr-), which is expressed solely in the cytosol. While wild-type eNOS is robustly S-nitrosylated, we found that S-nitrosylation of the Myr- eNOS mutant is nearly abolished. When we transfected cells with a fusion protein in which Myr- eNOS is ligated to the CD8-transmembrane domain (CD8-Myr-), we found that CD8-Myr- eNOS, which does not undergo dynamic subcellular translocation, is hypernitrosylated relative to wild-type eNOS. Furthermore, we found that when endothelial cells transfected with wild-type or CD8-Myr- eNOS are stimulated with eNOS agonist, only wild-type eNOS is denitrosylated; CD8-Myr- eNOS S-nitrosylation is unchanged. These findings indicate that subcellular targeting is a critical determinant of eNOS S-nitrosylation. Finally, we show that eNOS S-nitrosylation can be detected in intact arterial preparations from mouse and that eNOS S-nitrosylation is a dynamic agonist-modulated process in intact blood vessels. These studies suggest that receptor-regulated eNOS S-nitrosylation may represent an important determinant of NO-dependent signaling in the vascular wall.  相似文献   

20.
Kou R  Igarashi J  Michel T 《Biochemistry》2002,41(15):4982-4988
Both lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are platelet-derived phospholipids that elicit diverse biological responses. In endothelial cells, S1P stimulates the EDG-1 receptor-mediated activation of the endothelial isoform of nitric oxide synthase (eNOS), but the role of LPA in eNOS regulation is less well understood. We now report that LPA treatment of bovine aortic endothelial cells (BAEC) activates eNOS enzyme activity in a pathway that involves phosphorylation of eNOS on serine 1179 by protein kinase Akt. In contrast to the cellular responses elicited by S1P in COS-7 cells, LPA can stimulate the activation of eNOS and Akt independently of EDG-1 receptor transfection. LPA-stimulated enzyme activation was significantly attenuated in an eNOS mutant lacking the site that is phosphorylated by kinase Akt (eNOS S1179A). In BAEC, activation of eNOS by LPA is completely blocked by pertussis toxin, by the intracellular calcium chelator BAPTA (1,2-bis(aminophenoxy) ethane-N,N,N',N'-tetraacetic acid), and by the phosphoinositide 3-kinase (PI3-K) inhibitor wortmannin, but is unaffected by U0126, an inhibitor of mitogen-activated protein (MAP) kinase pathways. Analysis of the LPA dose response for eNOS activation reveals an EC(50) of approximately 40 nM, a concentration well below the potency of LPA at the EDG-1 receptor. Taken together, these results indicate that LPA potently activates eNOS in BAEC in a pathway distinct from the EDG-1 receptor, but mediated by a similar receptor-mediated pathway dependent on pertussis toxin-sensitive G proteins and involving activation of the PI3-K/Akt pathway. These studies have identified a role for the phospholipid LPA in eNOS activation, and point out the complementary role of distinct platelet-derived lipids in endothelial signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号