首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
BackgroundAbnormally high activity of protein kinase CK2 is linked to various diseases including cancer. Therefore, the inhibition of CK2 is a promising therapeutic strategy to fight this disease.MethodsWe screened a library of synthetic molecules concerning their capacity to inhibit CK2. The activity of CK2 and their IC50 and Ki values were determined by a capillary electrophoresis assay. The effects of the inhibitor in a cell culture model were analyzed by cell counting, a viability assay, cytofluorimetry and Western blot.ResultsThe best CK2 inhibitor found in this screen was 6,7-dichloro-1,4-dihydro-8-hydroxy-4-[(4-methylphenylamino)methylen]dibenzo [b,d]furan-3(2H)-one, which we refer to as “TF”. TF showed tight binding to CK2 with low IC50 (29 nM) and Ki (15 nM) values. TF inhibited only seven out of 61 human kinases tested (> 70% inhibition). Incubation of LNCaP cells with 50 μM TF for 48 h decreased the intracellular CK2 activity by 50%, confirming that the inhibitor is membrane permeable. The decrease in activity was correlated with a severe reduction in cell viability. The reduction in cell viability is at least partly due to the induction of apoptosis.General significanceIn many cancers the protein kinase CK2 is significantly up-regulated and supports the neoplastic phenotype. New therapeutic strategies should be based on diverse reliable inhibitors to reverse the abnormal high levels to normal settings.  相似文献   

3.
Protein kinase C (PKC) isozymes, a family of serine-threonine kinases, are important regulators of cell proliferation and malignant transformation. Phorbol esters, the prototype PKC activators, cause PKC translocation to the plasma membrane in prostate cancer cells, and trigger an apoptotic response. Studies in recent years have determined that each member of the PKC family exerts different effects on apoptotic or survival pathways. PKCdelta, one of the novel PKCs, is a key player of the apoptotic response via the activation of the p38 MAPK pathway. Studies using RNAi revealed that depletion of PKCdelta totally abolishes the apoptotic effect of the phorbol ester PMA. Activation of the classical PKCalpha promotes the dephosphorylation and inactivation of the survival kinase Akt. Studies have assigned a pro-survival role to PKCepsilon, but the function of this PKC isozyme remains controversial. Recently, it has been determined that the PKC apoptotic effect in androgen-dependent prostate cancer cells is mediated by the autocrine secretion of death factors. PKCdelta stimulates the release of TNFalpha from the plasma membrane, and blockade of TNFalpha secretion or TNFalpha receptors abrogates the apoptotic response of PMA. Molecular analysis indicates the requirement of the extrinsic apoptotic cascade via the activation of death receptors and caspase-8. Dissecting the pathways downstream of PKC isozymes represents a major challenge to understanding the molecular basis of phorbol ester-induced apoptosis.  相似文献   

4.
Diminished expression of NKX3.1 is associated with prostate cancer progression in humans, and in mice, loss of nkx3.1 leads to epithelial cell proliferation and altered gene expression patterns. The NKX3.1 amino acid sequence includes multiple potential phosphoacceptor sites for protein kinase CK2. To investigate posttranslational regulation of NKX3.1, phosphorylation of NKX3.1 by CK2 was studied. In vitro kinase assays followed by mass spectrometric analyses demonstrated that CK2 phosphorylated recombinant NKX3.1 on Thr89 and Thr93. Blocking CK2 activity in LNCaP cells with apigenin or 5,6-dichlorobenzimidazole riboside led to a rapid decrease in NKX3.1 accumulation that was rescued by proteasome inhibition. Replacing Thr89 and Thr93 with alanines decreased NKX3.1 stability in vivo. Small interfering RNA knockdown of CK2alpha' but not CK2alpha also led to a decrease in NKX3.1 steady-state level. In-gel kinase assays and Western blot analyses using fractionated extracts of LNCaP cells demonstrated that free CK2alpha' could phosphorylate recombinant human and mouse NKX3.1, whereas CK2alpha' liberated from the holoenzyme could not. These data establish CK2 as a regulator of NKX3.1 in prostate tumor cells and provide evidence for functionally distinct pools of CK2alpha' in LNCaP cells.  相似文献   

5.
Protein kinase CK2 (CK2) has long been implicated in the regulation of cell growth and proliferation. Its activity is generally elevated in rapidly proliferating tissues, and nuclear matrix (NM) is an important subnuclear locale of its functional signaling. In the prostate, nuclear CK2 is rapidly lost commensurate with induction of receptor-mediated apoptosis after growth stimulus withdrawal. By contrast, chemical-induced apoptosis in prostate cancer and other cells (by etoposide and diethylstilbestrol) evokes an enhancement in CK2 associated with the NM that appears to be because of translocation of CK2 from the cytoplasmic to the nuclear compartment. This shuttling of CK2 to the NM may reflect a protective response to chemical-mediated apoptosis. Supporting evidence for this was obtained by employing cells that were transiently transfected with various expression plasmids of CK2 (thereby expressing additional CK2) prior to treatment with etoposide or diethylstilbestrol. Cells transfected with the CK2alpha or CK2alphabeta showed significant resistance to chemical-mediated apoptosis commensurate with the corresponding elevation in CK2 in the NM. Transfection with CK2beta did not demonstrate this effect. These results suggest, for the first time, that besides the commonly appreciated function of CK2 in cell growth, it may also have a role in protecting cells against apoptosis.  相似文献   

6.
Protein kinase CK2 has traditionally been described as a stable heterotetrameric complex (α < eqid1 > β2) but new approaches that effectively capture the dynamic behavior of proteins, are bringing a new picture of this complex into focus. To track the spatio-temporal dynamics of CK2 in living cells, we fused its catalytic α and regulatory β subunits with GFP and analog proteins. Beside the mostly nuclear localization of both subunits, and the identification of specific domains on each subunit that triggers their localization, the most significant finding was that the association of both CK2 subunits in a stable tetrameric holoenzyme eliminates their nuclear import (Mol Cell Biol {23}: 975–987, 2003). Molecular movements of both subunits in the cytoplasm and in the nucleus were analyzed using different new and updated fluorescence imaging methods such as: fluorescence recovery after photo bleaching (FRAP), fluorescence loss in photo bleaching (FLIP), fluorescence correlation spectroscopy (FCS), and photoactivation using a biphoton microscope. These fluorescence-imaging techniques provide unprecedented ways to visualize and quantify the mobility of each individual CK2 subunit with high spatial and temporal resolution. Visualization of CK2 heterotetrameric complex formation could also be recorded using the fluorescence resonance energy transfer (FRET) technique. FRET imaging revealed that the assembling of this molecular complex can take place both in the cytoplasmic and nuclear compartments. The spatio–temporal organization of individual CK2 subunits and their dynamic behavior remain now to be correlated with the functioning of this kinase in the complex environment of the cell.  相似文献   

7.
In order to aid in an understanding of the cellular functions of protein kinase CK2, a search for interacting proteins was carried out using a 32P-labeled CK2 overlay method. Several proteins were found to associate with CK2 by this assay; among them, one protein of 110 kDa appeared to be the most prominent one. The possible association of CK2 with p110 was suggested by experiments involving the co-immunoprecipitation using anti-CK2 antibodies. Further analysis using GST-CK2 fusion proteins demonstrated that the CK2-p110 interaction occurred through the CK2/ subunits. To identify p110, it was purified using a GST-CK2 affinity column, and internal amino acid sequencing was then performed. p110 was found to be nucleolin, a nucleolar protein that may be important for rRNA synthesis; a possible role of CK2 in the control of this process is suggested. Using the same CK2 overlay technique, another interacting protein, insulin receptor substrate 1 (IRS-1), was also identified. By applying a modified overlay method using individual 35S-labeled CK2 subunits, obtained by in vitro translation in rabbit reticulate lysates, it was determined that CK2 associates with IRS-1 through its / subunits; i.e. in keeping with the fact that IRS-1 is a known substrate for CK2. However, further work is needed to examine the association of CK2 with IRS-1 in vivo in order to fully understand the significance of the interaction.  相似文献   

8.
Ye Y  Hou R  Chen J  Mo L  Zhang J  Huang Y  Mo Z 《Hormones et métabolisme》2012,44(4):263-267
Formononetin is a main active component of red clover plants (Trifolium pratense L.), and is considered as a phytoestrogen. Our previous studies demonstrated that formononetin caused cell cycle arrest at the G0/G1 phase by inactivating insulin-like growth factor 1(IGF1)/IGF1R-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in MCF-7 cells. In the present study, we investigated the molecular mechanisms involved in the effect of formononetin on prostate cancer cells. Our results suggested that higher concentrations of formononetin inhibited the proliferation of prostate cancer cells (LNCaP and PC-3), while the most striking effect was observed in LNCaP cells. We further found that formononetin inactivated extracellular signal-regulated kinase1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway in a dose-dependent manner, which resulted in increased the expression levels of BCL2-associated X (Bax) mRNA and protein, and induced apoptosis in LNCaP cells. Thus, we concluded that the induced apoptosis effect of formononetin on human prostate cancer cells was related to ERK1/2 MAPK-Bax pathway. Considering that red clover plants were widely used clinically, our results provided the foundation for future development of different concentrations formononetin for treatment of prostate cancer.  相似文献   

9.
10.
蛋白激酶CK2的研究进展   总被引:14,自引:0,他引:14  
蛋白激酶CK2是一种真核细胞中普遍存在的信使非依赖性丝/苏氨酸蛋白激酶。近年来,对蛋白激酶CK2的研究也取得了一些重要进展,尤其是蛋白激酶CK2的结构及其作用底物,蛋白激酶CK2与肿瘤及细胞凋亡的关系,越来越引起人们的关注。  相似文献   

11.
Protein serine/threonine kinase CK2 (formerly casein kinase 2) is a ubiquitous protein kinase that plays key roles in cell growth, proliferation, and survival. We have shown previously that its molecular down-regulation induces apoptosis in cancer cells in culture. Here, we have employed a xenograft model of prostate cancer to extend these studies to determine whether antisense CK2alpha evokes a similar response in vivo. A single dose of antisense CK2alpha oligodeoxynucleotide given directly into the PC3-LN4 xenograft tumor in nude mouse induced a dose- and time-dependent tumor cell death in vivo. The tumor was completely resolved at the higher tested dose of the antisense. Cell death was due to apoptosis and correlated with a potent down-regulation of the CK2alpha message and loss of CK2 from the nuclear matrix in the xenograft tissue as well as in cancer cells in culture. These observations accorded with several of the earlier studies indicating that loss of CK2 from the nuclear matrix is associated with induction of apoptosis. Comparison of the effects of antisense CK2alpha oligodeoxynucleotide on cancer versus normal or noncancer cells showed that the concentration of antisense CK2alpha that elicited extensive apoptosis in tumor cells in culture or xenograft tumors in vivo had a relatively small or minimal effect on noncancer cells in culture or on normal prostate gland subjected to orthotopic injection of antisense oligodeoxynucleotide in vivo. The basis for the difference in sensitivity of cancer versus noncancer cells to antisense CK2alpha is unknown at this time; however, this differential response under similar conditions of treatment may be significant in considering the potential feasibility of targeting the CK2 signal for induction of apoptosis in cancer cells in vivo. Although much further work will be needed to establish the feasibility of targeting CK2 for cancer therapy, to our knowledge, this is the first report to provide important new evidence as an initial "proof of principle" for the potential application of antisense CK2alpha in cancer therapy, paving the way for future detailed studies of approaches to targeting CK2 in vivo to induce cancer cell death.  相似文献   

12.
Previous studies have shown that human prostate cancer cells constitutively generate 5-lipoxygenase (5-LOX) metabolites from arachidonic acid, and inhibition of 5-LOX blocks production of 5-LOX metabolites and triggers apoptosis in prostate cancer cells. This apoptosis is prevented by exogenous metabolites of 5-LOX, suggesting an essential role of 5-LOX metabolites in the survival of prostate cancer cells. However, downstream signaling mechanisms which mediate the survival-promoting effects of 5-LOX metabolites in prostate cancer cells are still unknown. Recently, we reported that MK591, a specific inhibitor of 5-LOX activity, induces apoptosis in prostate cancer cells without inhibition of Akt, or ERK, two well-characterized regulators of pro-survival mechanisms, suggesting the existence of an Akt and ERK-independent survival mechanism in prostate cancer cells regulated by 5-LOX. Here, we report that 5-LOX inhibition-induced apoptosis in prostate cancer cells occurs via rapid inactivation of protein kinase C-epsilon (PKCε), and that exogenous 5-LOX metabolites prevent both 5-LOX inhibition-induced down-regulation of PKCε and induction of apoptosis. Interestingly, pre-treatment of prostate cancer cells with diazoxide (a chemical activator of PKCε), or KAE1-1 (a cell-permeable, octa-peptide specific activator of PKCε) prevents 5-LOX inhibition-induced apoptosis, which indicates that inhibition of 5-LOX triggers apoptosis in prostate cancer cells via down-regulation of PKCε. Altogether, these findings suggest that metabolism of arachidonic acid by 5-LOX activity promotes survival of prostate cancer cells via signaling through PKCε, a pro-survival serine/threonine kinase.  相似文献   

13.
14.
In plants, a variety of chromatin-associated high mobility group (HMG) proteins belonging to the HMGB family have been identified. We have examined the phosphorylation of the HMGB proteins from the monocotyledonous plant maize and the dicotyledonous plant Arabidopsis by protein kinase CK2alpha. Maize CK2alpha phosphorylates the maize HMGB1 and HMGB2/3 proteins and the Arabidopsis HMGB1, HMGB2/3, and HMGB4 proteins. Maize HMGB4 and HMGB5 and Arabidopsis HMGB5 are not phosphorylated by CK2alpha. Depending on the HMGB protein up to five amino acid residues are phosphorylated in the course of the phosphorylation reaction. The HMGB1 proteins from both plants are markedly more slowly phosphorylated by CK2alpha than the other HMGB substrate proteins, indicating that certain HMGB proteins are clearly preferred substrates for CK2alpha. The rate of the phosphorylation reaction appears to be related to the ease of interaction between CK2alpha and the HMGB proteins, as indicated by chemical cross-linking experiments. MALDI/TOF mass spectrometry analyses demonstrate that the HMGB1 and HMGB2/3 proteins occur in various phosphorylation states in immature maize kernels. Thus, HMGB1 exists as monophosphorylated, double-phosphorylated, triple-phosphorylated, and tetraphosphorylated protein in kernel tissue, and the tetraphosphorylated form is the most abundant version. The observed in vivo phosphorylation states indicate that protein kinase(s) other than CK2alpha contribute(s) to the modification of the plant HMGB proteins. The fact that the HMGB proteins are phosphorylated to various extents reveals that the existence of differentially modified forms increases the number of distinct HMGB protein variants in plant chromatin that may be adapted to certain functions.  相似文献   

15.
Interactions of protein kinase CK2 subunits   总被引:3,自引:0,他引:3  
Several approaches have been used to study the interactions of the subunits of protein kinase CK2. The inactive mutant of CK2 that has Asp 156 mutated to Ala (CK2A156) is able to bind the CK2 subunit and to compete effectively in this binding with wild-type subunits and . The interaction between CK2A156 and CK2 was also demonstrated by transfection of epitope-tagged cDNA constructs into COS-7 cells. Immunoprecipitation of epitope-tagged CK2A156 coprecipitated the subunit and vice-versa. The assay of the CK2 activity of the extracts obtained from cells transiently transfected with these different subunits yielded some surprising results: The CK2 specific phosphorylating activity of these cells transfected with the inactive CK2A156 was considerably higher than the control cells transfected with vectors alone. Assays of the immunoprecipitated CK2A156 expressed in these cells, however, demonstrated that the mutant was indeed inactive. It can be concluded that transfection of the inactive CK2A156 affects the endogenous activity of CK2. Transfection experiments with CK2 and subunits and CK2A156 were also used to confirm the interaction of CK2 with the general CDK inhibitor p21WAF1/CIP1 co-transfected into these cells. Finally a search in the SwissProt databank for proteins with properties similar to those derived from the amino acid composition of CK2 indicated that CK2 is related to protein phosphatase 2A and to other phosphatases as well as to a subunit of some ion-transport ATPases.  相似文献   

16.
Protein phosphorylation is a key regulatory post-translational modification and is involved in the control of many cellular processes. Protein kinase CK2, formerly known as casein kinase II, which is a ubiquitous and highly conserved protein serine/threonine kinase, plays a central role in the control of a variety of pathways in cell proliferation, transformation, apoptosis and senescence. An understanding of the regulation of such a central protein kinase would greatly help our comprehension of the regulation of many pathways in cellular regulation. A number of reviews have addressed the detection, the development, and the characterization of inhibitors of CK2. The present review focuses on possible natural regulators of CK2, i.e. proteins and other cellular factors that bind to CK2 and thereby regulate its activity.  相似文献   

17.
Subcellular localization of protein kinase CK2   总被引:17,自引:0,他引:17  
More than 46 years ago, Burnett and Kennedy first described protein kinase CK2 (formerly known as casein kinase 2) in liver extracts. Since then, protein kinase CK2 has been investigated in many organisms from yeast to man. It is now well established that protein kinase CK2 is a pleiotropic and ubiquitous serine or threonine kinase, which is highly conserved during evolution. A great number of studies deal with substrates of CK2, but the fact that over 160 substrates exist is more confusing than elucidatory. The holoenzyme is composed of two regulatory beta-subunits and two catalytic alpha- or alpha'-subunits. There is now increasing evidence for individual functions of the subunits that are different from their functions in the holoenzyme. Furthermore, more and more studies describe interacting partners of the kinase that may be decisive in the regulation of this enzyme. A big step forward has been the determination of the crystal structure of the two subunits of protein kinase CK2. Now the interactions of the catalytic subunit of CK2 with ATP as well as GTP and the interaction between the regulatory subunits can be explained. However, cellular functions of protein kinase CK2 still remain unclear. In the present review we will focus our interest on the subcellular localization of protein kinase CK2. Protein kinase CK2 is found in many organisms and tissues and nearly every subcellular compartment. There is ample evidence that protein kinase CK2 has different functions in these compartments and that the subcellular localization of protein kinase CK2 is tightly regulated. Therefore studying the subcellular localization of protein kinase CK2 may be a key to its function.  相似文献   

18.
The luminal SR protein CSQ2 contains phosphate on roughly half of the serines found in its C-terminus. The sequence around phosphorylation sites in CSQ2 suggest that the in vivo kinase is protein kinase CK2, even though this enzyme is thought to be present only in the cytoplasm and nucleus. To test whether CSQ2 kinase is CK2, we combined approaches that reduced CK2 activity and CSQ2 phosphorylation in intact cells. Tetrabromocinnamic acid, a specific inhibitor of CK2, inhibited both the CSQ2 kinase and CK2 in parallel across a range of concentrations. In intact primary adult rat cardiomyocytes and COS cells, 24 h of drug treatment reduced phosphorylation of overexpressed CSQ2 by 75%. Down-regulation of CK2α subunits in COS cells using siRNA, produced a 90% decrease in CK2α protein levels, and CK2-silenced COS cells exhibited a twofold reduction in CSQ2 kinase activity. Phosphorylation of CSQ2 overexpressed in CK2-silenced cells was also reduced by a factor of two. These data suggested that CSQ2 in intact cells is phosphorylated by CK2, a cytosolic kinase. When phosphorylation site mutants were analyzed in COS cells, the characteristic rough endoplasmic reticulum form of the CSQ2 glycan (GlcNAc2Man9,8) underwent phosphorylation site dependent processing such that CSQ2-nonPP (Ser to Ala mutant) and CSQ2-mimPP (Ser to Glu mutant) produced apparent lower and greater levels of ER retention, respectively. Taken together, these data suggest CK2 can phosphorylate CSQ2 co-translationally at biosynthetic sites in rough ER, a process that may result in changes in its subsequent trafficking through the secretory pathway.  相似文献   

19.
Raf kinase inhibitor protein (RKIP) was originally identified as a protein that bound membrane phospholipids and was named phosphatidylethanolamine binding protein-2 (PEBP-2). RKIP was than identified as a protein that bound Raf and blocked its ability to phosphorylate MEK, thus earning its new name of RKIP. Subsequent to identification of its role in the Raf:MEK pathway, RKIP has been demonstrated to regulate several other signaling pathways including G-protein signaling and NF-kappaB signaling. Its involvement in several signaling pathways has engendered RKIP to contribute to several physiological processes including membrane biosynthesis, spermatogenesis, neural development, and apoptosis. RKIP is expressed in many tissues including brain, lung, and liver and thus, dysregulation of RKIP expression or function has potential to contribute to pathophysiology in these tissues. Loss of RKIP expression in prostate cancer cells confers a metastatic phenotype on them. Additionally, restoration of RKIP expression in a metastatic prostate cancer cell line does not effect primary tumor growth, but it does inhibit prostate cancer metastasis. These parameters identify RKIP as a metastasis suppressor gene. In this review, the biology and pathophysiology of RKIP is described.  相似文献   

20.
Intermolecular contact sites in protein kinase CK2   总被引:1,自引:0,他引:1  
Chemical crosslinking and analysis of CNBr-digested fusion products by immunoblotting with sequence-specific antibodies identifies an interaction between positions 55-70 of subunit (55-70) and 65-80 of subunit (65-80). This has been supported by crosslinking of subunits with peptides 65-80 and 55-70, by binding of subunits to immobilized peptides, and by the hindrance of coprecipitation with peptide-raised antibodies (anti-65-80; anti-55-70). Functionally, 55-70 is a negative regulatory region for the kinase activity of subunit . The opposite, stimulatory property of subunit has been assigned to its C-terminal part. Subdivision of peptide 155-181, that has stimulatory effect, into overlapping peptides and assaying for a binding and binding competition revealed a tight physical contact at 162-175. This region, however, is non-stimulatory indicating binding a necessary but not sufficient quality for stimulation. A contact might exist to regions surrounding C147 and/or C220 at subunit a as indicated by crosslinking and peptide competition. The crosslinking data also confirm a - contact in CK2 holoenzyme. Effects by non-ionic detergents show hydrophobic interactions to play an important role in catalytic activity adjustment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号