首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectral light field of Symbiodinium within the tissue of the coral animal host can deviate strongly from the ambient light field on a coral reef and that of artificial light sources used in lab studies on coral photobiology. Here, we used a novel approach involving light microsensor measurements and a programmable light engine to reconstruct the spectral light field that Symbiodinium is exposed to inside the coral host and the light field of a conventional halogen lamp in a comparative study of Symbiodinium photobiology. We found that extracellular gross photosynthetic O2 evolution was unchanged under different spectral illumination, while the more red-weighted halogen lamp spectrum decreased PSII electron transport rates and there was a trend towards increased light-enhanced dark respiration rates under excess irradiance. The approach provided here allows for reconstructing and comparing intra-tissue coral light fields and other complex spectral compositions of incident irradiance. This novel combination of sensor technologies provides a framework to studying the influence of macro- and microscale optics on Symbiodinium photobiology with unprecedented spectral resolution.  相似文献   

2.
Terrestrial green plants absorb photosynthetically active radiation (PAR; 400–700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (<520 nm), which contains much of the surplus energy that is not used for photosynthesis and is dissipated as heat. The PAR absorptance of a whole leaf shows no substantial difference based on the spectra of direct or diffuse solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density distribution and leaf anatomical structures.  相似文献   

3.
Surface ultraviolet (UV) irradiance depends not only on stratospheric ozone amounts, but also varies with time and date, latitude, cloud amount and aerosol load. Any assessment of the effect of stratospheric ozone depletion on surface UV irradiance must take into consideration all of the above parameters. Measurements in the UV-B region may be accomplished using filter and detector combinations which mimic a biological response curve. However there are uncertainties such as in determining the exact filter response and in the cosine error of the detector. The UV-A region lacks a strong ozone absorption band and approaches which relate measured UV-A irradiance to measured global irradiance show promise. Theoretical models have been derived which calculate spectral UV irradiance in cloudless and cloudy conditions. Results show that cloud transmissivities increase as wavelength increases; however, there is a strong dependence on cloud type. In the absence of surface observations of clouds, satellite data may be used to map UV-A and UV-B irradiance in a region, and this approach is illustrated using two specific examples.  相似文献   

4.
The underwater light climate of a shallow estuary located at the southern coast of the Baltic Sea has been investigated, with special emphasis on the spectral irradiance composition and on short-term irradiance fluctuations caused by vertical mixing and wave focussing. The inherent optical properties of the water body were dominated by phytoplankton pigment absorption in the long-wavelength range and by coloured, dissolved organic matter (cDOM) absorption in the wavelength range <500 nm, including ultraviolet-A (UV-A) and ultraviolet-B radiation (UV-B). Pronounced particulate scattering combined with the absorption values to give very high attenuation coefficients, especially for the shorter wavelengths of UV-B radiation. Photosynthetically active radiation (PAR) was found to be reduced to 1% of the surface value within 0.8 m in the inner, hypertrophic end of the estuary and within 1.9 m in the outer, eutrophic parts of this system, with corresponding 1% penetration depths for UV-B of 0.13 and 0.31 m. During late winter and early spring, the period when reduced atmospheric ozone concentrations and enhanced UV-B have been reported over northern Europe, the irradiance levels in the water column were greatly reduced, due to strong attenuation by ice cover and overlying snow. cDOM concentration of the water was also found to remain at a high level during these periods, and indeed throughout the year, thus reducing the exposure of organisms to UV-R and PAR still further. A complex irradiance regime was found in this system, with irregular and high amplitude fluctuations caused by wind-induced vertical mixing and wave focussing being superimposed upon the solar-angle-dependent seasonal and daily cycles. The methods used to quantify the short-term fluctuations are described, and their relevance to phytoplankton physiology is discussed. The wave-focussing effect is unique to the aquatic environment, and measurements showed that average subsurface irradiances could be increased by up to 5 times for periods lasting for <1 s. The highest irradiances recorded during wave-focussing events reached over 9,000 μmol photons m–2 s–1. Received in revised form: 7 April 2000 Electronic Publication  相似文献   

5.
Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R2 = 0.85 & T2: R2 = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m-2 of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat would reach 50% under elevated ozone concentrations and reduced solar irradiance as determined in T1, and 30% under conditions as determined in T2. Results from this study suggest that a combination of elevated ozone concentrations and reduced solar irradiance could result in substantial dry matter loss in the Chinese wheat-growing regions.  相似文献   

6.
Many investigators have concluded that the level of solar ultraviolet radiation (200–300 nm) reaching the surface was a key parameter in the origin and evolution of life on Earth. The level of solar ultraviolet radiation between 200 and 300 nm is controlled primarily by molecular absorption by ozone, whose presence is trongly coupled to the level of molecular oxygen. In this paper, we present a series of calculations of the solar ultraviolet radiation reaching the surface for oxygen levels ranging from 10–4 present atmospheric level to the present level. The solar spectrum between 200 and 300 mn has been divided into 34 spectral intervals. For each spectral interval, we have calculated the solar ultraviolet radiation reaching the Earth's surface by considering the attenuation of the incoming beam due to ozone and oxygen absorption. A one-dimensional photochemical model of the atmosphere was used for these calculations.  相似文献   

7.
吴芳芳  郑有飞  吴荣军  王锦旗  李萍 《生态学报》2015,35(12):3949-3958
采用开顶箱(OTC)法和遮光网技术,设置100 n L/L臭氧熏气与3个辐射减弱梯度结合,模拟臭氧浓度升高和太阳辐射减弱的复合大气背景。用BIOLOG生态测试板,采用孔平均颜色变化率法(AWCD)测定冬小麦根际土壤微生物利用不同碳源的能力,计算微生物群落多样性指数,对不同碳源的利用率进行了主成分分析。两年试验结果显示,臭氧熏气与太阳辐射减弱复合作用,降低了土壤微生物对碳源的利用速度和利用总量;除了聚合物以外其它碳源利用率显著降低;对土壤微生物多样性没有直接的影响;对碳源降解的抑制效应大于增强的O3与减弱的太阳辐射两因素各自的单独作用。太阳辐射减弱20%,一定程度上增加了对聚合物类的分解。O3熏气条件下太阳辐射减弱,糖类、胺类代谢变异度较高,受环境影响较大。  相似文献   

8.
Long-term records of solar UV radiation reaching the Earth’s surface are scarce. Radiative transfer calculations and statistical models are two options used to reconstruct decadal changes in solar UV radiation from long-term records of measured atmospheric parameters that contain information on the effect of clouds, atmospheric aerosols and ground albedo on UV radiation. Based on earlier studies, where the long-term variation of daily solar UV irradiation was derived from measured global and diffuse irradiation as well as atmospheric ozone by a non-linear regression method [Feister et al. (2002) Photochem Photobiol 76:281–293], we present another approach for the reconstruction of time series of solar UV radiation. An artificial neural network (ANN) was trained with measurements of solar UV irradiation taken at the Meteorological Observatory in Potsdam, Germany, as well as measured parameters with long-term records such as global and diffuse radiation, sunshine duration, horizontal visibility and column ozone. This study is focussed on the reconstruction of daily broad-band UV-B (280–315 nm), UV-A (315–400 nm) and erythemal UV irradiation (ER). Due to the rapid changes in cloudiness at mid-latitude sites, solar UV irradiance exhibits appreciable short-term variability. One of the main advantages of the statistical method is that it uses doses of highly variable input parameters calculated from individual spot measurements taken at short time intervals, which thus do represent the short-term variability of solar irradiance.  相似文献   

9.
Caldwell  Martyn M.  Flint  Stephan D. 《Plant Ecology》1997,128(1-2):67-76
In several phases of assessing implications of stratospheric ozone reduction for plants, biological spectral weighting functions (BSWF) play a key role: calculating the increase of biologically effective solar ultraviolet-B radiation (UV-BBE) due to ozone reduction, assessing current latitudinal gradients of UV-BBE, and comparing solar UV-BBE with that from lamps and filters in plant experiments. Plant UV action spectra (usually determined with monochromatic radiation in the laboratory with exposure periods on the order of hours) are used as BSWF. Yet, many complicating factors cloud the realism of such spectra for plants growing day after day in polychromatic solar radiation in the field. The uses and sensitivity of BSWF in the stratospheric ozone reduction problem are described. The need for scaling BSWF from action spectra determined with monochromatic radiation in laboratory conditions over periods of hours to polychromatic solar radiation in the field is developed. Bottom-up mechanistic and top-down polychromatic action spectrum development are considered as not satisfactory to resolve realistic BSWF. A compromise intermediate approach is described in which laboratory results are tested under polychromatic radiation in growth chambers and, especially, under field conditions. The challenge of the scaling exercise is to resolve disagreements between expected spectral responses at different scales of time and radiation conditions. Iterative experiments with feedback among the different experimental venues is designed to reduce uncertainties about realistic BSWF in the field. Sensitivity analyses are employed to emphasize characteristics of BSWF that are particularly important in assessing the ozone problem. Implications for use of realistic BSWF both for improved research design and for retrospective analysis of past research is described.  相似文献   

10.
Light plays a pivotal role in animal orientation. Aquatic animals face the problem that penetration of light in water is restricted through high attenuation which limits the use of visual cues. In pure water, blue and green light penetrates considerably deeper than red and infrared spectral components. Submicroscopic particles and coloured dissolved organic matter, however, may cause increased scattering and absorption of short-wave components of the solar spectrum, resulting in a relative increase of red and infrared illumination. Here we investigated the potential of near-infrared (NIR) light as a cue for swimming orientation of the African cichlid fish (Cichlidae) Oreochromis mossambicus. A high-throughput semi-automated video tracking assay was used to analyse innate behavioural NIR-sensitivity. Fish revealed a strong preference to swim in the direction of NIR light of a spectral range of 850-950nm at an irradiance similar to values typical of natural surface waters. Our study demonstrates the ability of teleost fish to sense NIR and use it for phototactic swimming orientation.  相似文献   

11.
In mainland Australia and in southern Africa, the aridity of the climate and sparse vegetative cover increase the susceptibility of the soils to erosion, and as a consequence surface waters are usually turbid. The inanimate suspensoids in such waters, the tripton fraction of the limnologist, are responsible for virtually all the light scattering, and also, by virtue of the yellow-brown humic materials adsorbed on their surface, for a substantial part of the light absorption. Spectral absorption data for suspensoids in terms of theirin situ absorption coefficient values, and the contribution of suspensoids to absorption of photosynthetically available radiation (PAR) are given for certain Australian water bodies.To understand the effect of suspensoids on attenuation of the solar flux with depth, the scattering coefficient must also be known, and this can be determined from the nephelometric turbidity or from up- and down-welling irradiance measurements. The effect of particle size on scattering efficiency is discussed.An equation expressing the vertical attenuation coefficient for downward irradiance as a function of absorption coefficient, scattering coefficient and solar altitude is presented, and is used to explore the effects of absorption due to dissolved colour and suspensoids, and the effects of scattering by suspensoids, on the penetration of PAR.Suspensoids, by increasing the rate of attenuation of the solar flux with depth, can greatly diminish the euphotic depth of a water body, with a consequent decrease in the ratio of the euphotic to the mixed depth: thus turbidity can reduce productivity of a water body substantially below that which might be expected on the basis of nutrient availability. Shallow turbid waters of low intrinsic colour can, however, be highly productive. By diminishing the depth of the layer within which solar energy is dissipated as heat, suspensoids can greatly modify the hydrodynamic behaviour of water bodies, and this also has far-reaching ecological consequences.Suspensoids drastically impair the visual clarity of water, a fact of major significance for the aquatic fauna, as well of aesthetic significance for humanity. The reciprocal of the Secchi depth is more correctly thought of as a guide to the vertical contrast attenuation coefficient rather than to the vertical attenuation coefficient for irradiance. The reflectivity of a water body, being at any wavelength proportional to the backscattering coefficient divided by the absorption coefficient, is highly dependent on the concentration, and optical character, of the suspensoids present. This has implications not only for the appearance (colour, muddiness) of the water to an observer, but also for the remote sensing of water composition by air- or satellite-borne radiometric sensors.  相似文献   

12.
Ship-borne measurements of spectral as well as biologically effective UV irradiance have been performed on the German research vessel Polarstern during the Atlantic transect from Bremerhaven, Germany (53.5 degrees N, 8.5 degrees E), to Cape Town, South Africa (33.6 degrees S, 18.3 degrees E), from 13 October to 17 November 2005. Such measurements are required to study UV effects on marine organisms. They are also necessary to validate satellite-derived surface UV irradiance. Cloud free radiative transfer calculations support the investigation of this latitudinal dependence. Input parameters, such as total ozone column and aerosol optical depth have been measured on board as well. Using these measured parameters, the modelled cloudless noontime UVA irradiance (320-400 nm) shows the expected dependence on varying minimum solar zenith angles (SZA) at different latitudes. The modelled cloudless noontime UVB irradiance (290-320 nm) does not show this clear dependence on SZA due to the strong influence of ozone absorption in this spectral range. The maximum daily dose of erythemal irradiance of 5420 J m(-1) was observed on 14 November 2005, when the ship was in the tropical Atlantic south of the equator. The expected UV maximum should have been observed with the sun in the zenith during local noon (11 November). Stratiform clouds reduced the dose to 3835 J m(-1). In comparison, the daily erythemal doses in the mid-latitudinal Bay of Biscay only reached values between 410 and 980 J m(-1) depending on cloud conditions. The deviation in daily erythemal dose derived from different instruments is around 5%. The feasibility to perform ship-borne measurements of spectral UV irradiance is demonstrated.  相似文献   

13.
Sources and measurement of ultraviolet radiation   总被引:1,自引:0,他引:1  
Ultraviolet (UV) radiation is part of the electromagnetic spectrum. The biological effects of UV radiation vary enormously with wavelength and for this reason the UV spectrum is further subdivided into three regions: UVA, UVB, and UVC. Quantities of UV radiation are expressed using radiometric terminology. A particularly important term in clinical photobiology is the standard erythema dose (SED), which is a measure of the erythemal effectiveness of a UV exposure. UV radiation is produced either by heating a body to an incandescent temperature, as is the case with solar UV, or by passing an electric current through a gas, usually vaporized mercury. The latter process is the mechanism whereby UV radiation is produced artificially. Both the quality (spectrum) and quantity (intensity) of terrestrial UV radiation vary with factors including the elevation of the sun above the horizon and absorption and scattering by molecules in the atmosphere, notably ozone, and by clouds. For many experimental studies in photobiology it is simply not practicable to use natural sunlight and so artificial sources of UV radiation designed to simulate the UV component of sunlight are employed; these are based on either optically filtered xenon arc lamps or fluorescent lamps. The complete way to characterize an UV source is by spectroradiometry, although for most practical purposes a detector optically filtered to respond to a limited portion of the UV spectrum normally suffices.  相似文献   

14.
A mathematical model to estimate the solar irradiance profile and average light intensity inside a tubular photobioreactor under outdoor conditions is proposed, requiring only geographic, geometric, and solar position parameters. First, the length of the path into the culture traveled by any direct or disperse ray of light was calculated as the function of three variables: day of year, solar hour, and geographic latitude. Then, the phenomenon of light attenuation by biomass was studied considering Lambert-Beer's law (only considering absorption) and the monodimensional model of Cornet et al. (1900) (considering absorption and scattering phenomena). Due to the existence of differential wavelength absorption, none of the literature models are useful for explaining light attenuation by the biomass. Therefore, an empirical hyperbolic expression is proposed. The equations to calculate light path length were substituted in the proposed hyperbolic expression, reproducing light intensity data obtained in the center of the loop tubes. The proposed model was also likely to estimate the irradiance accurately at any point inside the culture. Calculation of the local intensity was thus extended to the full culture volume in order to obtain the average irradiance, showing how the higher biomass productivities in a Phaeodactylum tricornutum UTEX 640 outdoor chemostat culture could be maintained by delaying light limitation. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 701-714, 1997.  相似文献   

15.
Remote sensing as a tool for assessing water quality in Loosdrecht lakes   总被引:3,自引:2,他引:1  
The underwater light field in 7 lakes in the Loosdrecht lake area was measured in situ. Subsurface upwelling irradiance and irradiance reflectance, together with estimations of scattering and laboratory measurements of absorption by aquatic humus and particulate matter, enabled an analysis of the spectral signature of these waters. Aircraft imaging spectrometer measurements of upwelling radiance at 1 km altitude were used to simulate the PMI Chlorophyll #1, the CAESAR Inland Water Mode spectral bandsets and the Thematic Mapper bands 1 to 4. This made it possible to compare the effects of spectral band width and selection on the estimation of water quality parameters. Correlations increased to r > 0.94, at a significance level of 1% for the simulated C-IWM data with the 6 water quality parameters. Images of the PMI Chlorophyll #1 and of the TM were analysed and found to be in accordance with the statistical modelling results.A significant increase in correlation of remote sensing data with water quality parameters can be achieved through the selective use of 10 to 20 nm wide bands in the spectral range of 500 to 720 nm in these eutrophic waters. Sum of chlorophyll a and phaeopigments, seston dry weight, Secchi disc transparency, and coefficients for vertical attenuation of light, absorption and scattering can be estimated accurately. TM image data for water quality assessment is of limited use due to the relatively low spectral and radiometric resolution. However, the revisit capability and relatively low price per area are positive aspects of these satellite images.Abbreviations CAESAR = CCD Airborne Experimental Scanner for Applications in Remote sensing - C-IWM = CAESAR Inland Water Mode - CCD = charge coupled device - EOS-A = Earth Observation System Platform A - PAR = photosynthetically active radiation from 400–700 nm. - PMI = Programmable Multispectral Imager - RSLL = Remote Sensing Loosdrecht Lakes Project - SPOT = Systeme Pour l'Observation de la Terre - SPOT-HRV = Sensor on board of the SPOT satellite - TM = Thematic Mapper instrument aboard the Landsat 5 satellite  相似文献   

16.
Ground level ultraviolet‐B (UV‐B; 290–320 nm) fluxes in Antarctica have been increasing due to stratospheric ozone depletion. Although mat‐forming cyanobacteria are major component of freshwater algal biomass in Antarctica, little is known about their response to increasing ultraviolet radiation (UVR). The present study evaluated the sensitivity to UVR of two strains of mat‐forming cyanobacteria with different cell size, Phormidium murrayi (6.0 x 3.2 μm) and Schizothrix calcicola (2.2 x 2.3 μm). Cyanobacterial photosynthesis was measured under different UV spectral quality and quantity achieved by polychromatic filters with different cutoff wavelengths and neutral density screens. The productivity and irradiance data were used to generate biological weighting functions (BWF) for the assessment of UV inhibition on photosynthesis. The kinetics of UV inhibition, as determined by PAM fluorometry, differed between the two species so that inhibition of P. murrayi and S. calcicola were modeled based on UV‐irradiance and cumulative exposure, respectively. After a one hour exposure, BWF's did not differ between the two isolates of cyanobacteria despite their differences in cell size. To evaluate the negative impact of increased UV‐B exposure due to ozone depletion on cyanobacteria, the BWF's were applied to two solar spectra obtained from McMurdo Station, one on a day when the ozone hole was prominent (O3 = 170 Dobson units; DU = 10‐3 cm O3), and the other on a day with high ozone concentration (O3 = 328 DU). The decrease in ozone level would reduce productivity by 3–8%. Seasonal variation of UVR has a bigger impact on cyanobacterial productivity than ozone depletion.  相似文献   

17.
Biological spectral weighting functions (BSWF) play a key role in assessing implications of stratospheric ozone reduction. They are used to calculate the increase in biologically effective solar UV radiation due to ozone reduction (radiation amplification factor, RAF), assess current latitudinal gradients of solar UV radiation, and compare solar UV radiation with that from lamps and filters used in experiments. As a basis for a BSWF, we developed an action spectrum for growth responses of light-grown oat ( Avena sativa L. cv. Otana) seedlings exposed to narrowband UV radiation from a large double water-prism monochromator. Five UV wavelength peaks were used (275, 297, 302, 313 and 366 nm) in the absence of any visible radiation. Growth responses were measured from 1 to 10 days after the treatments. At all these wavelengths, the UV radiation inhibited height growth, including the height at which the first leaf separated from the stem. Radiation at all wavelengths used, except the one UV-A wavelength, promoted the length of the second leaf. The resulting action spectrum closely resembles the commonly used generalized plant response function except that it indicates continued sensitivity into the UV-A region. When used as a BSWF for the ozone depletion problem, this new function for plant growth would suggest substantially less impact of ozone depletion because it results in only a modest increment of biologically effective UV for a given level of ozone depletion (a lower RAF). Yet this new BSWF also suggests that experimental treatments based on previous BSWF with less emphasis on the UV-A may have resulted in simulations of less pronounced ozone depletion than intended. The validity of this new BSWF with UV-A sensitivity, designated the UV plant growth weighting function, was verified in field experiments as described in the companion paper.  相似文献   

18.
Summary The partitioning of solar and net total irradiances between the canopy and soil was measured in mixed and chamise chaparral in southern California. The solar and net total irradiance absorbed within the canopy was a relatively constant fraction throughout the year. Variations can be explained by the changing path length of the solar beam as the solar altitude varies. The increased fraction of solar irradiance in winter, combined with the lower incident solar irradiance, produced a wide fluctuation of solar irradiance at the soil surface through the year. Although incoming solar irradiance on the bare soil surface is less on the north-facing slope than on the south-facing slope, the absorption of solar irradiance is greater in the canopy of the mixed chaparral on the north-facing slope because greater leaf and stem area has developed.  相似文献   

19.
The question of why plants are green has been revisited in several articles recently. A common theme in the discussions is to explain why photosynthesis appears to absorb less of the available green sunlight than expected. The expectation is incorrect, however, because it fails to take the energy cost of the photosynthetic apparatus into account. Depending on that cost, the red absorption band of the chlorophylls may be closely optimized to provide maximum growth power. The optimization predicts a strong influence of Fraunhofer lines in the solar irradiance on the spectral shape of the optimized absorption band, which appears to be correct. It does not predict any absorption at other wavelengths.  相似文献   

20.
SUMMARY. 1. The inherent optical properties (scattering coefficients and absorption coefficients across the photosynthetic waveband) are presented from diverse tropical water bodies (billabongs) in the Alligator Rivers Region of northern Australia.
2. The data are used to interpret observed characteristics of the underwater light field as exemplified by the spectral distribution, and overall rate of attenuation, of photosynthetically available radiation (PAR).
3. Attenuation of PAR, especially in the blue waveband, is caused primarily by intense light absorption by the yellow-brown humic pigments, both soluble and particulate, in the water.
4. It was estimated that in six moderately turbid billabongs, light scattering increased attenuation by an average of 58% above that attributable to absorption alone, whereas in a highly turbid billabong the increase was 111%.
5. A distinguishing feature of the optical character of these billabongs, compared with previously studied water bodies in southern Australia, is the great contribution to light absorption made by the particulate humic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号