首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The experimental work of studying the adsorption of ketotifen and allopurinol by chitosan focused on determining the solubilities and the adsorption isotherms of the adsorbates employed in this study. The adsorption of the aforementioned compounds by chitosan was studied using the rotating bottle method. The concentrations, both before and after the attainment of equilibrium, were determined with the aid of a reversed-phase high-performance liquid chromatography column. The results of these studies demonstrated that ketotifen and allopurinol are both adsorbed by chitosan. The nonlinear Langmuir-like and the Freundlich models both were applied to the experimental data. The correlation coefficients obtained from the nonlinear Langmuir-like model were better than those obtained from Freundlich model, suggesting that allopurinol and ketotifen interacted with certain specific binding sites on the chitosan surface. The allopurinol adsorption experiments indicated that the particle size of chitosan and therefore the surface area can significantly affect the Langmuir capacity constant, while the affinity constants are statistically the same. As expected from the solubility studies, the ketotifen adsorption experiments at 2 different pHs (7 and 10) showed that the adsorption affinity at pH 10 was much higher than at pH 7. What was not expected was that the capacity constants were significantly different, suggesting that further studies are needed using common ion buffers and multicomponent adsorption for the proper mechanism to be determined.  相似文献   

2.
Prediction of multicomponent adsorption is still one of the most challenging problems in the adsorption field. Many models have been proposed and employed to obtain multicomponent isotherms from single-component equilibrium data. However, most of these models were based on either unrealistic assumptions or on empirical equations with no apparent definition. The purpose of this investigation was to develop a multicomponent adsorption model based on a thermodynamically consistent equation, and to validate that model using experimental data. Three barbiturates--phenobarbital, mephobarbital, and primidone--were combined to form a ternary system. The adsorption of these barbiturates from simulated intestinal fluid (without pancreatin) by activated carbon was studied using the rotating bottle method. The concentrations, both before and after the attainment of equilibrium, were determined with a high-performance liquid chromatography system employing a reversed-phase column. The proposed equation and the competitive Langmuir-like equation were both fit to the data. A very good correlation was obtained between the experimental data and the calculated data using the proposed equation. The results obtained from the original competitive Langmuir-like model were less satisfactory. These results suggest that the proposed equation can successfully predict the trisolute isotherms of the barbituric acid derivatives employed in this study.  相似文献   

3.
Zhang J  Shi Q  Zhang C  Xu J  Zhai B  Zhang B 《Bioresource technology》2008,99(18):8974-8980
Activated carbon was prepared from an inexpensive and renewable carbon source, Typha orientalis, by H(3)PO(4) activation and then impregnated with different Mn salts and tested for its Neutral Red (NR) adsorption capacities. The amount of Mn impregnated in the activated carbon was influenced by the anion species. Impregnation with Mn decreased the surface area, changed the pore size and crystal structure, and introduced more acidic functional groups such as carboxyl, lactone and phenol groups. The optimum adsorption performance for all the activated carbons was obtained at pH 3.7, Mn-Carbon dose of 0.100g/100ml solution and contact time 4.5h. The adsorption isotherms fit the Langmuir isotherm equation. The kinetic data followed the pseudo-second-order model. The thermodynamic parameters indicated that the processes were spontaneous and endothermic. According to these results, the prepared Mn modified activated carbons are promising adsorbents for the removal of Neutral Red from wastewater.  相似文献   

4.
In this batch study, the adsorption of malathion by using granular activated carbon with different parameters due to the particle size, dosage of carbons, as well as the initial concentration of malathion was investigated. Batch tests were carried out to determine the potential and the effectiveness of granular activated carbon (GAC) in removal of pesticide in agricultural run off. The granular activated carbon; coconut shell and palm shells were used and analyzed as the adsorbent material. The Langmuir and Freundlich adsorption isotherms models were applied to describe the characteristics of adsorption behavior. Equilibrium data fitted well with the Langmuir model and Freundlich model with maximum adsorption capacity of 909.1 mg/g. The results indicate that the GAC could be used to effectively adsorb pesticide (malathion) from agricultural runoff.  相似文献   

5.
In a previous work, chemically modified cellulose (EMC) and sugarcane bagasse (EMMB) were prepared from mercerized cellulose (MC) and twice-mercerized sugarcane bagasse (MMB) using ethylenediaminetetraacetic dianhydride (EDTAD) as modifying agent. In this work we described in detail the modification of these materials in function of reaction time and EDTAD amount in the reaction media. The resistance of ester bond at pH 1, 2, 11, and 12 was also evaluated by FTIR. The results were used to model the hydrolysis process and a kinetic model was proposed. The modified materials (EMMB and EMC) were used to adsorb Ca2+ and Mg2+ ions from aqueous single solutions. The adsorption isotherms were developed at two pH values. These materials showed maximum adsorption capacities for Ca2+ and Mg2+ ions ranging from 15.6 to 54.1 mg/g and 13.5 to 42.6 mg/g, respectively. The modified material from sugarcane bagasse (EMMB) showed larger maximum adsorption capacities than modified material from cellulose (EMC) for both metals.  相似文献   

6.
The interaction between adsorbates of different nature and plasmonic nanoparticles is reviewed here on the basis of the work done in our laboratory in the past few years. The paper is structured for analyzing the interaction of adsorbates with metal nanoparticles as function of the interacting atom (O, N, or S) and the adsorbate conformation. In the study of the adsorption of molecular species on metals, it is necessary to take into account that different interaction mechanisms are possible, leading to the existence of different molecular forms (isomers or conformers). These forms can be evidenced by changing the excitation wavelength, due to a resonant selection of these wavelengths. Charge-transfer complexes and electrostatic interactions are the usual driving forces involved in the interaction of adsorbates on metal surfaces when these metallic systems are used in wet conditions. The understanding of the metal–adsorbate interaction is crucial in the surface functionalization of metal surfaces, which has a growing importance in the development of sensing systems or optoelectronic devices. In relation to this, special attention is paid in this work to the study of the adsorption of calixarene host molecules on plasmonic nanoparticles.  相似文献   

7.
Activated carbon has been prepared from date fruit pits. The carbon, prepared at different burn‐off rates, showed a high uptake of methylene blue. At 92 % burn‐off (weight loss percent of the carbonized pits upon activation), methylene blue uptake was 590 mg/g. With this high capacity, the carbon was then used to study the adsorption of phenol, 2‐nitrophenol, 2,4‐dinitrophenol, and 2,4,6‐trinitrophenol. The prepared activated carbon showed an adsorption capacity better than that of many activated carbons in current use. The experimental adsorption data for the single components were regressed using both Langmuir and Freundlich isotherm models and the fit was generally satisfactory. The experimental adsorption data of the binary system phenol‐2‐nitrophenol were compared with the predicted results using two predictive models: the generalized Langmuir and the IAS models. The data were better represented by the IAS theory than the generalized Langmuir model even though the fit of the experimental data was not adequate.  相似文献   

8.
Low-cost activated carbon was prepared from Spartina alterniflora by phosphoric acid activation for the removal of Pb(II) from dilute aqueous solution. The effect of experimental parameters such as pH, initial concentration, contact time and temperature on the adsorption was studied. The obtained data were fitted with the Langmuir and Freundlich equations to describe the equilibrium isotherms. The kinetic data were fitted with the Lagergren-first-order, pseudo-second-order and Elovich models. It was found that pH played a major role in the adsorption process. The maximum adsorption capacity for Pb(II) on S. alterniflora activated carbon (SAAC) calculated from Langmuir isotherm was more than 99 mg g−1. The optimum pH range for the removal of Pb(II) was 4.8–5.6. The Freundlich isotherm model was found to best describe the experimental data. The kinetic rates were best fitted to the pseudo-second-order model. Thermodynamic study showed the adsorption was a spontaneous exothermic process.  相似文献   

9.
GCMC simulations are applied to the adsorption of sub-critical methanol and ethanol on graphitized carbon black at 300 K. The carbon black was modelled both with and without carbonyl functional groups. Large differences are seen between the amounts adsorbed for different carbonyl configurations at low pressure prior to monolayer coverage. Once a monolayer has been formed on the carbon black, the adsorption behaviour is similar between the model surfaces with and without functional groups. Simulation isotherms for the case of low carbonyl concentrations or no carbonyls are qualitatively similar to the few experimental isotherms available in the literature for methanol and ethanol adsorption on highly graphitized carbon black. Isosteric heats and adsorbed phase heat capacities are shown to be very sensitive to carbonyl configurations. A maximum is observed in the adsorbed phase heat capacity of the alcohols for all simulations but is unrealistically high for the case of a plain graphite surface. The addition of carbonyls to the surface greatly reduces this maximum and approaches experimental data with carbonyl concentration as low as 0.09 carbonyls/nm2.  相似文献   

10.
Preparation of activated carbon has been attempted using KOH as activating agent by microwave heating from biodiesel industry solid residue, oil palm empty fruit bunch (EFBAC). The significance of chemical impregnation ratio (IR), microwave power and activation time on the properties of activated carbon were investigated. The optimum condition has been identified at the IR of 1.0, microwave power of 600 W and activation time of 7 min. EFBAC was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement, determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue as dye model compound. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 395.30 mg/g and carbon yield of 73.78%, while the BET surface area and total pore volume were corresponding to 1372 m2/g and 0.76 cm3/g, respectively.  相似文献   

11.
Mosses, covering about 23,000 species of all land plants in the world, have been widely used as an indicator of heavy metal pollution in many studies. A crucial part in these researches is to regularize the adsorption capacities of different moss species obtained from different regions to objectively compare the pollution levels. In this study, we have first analyzed the lead adsorption capacities of six different moss species by means of using column filled with Amberlite XAD-2000 resin method. The adsorption capacities of the studied six mosses are found in descending order as Eurhynchium striatum, Hypnum cupressiforme, Pleurozium schreberi, Eurhynchium striatulum, Homalothecium sericeum and Thuidium tamariscinum. Then, we have regularized the Pb adsorption levels for the moss species obtained from different regions along one of the important coast highway in Turkey, namely Sarp-Samsun highway, with respect to the determined adsorption capacities.  相似文献   

12.
A mathematical model of an enzymatic separating microreactor with the electro-osmotic control of reaction component transport rates is analysed. The micro-reactor is considered in a form of a thin channel filled with a gel containing an immobilised enzyme and an adsorbent where the enzyme reaction, the molecular diffusion, the electro-osmotic flux and the adsorption take place. The substrate inhibited enzyme reaction splitting a non-ionic substrate to two non-ionic products is considered. The reactor operates in a periodic regime, when the channel entry is exposed to the periodic substrate concentration pulses. A chromatographic separation of reaction components, therefore, proceeds in the channel. Effects of principal operational parameters of the reactor system—the reaction channel length, the electric current density, the substrate inlet concentration, the rate of adsorption, and the enzyme activity—on resolution of the products at reactor outlet are analysed. The existence of optimum parameter values (maximising the resolution of reaction products) is shown and a multiparametric optimisation of the reactor performance is accomplished.  相似文献   

13.
Cassava (Manihot esculenta Crantz) is a known source of linamarin, but difficulties associated with its isolation have prevented it from being exploited as a major source. A batch adsorption process using activated carbon proved successful in its isolation, with ultrafiltration playing a pivotal role in its purification. Thirty-two minutes of contact time was required for 60 g of extract, yielding 1.7 g of purified product. Picrate paper, infra-red and 1HNMR analysis confirmed the presence and structure of linamarin. Cytotoxic effects of linamarin on MCF-7, HT-29 and HL-60 cells were determined using the MTT assay. Cytotoxic effects were significantly increased in the presence of linamarase (β-glucosidase), with a 10–fold decrease in the IC50 values obtained for HL-60 cells. This study thus describes a method for the isolation and purification of linamarin from cassava, as well as its cytotoxicity potential.  相似文献   

14.
The adsorption of the major tar compound, 2,5-xylenol, derived from the plant cell cultures of Taxus chinensis, onto activated carbon was examined at different initial 2,5-xylenol concentrations, durations, and temperatures. From the analysis of adsorption isotherms, the Langmuir isotherm model showed good fit to the equilibrium adsorption data. It was found that adsorption capacity decreased with increasing temperature, and the adsorption of 2,5-xylenol onto activated carbon was favorable. The obtained kinetic data for 2,5-xylenol adsorption with activated carbon agreed well with the pseudo-second-order kinetic model. By using intraparticle diffusion model, intraparticle diffusion and boundary layer diffusion did not play a dominant role in 2,5-xylenol adsorption. Thermodynamic parameters were calculated, which indicated that the adsorption was non-spontaneous, irreversible and exothermic nature. The isosteric heat of adsorption decreased with increase in surface loading, indicating a heterogeneous surface.  相似文献   

15.
Ammonia adsorption in a fixed bed of activated carbon   总被引:2,自引:0,他引:2  
The rise in atmospheric pollution caused by gases such as ammonia has led many researchers to conduct studies aimed at decreasing or treating the emissions of such polluting gases. The present work attempted to study the adsorption of ammonia in the fixed bed of activated carbon as a means to treat its emissions. The effects of the initial concentration of ammonia (C0) and of the bed temperature (TL) on the adsorption of ammonia by the activated carbon were also considered. Adsorption capacity of activated carbon was determined using data from the breakthrough curves and from a balance of mass in the bed. Adsorption capacities were obtained employing the Langmuir and Freudlich isotherms. The results showed that within the NH3 concentration range of 600-2400 ppm, adsorption capacity varied from 0.6 to 1.8 mg NH3/g carbon at 40 degrees C, from 0.2 to 0.7 mg NH3/g carbon at 80 degrees C and from 0.15 to 0.35 mg NH3/g carbon at 120 degrees C. These numbers highlight the tendency toward a lower adsorption capacity with the decrease in temperature. As to mass of the bed, this latter variable had no significant influence over adsorption capacity.  相似文献   

16.
Adsorptive purification of concentrated acid hydrolyzate of lignocellulose was investigated. Cation exchange resin (CS16GC), neutral polymer adsorbent (XAD-16), and granulated activated carbon (GAC) were studied to remove furfural, HMF, and acetic acid from a synthetic hydrolyzate containing 20 wt.% H2SO4. Adsorption isotherms were determined experimentally. Loading and regeneration were investigated in a laboratory scale column.GAC has the highest adsorption capacity, but regeneration with water was not feasible. XAD-16 and CS16GC had lower adsorption capacities but also shorter cycle times due to easier regeneration. Productivity increased when regenerating with 50 wt.% EtOH(aq) solution.To compare adsorbents, process performance was quantified by productivity and fraction of inhibitors removed. GAC yields highest performance when high purity is required and ethanol can be used in regeneration. For lower purities, XAD-16 and GAC yield approximately equal performance. When using ethanol must be avoided, CS16GC offers highest productivity.  相似文献   

17.
The adsorption on activated carbons of dark colored compounds contained in sugar beet vinasse was studied. Four commercial activated carbons with different properties (particle size, residual acidity and microporous properties) were respectively checked for efficiency at two temperature levels (25 °C and 40 °C) and at four pH levels (2, 3.5, 7, 10). The adsorption of organic molecules was determined by quantifying the amounts of total polyphenolic compounds and total organic carbon. The results showed that the adsorption capacity of dark colored compounds was enhanced by the decrease in both temperature and pH values of the solution. In this study, it is shown that this capacity depends on activated carbon characteristics which can be classified in the following order: particle size > residual acidity > microporous volume. Three models (Langmuir, Freundlich and Dubinin–Radushkevich) were tested from experimental data and compared. The Langmuir model provided the best correlation on all the activated carbons studied.  相似文献   

18.
High surface area activated carbons have been produced from the natural biomaterial bamboo, using phosphoric acid as the activating agent. The effects of phosphoric acid impregnation ratio, activation temperature, heating rate on the carbon surface area, porosity and mass yield are presented. Three of these bamboo derived active carbons, surface areas 1337, 1628 and 2123m(2)/g were assessed for their ability to adsorb Acid Red 18 dye from aqueous solution; these results were compared with three conventional adsorbents: activated carbon F400, bone char and peat. Isotherm data were analysed using Langmuir, Freundlich, Redlich-Peterson and Langmuir-Freundlich isotherms. Different isotherms provided the best fit correlations to the adsorption experimental data but the Langmuir-Freundlich equation provided the best overall correlation of data. The adsorption capacities of two of the selected bamboo derived carbons were much greater than the capacities of the other three adsorbents.  相似文献   

19.
Apricot stones were carbonised and activated after treatment with sulphuric acid (1:1) at 200 degrees C for 24 h. The ability of the activated carbon to remove Ni(II), Co(II), Cd(II), Cu(II), Pb(II), Cr(III) and Cr(VI) ions from aqueous solutions by adsorption was investigated. Batch adsorption experiments were conducted to observe the effect of pH (1-6) on the activated carbon. The adsorptions of these metals were found to be dependent on solution pH. Highest adsorption occurred at 1-2 for Cr(VI) and 3-6 for the rest of the metal ions, respectively. Adsorption capacities for the metal ions were obtained in the descending order of Cr(VI) > Cd(II) > Co(II) > Cr(III) > Ni(II) > Cu(II) > Pb(II) for the activated carbon prepared from apricot stone (ASAC).  相似文献   

20.
石油焦基高比表面积活性炭对废水中CODCr的吸附能力   总被引:2,自引:0,他引:2  
孙敏  彭凤仙  邓益群 《生态科学》2005,24(2):146-149
探讨了高比表面积活性炭(HSAAC)吸附水中CODCr时,活性炭用量、pH值和吸附时间等因素对CODCr吸附量和去除率的影响。实验结果表明,HSAAC用量越大,去除CODCr效果越好。当HSAAC用量为2.0g·L-1,pH=3时,去除率达到78%以上;在酸性条件下HSAAC对CODCr的去除效果较好;HSAAC对废水中CODCr的吸附发生在前30min;CODCr浓度低于60mg·L-1时,处理后CODCr的残余质量浓度低于地表水环境质量Ⅰ类标准(15mg·L-1)。用碱再生HSAAC,一次再生率达94.22%,二次再生率达到了86.90%。说明高比表面积活性炭在适宜条件下对CODCr具有较好的吸附性能和良好的再生效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号