首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The double-headed myosin V molecular motor carries intracellular cargo processively along actin tracks in a hand-over-hand manner. To test this hypothesis at the molecular level, we observed single myosin V molecules that were differentially labeled with quantum dots having different emission spectra so that the position of each head could be identified with approximately 6-nm resolution in a total internal reflectance microscope. With this approach, the individual heads of a single myosin V molecule were observed taking 72-nm steps as they alternated positions on the actin filament during processive movement. In addition, the heads were separated by 36 nm during pauses in motion, suggesting attachment to actin along its helical repeat. The 36-nm interhead spacing, the 72-nm step size, and the observation that heads alternate between leading and trailing positions on actin are obvious predictions of the hand-over-hand model, thus confirming myosin V's mode of walking along an actin filament.  相似文献   

2.
Myosin VI is a molecular motor that can walk processively on actin filaments with a 36-nm step size. The walking mechanism of myosin VI is controversial because it takes very large steps without an apparent lever arm of required length. Therefore, myosin VI is argued to be the first exception to the widely established lever arm theory. It is therefore critical to directly demonstrate whether this motor walks hand-over-hand along actin despite its short lever arm. Here, we follow the displacement of a single myosin VI head during the stepping process. A single head is displaced 72 nm during stepping, whereas the center of mass previously has been shown to move 36 nm. The most likely explanation for this result is a hand-over-hand walking mechanism. We hypothesize the existence of a flexible element that would allow the motor to bridge the observed 72-nm distance.  相似文献   

3.
Class V myosin (myosin-V) is a cargo transporter that moves along an actin filament with large (∼36-nm) successive steps. It consists of two heads that each includes a motor domain and a long (23 nm) neck domain. One of the more popular models describing these steps, the hand-over-hand model, assumes the two-headed structure is imperative. However, we previously succeeded in observing successive large steps by one-headed myosin-V upon optimizing the angle of the acto-myosin interaction. In addition, it was reported that wild type myosin-VI and myosin-IX, both one-headed myosins, can also generate successive large steps. Here, we describe the mechanical properties (stepsize and stepping kinetics) of successive large steps by one-headed and two-headed myosin-Vs. This study shows that the stepsize and stepping kinetics of one-headed myosin-V are very similar to those of the two-headed one. However, there was a difference with regards to stability against load and the number of multisteps. One-headed myosin-V also showed unidirectional movement that like two-headed myosin-V required 3.5 kBT from ATP hydrolysis. This value is also similar to that of smooth muscle myosin-II, a non-processive motor, suggesting the myosin family uses a common mechanism for stepping regardless of the steps being processive or non-processive. In this present paper, we conclude that one-headed myosin-V can produce successive large steps without following the hand-over-hand mechanism.  相似文献   

4.
It is widely accepted that the vesicle-transporter myosin-V moves processively along F-actin with large steps of approximately 36 nm using a hand-over-hand mechanism. A key question is how does the rear head of two-headed myosin-V search for the forward actin target in the forward direction. Scanning probe nanometry was used to resolve this underlying search process, which was made possible by attaching the head to a relatively large probe. One-headed myosin-V undergoes directional diffusion with approximately 5.5 nm substeps to develop an average displacement of approximately 20 nm, which was independent of the neck length (2IQ and 6IQ motifs). Two-headed myosin-V showed several approximately 5.5 nm substeps within each processive approximately 36 nm step. These results suggest that the myosin-V head searches in the forward direction for the actin target using directional diffusion on the actin subunits according to a potential slope created along the actin helix.  相似文献   

5.
Single molecules of dimeric myosin-VI have been demonstrated to be able to move processively towards the pointed end of actin filament with a mean step size of approximately 36 nm. Here we present a hand-over-hand diffusing mechanism for this unidirectional movement. Based on this mechanism, its dynamical behaviors such as the step-size distribution, dwell-time distributions and mean dwell time at various ATP and ADP concentrations and under various loads are studied in detail. The calculated results show good agreement with previous experimental results. The processive movement of mutant myosin-V with its neck domains truncated to only one IQ motif can also be explained by using this hand-over-hand diffusing model.  相似文献   

6.
Xie P  Dou SX  Wang PY 《Biophysical chemistry》2006,120(3):225-236
A hand-over-hand model is presented for the processive movement of myosin-V based on previous biochemical experimental results and structural observations of nucleotide-dependent conformational changes of single-headed myosins. The model shows that the ADP-release rate of the trailing head is much higher than that of the leading head, thus giving a 1 : 1 mechanochemical coupling for the processive movement of the motor. It explains well the previous finding that some 36-nm steps consist of two substeps, while other 36-nm steps consist of no substeps. Using the model, the calculated kinetic behaviors of myosin-V such as the main and intermediate dwell time distributions, the load dependence of the average main and intermediate dwell time and the load dependence of occurrence frequency of the intermediate state under various nucleotide conditions show good quantitative agreement with previous experimental results.  相似文献   

7.
Myosin V moves cargoes along actin filaments by walking hand over hand. Although numerous studies support the basic hand-over-hand model, little is known about the fleeting intermediate that occurs when the rear head detaches from the filament. Here we use submillisecond dark-field imaging of gold nanoparticle-labeled myosin V to directly observe the free head as it releases from the actin filament, diffuses forward and rebinds. We find that the unbound head rotates freely about the lever-arm junction, a trait that likely facilitates travel through crowded actin meshworks.  相似文献   

8.
We have undertaken some computer modeling studies of the cross-bridge observed by Reedy in insect flight muscle so that we investigate the geometric parameters that influence the attachment patterns of cross-bridges to actin filaments. We find that the appearance of double chevrons along an actin filament indicates that the cross-bridges are able to reach 10--14 nm axially, and about 90 degrees around the actin filament. Between three and five actin monomers are therefore available along each turn of one strand of actin helix for labeling by cross-bridges from an adjacent myosin filament. Reedy's flared X of four bridges, which appears rotated 60 degrees at successive levels on the thick filament, depends on the orientation of the actin filaments in the whole lattice as well as on the range of movement in each cross-bridge. Fairly accurate chevrons and flared X groupings can be modeled with a six-stranded myosin surface lattice. The 116-nm long repeat appears in our models as "beating" of the 14.5-nm myosin repeat and the 38.5-nm actin period. Fourier transforms of the labeled actin filaments indicate that the cross-bridges attach to each actin filament on average of 14.5 nm apart. The transform is sensitive to changes in the ease with which the cross-bridge can be distorted in different directions.  相似文献   

9.
Calculation of the size of the power stroke of the myosin motor in contracting muscle requires knowledge of the compliance of the myofilaments. Current estimates of actin compliance vary significantly introducing uncertainty in the mechanical parameters of the motor. Using x-ray diffraction on small bundles of permeabilized fibers from rabbit muscle we show that strong binding of myosin heads changes directly the actin helix. The spacing of the 2.73-nm meridional x-ray reflection increased by 0.22% when relaxed fibers were put into low-tension rigor (<10 kN/m(2)) demonstrating that strongly bound myosin heads elongate the actin filaments even in the absence of external tension. The pitch of the 5.9-nm actin layer line increased by approximately 0.62% and that of the 5.1-nm layer line decreased by approximately 0.26%, suggesting that the elongation is accompanied by a decrease in its helical angle (approximately 166 degrees) by approximately 0.8 degrees. This effect explains the difference between actin compliance revealed from mechanical experiments with single fibers and from x-ray diffraction on whole muscles. Our measurement of actin compliance obtained by applying tension to fibers in rigor is consistent with the results of mechanical measurements.  相似文献   

10.
Class VI myosin is an intracellular vesicle and organelle transporter that moves along actin filaments in a direction opposite to most other known myosin classes. The myosin-VI was expected to form a dimer to move processively along actin filaments with a hand-over-hand mechanism like other myosin organelle transporters. Recently, however, wild-type myosin-VI was demonstrated to be monomer and single-headed, casting a doubt on its processivity. By using single molecule techniques, we show that green-fluorescent-protein-tagged single-headed, wild-type myosin-VI does not move processively. However, when coupled to 200-nm polystyrene beads (comparable to intracellular vesicles in size) at a ratio of one head per bead, single-headed myosin-VI moves processively with large (40-nm) steps. The characteristics of this monomer-driven movement were different to that of artificial dimer-driven movement: Compared to the artificial dimer, the monomer-bead complex had a reduced stall force (1 pN compared to 2 pN), an average run length 2.5-fold shorter (91 nm compared to 220 nm) and load-dependent step size. Furthermore, we found that a monomer-bead complex moved more processively in a high viscous solution (40-fold higher than water) similar to cellular environment. Because the diffusion constant of the bead is 60-fold lower than myosin-VI heads alone in water, we propose a model in which the bead acts as a diffusional anchor for the myosin-VI, enhancing its rebinding following detachment and supporting processive movement of the bead-monomer complexes. Although a single-headed myosin-VI was able to move processively with a large cargo, the travel distance was rather short. Multiple molecules may be involved in the cargo transport for a long travel distance in cells.  相似文献   

11.
The averaged structure of rigor cross-bridges in insect flight muscle is further revealed by three-dimensional reconstruction from 25-nm sections containing a single layer of thin filaments. These exhibit two thin filament orientations that differ by 60 degrees from each other and from myac layer filaments. Data from multiple tilt views (to +/- 60 degrees) was supplemented by data from thick sections (equivalent to 90 degrees tilts). In combination with the reconstruction from the myac layer (Taylor et al., 1989), the entire unit cell is reconstructed, giving the most complete view of in situ cross-bridges yet obtained. All our reconstructions show two classes of averaged rigor cross-bridges. Lead bridges have a triangular shape with leading edge angled at approximately 45 degrees and trailing edge angled at approximately 90 degrees to the filament axis. We propose that the lead bridge contains two myosin heads of differing conformation bound along one strand of F-actin. The lead bridge is associated with a region of the thin filament that is apparently untwisted. We suggest that the untwisting may reflect the distribution of strain between myosin and actin resulting from two-headed, single filament binding in the lead bridge. Rear bridges are oriented at approximately 90 degrees to the filament axis, and are smaller and more cylindrical, suggesting that they consist of single myosin heads. The rear bridge is associated with a region of apparently normal thin filament twist. We propose that differing myosin head angles and conformations consistently observed in rigor embody different stages of the power stroke which have been trapped by a temporal sequence of rigor cross-bridge formation under the constraints of the intact filament lattice.  相似文献   

12.
Among a superfamily of myosin, class VI myosin moves actin filaments backwards. Here we show that myosin VI moves processively on actin filaments backwards with large ( approximately 36 nm) steps, nevertheless it has an extremely short neck domain. Myosin V also moves processively with large ( approximately 36 nm) steps and it is believed that myosin V strides along the actin helical repeat with its elongated neck domain that is critical for its processive movement with large steps. Myosin VI having a short neck cannot take this scenario. We found by electron microscopy that myosin VI cooperatively binds to an actin filament at approximately 36 nm intervals in the presence of ATP, raising a hypothesis that the binding of myosin VI evokes "hot spots" on actin filaments that attract myosin heads. Myosin VI may step on these "hot spots" on actin filaments in every helical pitch, thus producing processive movement with 36 nm steps.  相似文献   

13.
Neurodegenerative diseases may result in part from defects in motor-driven vesicle transport in neuronal cells. Myosin-V, an actin-based motor that is highly enriched in the brain, mediates the movement of vesicles on cortical actin filaments. Recent evidence suggests that the globular tail of myosin-V interacts with the microtubule-based motor, kinesin, to form a 'hetero-motor' complex on vesicles. The complex of these two motors, one microtubule-based and the other actin-based, facilitates the movement of vesicles from microtubules to actin filaments. Based on our studies of vesicle transport by these two motors in extracts of squid neurons, we hypothesize that one of the functions of the tail–tail interaction is to provide feedback between the two proteins to allow seamless transition of vesicles from microtubules to actin filaments. To study the interactions of the globular tail domain of myosin-V to kinesin and to neuronal vesicles, we used a GST-tagged globular tail fragment in motility assays. The MyoV tail fragment inhibited vesicle transport by 81–91% and thereby exhibited a dominant negative effect. These data show that the recombinant protein blocked the activity of native myosin-V presumably by binding to vesicles and competing away the native myosin-V motors. The GST-MyoV-tail fragment pulled down kinesin by immunoprecipitation from squid brain homogenates and therefore it exhibited binding properties of native myosin-V. These data show that the headless myosin-V fragment is an effective inhibitor of vesicle transport in cell extracts. These studies support the hypothesis that tail–tail interactions may be a mechanism for feedback between myosin-V and kinesin to allow transition of vesicles from microtubules to actin filaments. Acknowledgements: Supported by NSF grant MCB9974709.  相似文献   

14.
Myosin V is a homodimeric motor protein involved in trafficking of vesicles in the cell. It walks bipedally along actin filaments, moving cargo approximately 37 nm per step. We have measured the step size of individual myosin heads by fusing an enhanced green fluorescent protein (eGFP) to the N-terminus of one head of the myosin dimer and following the motion with nanometer precision and subsecond resolution. We find the average step size to be 74.1 nm with 9.4 nm (SD) and 0.3 nm (SE). Our measurements demonstrate nanometer localization of single eGFPs, confirm the hand-over-hand model of myosin V procession, and when combined with previous data, suggest that there is a kink in the leading lever arm in the waiting state of myosin V. This kink, or "telemark skier" configuration, may cause strain, which, when released, leads to the powerstroke of myosin, throwing the rear head forward and leading to unidirectional motion.  相似文献   

15.
The organization of the cytoplasm is regulated by molecular motors, which transport organelles and other cargoes along cytoskeleton tracks. In this work, we use single particle tracking to study the in vivo regulation of the transport driven by myosin-V along actin filaments in Xenopus laevis melanophores. Melanophores have pigment organelles or melanosomes, which, in response to hormones, disperse in the cytoplasm or aggregate in the perinuclear region. We followed the motion of melanosomes in cells treated to depolymerize microtubules during aggregation and dispersion, focusing the analysis on the dynamics of these organelles in a time window not explored before to our knowledge. These data could not be explained by previous models that only consider active transport. We proposed a transport-diffusion model in which melanosomes may detach from actin tracks and reattach to nearby filaments to resume the active motion after a given time of diffusion. This model predicts that organelles spend ∼70% and 10% of the total time in active transport during dispersion and aggregation, respectively. Our results suggest that the transport along actin filaments and the switching from actin to microtubule networks are regulated by changes in the diffusion time between periods of active motion driven by myosin-V.  相似文献   

16.
Although class IX myosins are single-headed, they demonstrate characteristics of processive movement along actin filaments. Double-headed myosins that move processively along actin filaments achieve this by successive binding of the two heads in a hand-over-hand mechanism. This mechanism, obviously, cannot operate in single-headed myosins. However, it has been proposed that a long class IX specific insertion in the myosin head domain at loop2 acts as an F-actin tether, allowing for single-headed processive movement. Here, we tested this proposal directly by analysing the movement of deletion constructs of the class IX myosin from Caenorhabditis elegans (Myo IX). Deletion of the large basic loop2 insertion led to a loss of processive behaviour, while deletion of the N-terminal head extension, a second unique domain of class IX myosins, did not influence the motility of Myo IX. The processive behaviour of Myo IX is also abolished with increasing salt concentrations. These observations directly demonstrate that the insertion located in loop2 acts as an electrostatic actin tether during movement of Myo IX along the actin track.  相似文献   

17.
Myosin VI walks in a hand-over-hand fashion with an average step size of 30 nm, which is much larger than its 10 nm lever arm. Recent experiments suggest that the myosin VI structure has an unfolded and flexible region in the proximal tail which makes such a large step possible. In addition, cryoelectron microscopy images of actomyosin VI show the two heads bound to the actin monomers with a broad distribution of distances, including some as close as a few nanometers. This observation, when combined with the existence of a flexible region in the structure, which takes part in stepping, challenged the hand-over-hand model. In the hand-over-hand model, the lever arm is considered to be rigid and the interhead separation should not be very different from 30 nm. We considered an alternative model in which myosin VI heads sequentially take 60 nm steps whereas the interhead separation alternates between a large and small value (x and 60 - x, where x < 30). To clarify these issues, we used a new technique, SHRImP, to measure the interhead distance of nearly rigor myosin VI molecules. Our data show a single peak at 29.3 +/- 0.7 nm, in agreement with the straightforward hand-over-hand model.  相似文献   

18.
Three-dimensional structure of the insect (Lethocerus) flight muscle M-band   总被引:2,自引:0,他引:2  
The oval myosin filament profiles in transverse sections through the M-band of Lethocerus flight muscle are arranged in one of three orientations 60 degrees apart and point along the 11 directions of the hexagonal filament lattice. Relative orientations are not systematically related to give a superlattice structure, but neither are the orientations arranged completely randomly. In fact there is a nearly random structure with a slight bias towards adjacent filaments being identically oriented. This form of M-band structure is explained in terms of interactions between quasi-equivalent M-bridges. Its implications with regard to myosin crossbridge arrangement depend on the rotational symmetry of the crossbridge helix. For 6-stranded helices, 60 degrees rotations have no noticeable effect. However, in the case of the more likely 4-stranded structure, our results show that the crossbridge origins in the insect flight muscle A-band would be highly disordered. This disorder must be accounted for in interpreting both the flared-X crossbridge interactions seen in transverse sections of rigor insect flight muscle and the beautiful X-ray diffraction patterns from the same preparation. It is likely that in rigor insect muscle, some flared-Xs have the two heads of single myosin molecules interacting with two different actin filaments, whereas other flared-Xs have both of the myosin heads in one molecule interacting with the same actin filament.  相似文献   

19.
Myosin-V is a versatile motor involved in short-range axonal/dendritic transport of vesicles in the actin-rich cortex and synaptic regions of nerve cells. It binds to several different kinds of neuronal vesicles by its globular tail domain but the mechanism by which it is recruited to these vesicles is not known. In this study, we used an in vitro motility assay derived from axoplasm of the squid giant axon to study the effects of the globular tail domain on the transport of neuronal vesicles. We found that the globular tail fragment of myosin-V inhibited actin-based vesicle transport by displacing native myosin-V and binding to vesicles. The globular tail domain pulled down kinesin, a known binding partner of myosin-V, in affinity isolation experiments. These data confirmed earlier evidence that kinesin and myosin-V interact to form a hetero-motor complex. The formation of a kinesin/myosin-V hetero-motor complex on vesicles is thought to facilitate the coordination of long-range movement on microtubules and short-range movement on actin filaments. The direct interaction of motors from both filament systems may represent the mechanism by which the transition of vesicles from microtubules to actin filaments is regulated. These results are the first demonstration that the recombinant tail of myosin-V inhibits vesicle transport in an in vitro motility assay. Future experiments are designed to determine the functional significance of the interaction between myosin-V and kinesin and to identify other proteins that bind to the globular tail domain of myosin-V.  相似文献   

20.
Myosin V is an unconventional myosin that transports cargo such as vesicles, melanosomes, or mRNA on actin filaments. It is a two-headed myosin with an unusually long neck that has six IQ motifs complexed with calmodulin. In vitro studies have shown that myosin V moves processively on actin, taking multiple 36-nm steps that coincide with the helical repeat of actin. This allows the molecule to "walk" across the top of an actin filament, a feature necessary for moving large vesicles along an actin filament bound to the cytoskeleton. The extended neck length of the two heads is thought to be critical for taking 36-nm steps for processive movements. To test this hypothesis we have expressed myosin V heavy meromyosin-like fragments containing 6IQ motifs, as well as ones that shorten (2IQ, 4IQ) or lengthen (8IQ) the neck region or alter the spacing between 3rd and 4th IQ motifs. The step size was proportional to neck length for the 2IQ, 4IQ, 6IQ, and 8IQ molecules, but the molecule with the altered spacing took shorter than expected steps. Total internal reflection fluorescence microscopy was used to determine whether the heavy meromyosin IQ molecules were capable of processive movements on actin. At saturating ATP concentrations, all molecules except for the 2IQ mutant moved processively on actin. When the ATP concentration was lowered to 10 microm or less, the 2IQ mutant demonstrated some processive movements but with reduced run lengths compared with the other mutants. Its weak processivity was also confirmed by actin landing assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号