首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reduction of membrane potential in frog sartorius muscle produced by rubidium and cesium ions has been studied over a wide concentration range and compared with depolarization occasioned by potassium ions. The constant field theory of passive flux has been used to predict the potential changes observed. The potential data suggest certain permeability coefficient ratios and these are compared with ratios obtained from flux data using radioactive tracers. The agreement of the flux with the potential data is good if account is taken of the inhibition of potassium flux which occurs in the presence of rubidium and cesium ions. A high temperature dependence has been observed for cesium influx (Q10 = 2.5) which is correlated with the observation that cesium ions depolarize very little at low temperatures. The observations suggest that cesium ions behave more like sodium ions at low temperatures and more like potassium ions at room temperature with respect to their effect on the muscle cell resting potential. The constant field theory of passive ion flux appears to be in general agreement with the experimental results observed if account is taken of the dependence of permeability coefficients on the concentrations of ions used and of possible interactions between the permeabilities of ions.  相似文献   

2.
Studies have suggested that increased root hydraulic conductivity in mycorrhizal roots could be the result of increased cell‐to‐cell water flux via aquaporins. This study aimed to elucidate if the key effect of the regulation of maize aquaporins by the arbuscular mycorrhizal (AM) symbiosis is the enhancement of root cell water transport capacity. Thus, water permeability coefficient (Pf) and cell hydraulic conductivity (Lpc) were measured in root protoplast and intact cortex cells of AM and non‐AM plants subjected or not to water stress. Results showed that cells from droughted‐AM roots maintained Pf and Lpc values of nonstressed plants, whereas in non‐AM roots, these values declined drastically as a consequence of water deficit. Interestingly, the phosphorylation status of PIP2 aquaporins increased in AM plants subjected to water deficit, and Pf values higher than 12 μm s?1 were found only in protoplasts from AM roots, revealing the higher water permeability of AM root cells. In parallel, the AM symbiosis increased stomatal conductance, net photosynthesis, and related parameters, showing a higher photosynthetic capacity in these plants. This study demonstrates a better performance of AM root cells in water transport under water deficit, which is connected to the shoot physiological performance in terms of photosynthetic capacity.  相似文献   

3.
Radin JW 《Plant physiology》1990,94(3):855-857
Suboptimal N or P availability and cool temperatures all decrease apparent hydraulic conductance (L) of cotton (Gossypium hirsutum L.) roots. The interaction between nutrient status and root temperature was tested in seedlings grown in nutrient solutions. The depression of L (calculated as the ratio of transpiration rate to absolute value of leaf water potential [Ψw]) by nutrient stress depended strongly on root temperature, and was minimized at high temperatures. In fully nourished plants, L was high at all temperatures ≥20°C, but it decreased greatly as root temperature approached the chilling threshold of 15°C. Decreasing temperature lowered Ψw first, followed by transpiration rate. In N- or P-deficient plants, L approached the value for fully nourished plants at root temperatures ≥30°C, but it decreased almost linearly with temperature as roots were cooled. Nutrient effects on L were mediated only by differences in transpiration, and Ψw was unaffected. The responses of Ψw and transpiration to root cooling and nutrient stress imply that if a messenger is transmitted from cooled roots to stomata, the messenger is effective only in nutrient-stressed plants.  相似文献   

4.
The main objective of the study was to compare the effects of short-duration pH treatments on root hydraulic properties in trembling aspen (Populus tremuloides) seedlings that were either inoculated with the ectomycorrhizal fungus Hebeloma crustuliniforme or remained non-inoculated (control). Inoculated and non-inoculated plants were exposed in solution culture to the root zone pH ranging from 4 to 9 and their root hydraulic conductivity was examined using the hydrostatic method and after subjecting the plants to treatments with 100 ??M HgCl2 (aquaporin blocker) and 0.02% trisodium 3-hydroxy-5,8,10-pyrenetrisulfonic acid (apoplastic transport tracer). In a separate experiment, pure cultures of H. crustuliniforme were also grown on a slid medium with the pH ranging from 4 to 9 to determine their pH growth optimum and changes in medium pH over time in the presence and absence of 8 mM NH4NO3. When grown in pure culture, H. crustuliniforme demonstrated maximum growth at pH 7?C8 and was capable of modifying the pH of its growth media, especially in the presence of NH4NO3. The plants that were inoculated with H. crustuliniforme had a maximum root hydraulic conductivity at pH 7. At this pH, root hydraulic conductivity was significantly higher compared with non-inoculated plants and showed greater sensitivity of root water transport to pH changes relative to non-inoculated seedlings. Relative apoplastic flux was largely unaffected by pH in inoculated seedlings. Fungal inoculation modified the response of root hydraulic conductivity to pH. The increased root hydraulic conductivity in inoculated seedlings was likely due to an increase in aquaporin-mediated cell-to-cell water transport, particularly at the higher pH. A possible role of fungal aquaporins in the root hydraulic conductivity responses of mycorrhizzal plants should be examined.  相似文献   

5.
The effects of abscisic acid (ABA) on aquaporin content, root hydraulic conductivity (Lpr), whole plant hydraulic conductance, and leaf growth are controversial. We addressed these effects via a combination of experiments at different scales of plant organization and tested their consistency via a model. We analyzed under moderate water deficit a series of transformed maize (Zea mays) lines, one sense and three antisense, affected in NCED (for 9-cis-epoxycarotenoid dioxygenase) gene expression and that differed in the concentration of ABA in the xylem sap. In roots, the mRNA expression of most aquaporin PIP (for plasma membrane intrinsic protein) genes was increased in sense plants and decreased in antisense plants. The same pattern was observed for the protein contents of four PIPs. This resulted in more than 6-fold differences between lines in Lpr under both hydrostatic and osmotic gradients of water potential. This effect was probably due to differences in aquaporin activity, because it was nearly abolished by a hydrogen peroxide treatment, which blocks the water channel activity of aquaporins. The hydraulic conductance of intact whole plants was affected in the same way when measured either in steady-state conditions or via the rate of recovery of leaf water potential after rewatering. The recoveries of leaf water potential and elongation upon rehydration differed between lines and were accounted for by the experimentally measured Lpr in a model of water transfer. Overall, these results suggest that ABA has long-lasting effects on plant hydraulic properties via aquaporin activity, which contributes to the maintenance of a favorable plant water status.  相似文献   

6.
This study combines existing hydraulic principles with recently developed methods for probing leaf hydraulic function to determine whether xylem physiology can explain the dynamic response of gas exchange both during drought and in the recovery phase after rewatering. Four conifer species from wet and dry forests were exposed to a range of water stresses by withholding water and then rewatering to observe the recovery process. During both phases midday transpiration and leaf water potential (Ψleaf) were monitored. Stomatal responses to Ψleaf were established for each species and these relationships used to evaluate whether the recovery of gas exchange after drought was limited by postembolism hydraulic repair in leaves. Furthermore, the timing of gas-exchange recovery was used to determine the maximum survivable water stress for each species and this index compared with data for both leaf and stem vulnerability to water-stress-induced dysfunction measured for each species. Recovery of gas exchange after water stress took between 1 and >100 d and during this period all species showed strong 1:1 conformity to a combined hydraulic-stomatal limitation model (r2 = 0.70 across all plants). Gas-exchange recovery time showed two distinct phases, a rapid overnight recovery in plants stressed to <50% loss of leaf hydraulic conductance (Kleaf) and a highly Ψleaf-dependent phase in plants stressed to >50% loss of Kleaf. Maximum recoverable water stress (Ψmin) corresponded to a 95% loss of Kleaf. Thus, we conclude that xylem hydraulics represents a direct limit to the drought tolerance of these conifer species.  相似文献   

7.
Kato Y  Okami M 《Annals of botany》2011,108(3):575-583

Background and Aims

Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. ‘Aerobic rice culture’ aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant–water relationships and stomatal conductance in aerobic culture.

Methods

Root system development, stomatal conductance (gs) and leaf water potential (Ψleaf) were monitored in a high-yielding rice cultivar (‘Takanari’) under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> –10 kPa) and mildly dry (> –30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; Kpa) was measured under flooded and aerobic conditions.

Key Results

Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72–85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower Kpa than plants grown under flooded conditions. Ψleaf was always significantly lower in aerobic culture than in flooded culture, while gs was unchanged when the soil moisture was at around field capacity. gs was inevitably reduced when the soil water potential at 20-cm depth reached –20 kPa.

Conclusions

Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψleaf. Ψleaf may reduce even if Kpa is not significantly changed, but the lower Ψleaf would certainly occur in case Kpa reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.  相似文献   

8.

Background and Aims

Vulnerability of the leaf hydraulic pathway to water-stress-induced dysfunction is a key component of drought tolerance in plants and may be important in defining species'' climatic range. However, the generality of the association between leaf hydraulic vulnerability and climate across species and sites remains to be tested.

Methods

Leaf hydraulic vulnerability to drought (P50leaf, the water potential inducing 50 % loss in hydraulic function) was measured in a diverse group of 92 woody, mostly evergreen angiosperms from sites across a wide range of habitats. These new data together with some previously published were tested against key climate indices related to water availability. Differences in within-site variability in P50leaf between sites were also examined.

Key Results

Values of hydraulic vulnerability to drought in leaves decreased strongly (i.e. became more negative) with decreasing annual rainfall and increasing aridity across sites. The standard deviation in P50leaf values recorded within each site was positively correlated with increasing aridity. P50leaf was also a good indicator of the climatic envelope across each species'' distributional range as well as their dry-end distributional limits within Australia, although this relationship was not consistently detectable within sites.

Conclusions

The findings indicate that species sorting processes have influenced distributional patterns of P50leaf across the rainfall spectrum, but alternative strategies for dealing with water deficit exist within sites. The strong link to aridity suggests leaf hydraulic vulnerability may influence plant distributions under future climates.  相似文献   

9.
It is well established that transpiration and photosynthetic rates generally increase in resprouting shoots after fire in chaparral shrublands. By contrast, little is known about how plant hydraulic function varies during this same recovery period. We hypothesized that vascular traits, both functional and structural, would also shift in order to support this heightened level of gas exchange and growth. We examined stem xylem‐specific hydraulic conductivity (Ks) and resistance to cavitation (P50) for eight chaparral shrub species as well as several potential xylem structural determinants of hydraulic function and compared established unburned plants and co‐occurring post‐fire resprouting plants. Unburned plants were generally more resistant to cavitation than resprouting plants, but the two groups did not differ in Ks. Resprouting plants had altered vessel structure compared with unburned plants, with resprouting plants having both wider diameter vessels and higher inter‐vessel pit density. For biomechanics, unburned plants had both stronger and denser stem xylem tissue than resprouting plants. Shifts in hydraulic structure and function resulted in resprouting plants being more vulnerable to dehydration. The interaction between time since disturbance (i.e. resprouting versus established stands) and drought may complicate attempts to predict mortality risk of resprouting plants.  相似文献   

10.
Seedlings of eight forest maple (Acer L.) species were grown outdoors through a full season under two irradiation treatments: (a) “gap edge” with a photosynthetic photon flux density of 30 μmol m-2 s-1 and a red:far-red ratio of 0.55, and (b) “gap centre” with 400 μmol m-2 s-1 and a red:far-red ratio of 1.12. Area-based leaf nitrogen concentration was greater in gap centre-grown seedlings, whereas, except for A. saccharum, area-based chlorophyll (Chl) (a+b) was higher in gap edge-grown plants. There was also a significantly lower Chl a/b ratio in gap edge-grown plants. Maximum photosynthetic rate (P max ) was 60 % higher in the gap-centre treatment. These results are consistent with the functional expectation that shade-acclimated plants will increase their radiant-energy harvesting capacity as a result of limited photon input while gap-acclimated plants will operate more efficiently under bright irradiance by increasing their carboxylation capacity. This inverse relationship between the capacity of the light-harvesting component and the carboxylation component is, however, only partially supported by Chl fluorescence measurements of intact leaves. Compared to gap centre-grown plants, the lower total fluorescence quenching in gap edge-grown plants indicated a lower carboxylation capacity that was in accord with the observed P max . However, edge-grown seedlings did not show the expected improvement in light-harvesting efficiency and reduction in electron transport of photosystem 2 inferred from their marginally greater t1/2 and lower Fv/Fm, respectively. Hence while maples acclimated to different irradiation levels by adjusting leaf N and Chl contents, they showed limited acclimation potential at the photosystem level. Variations in the leaf traits examined had only minor effect on low irradiance photosynthesis and sunfleck utilization. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
When photon flux density incident on attached leaves of Zea mays L. was varied from the equivalent of 0.12 of full sunlight to full sunlight, leaf conductance to CO2 transfer, g, changed in proportion to the change in rate of CO2, assimilation, A, with the result that intercellular partial pressure of CO2 remained almost constant. The proportionality was the same as that previously found in g and A measured at one photon flux density in plants of Zea mays L. grown at different levels of mineral nutrition, light intensities, and ambient partial pressures of CO2. In shade-grown Phaseolus vulgaris L. plants, A as photon flux density was increased from about 0.12 up to about 0.5 full sunlight, the proportionality being almost the same in plants grown at low and at high light intensity.

When photon flux density incident on the adaxial and abaxial surfaces of the isolateral leaves of Eucalyptus pauciflora Sieb. ex Spreng was varied, g and A also varied proportionally. The leaf conductance in a particular surface was affected by the photon flux density at the opposite surface to a greater extent than was expected on the basis of transmittance. The results indicated that stomata may, in some way, be sensitive to the photon flux absorbed within the leaf as a whole.

  相似文献   

12.
The hydraulic architecture and water relations of two olive genotypes, ‘Leccino Dwarf’ (LD) and ‘Leccino Minerva’ (LM) growing at two irradiance levels i.e. full sunlight irradiance (HI) and 50% sunlight irradiance (LI) were studied. The two clones showed similar plant hydraulic conductances (Kplant) and similar conductance of roots and leaves (Kroot and Kleaf) when growing at equal irradiance levels. However, both Kplant and Kroot were significantly lower in LI plants than in HI ones. On the contrary, Kleaf was unaffected by the light regime. One-year-old twigs of LI plants produced longer xylem conduits but lower average diameter of conduits and less conduits per unit xylem cross-sectional area compared to HI plants. As a consequence total conductive cross-sectional area of twigs was computed to be about 16% smaller in LI individuals than in HI ones.The LM genotype resulted potentially more vulnerable to cavitation than the LD one, although shading did not influence this variable. Shading influenced root biomass negatively with stronger reduction in LM genotype than in LD one. Although transpiration rates were substantially lower in shaded than in HI plants minimum diurnal leaf water potential was about ?1.2 MPa for both clones regardless the irradiance regime. Our conclusion is that the hydraulic efficiency of both olive clones was adjusted to meet the evaporative demand imposed by the irradiance regime with consequently similar equal hydraulic sufficiency.  相似文献   

13.
The different abilities of plant species to use ephemeral or permanent water sources strongly affect physiological performance and species coexistence in water-limited ecosystems. In addition to withstanding drought, plants in coastal habitats often have to withstand highly saline soils, an additional ecological stress. Here we tested whether observed competitive abilities and C–water relations of two interacting shrub species from an arid coastal system were more related to differences in root architecture or salinity tolerance. We explored water sources of interacting Juniperus phoenicea Guss. and Pistacia lentiscus L. plants by conducting physiology measurements, including water relations, CO2 exchange, photochemical efficiency, sap osmolality, and water and C isotopes. We also conducted parallel soil analyses that included electrical conductivity, humidity, and water isotopes. During drought, Pistacia shrubs relied primarily on permanent salty groundwater, while isolated Juniperus plants took up the scarce and relatively fresh water stored in upper soil layers. As drought progressed further, the physiological activity of Juniperus plants nearly stopped while Pistacia plants were only slightly affected. Juniperus plants growing with Pistacia had stem-water isotopes that matched Pistacia, unlike values for isolated Juniperus plants. This result suggests that Pistacia shrubs supplied water to nearby Juniperus plants through hydraulic lift. This lifted water, however, did not appear to benefit Juniperus plants, as their physiological performance with co-occurring Pistacia plants was poor, including lower water potentials and rates of photosynthesis than isolated plants. Juniperus was more salt sensitive than Pistacia, which withstood salinity levels similar to that of groundwater. Overall, the different abilities of the two species to use salty water appear to drive the outcome of their interaction, resulting in asymmetric competition where Juniperus is negatively affected by Pistacia. Salt also seems to mediate the interaction between the two species, negating the potential positive effects of an additional water source via hydraulic lift.  相似文献   

14.
A whole-plant carbon balance model incorporating a light acclimation response was developed for Alocasia macrorrhiza based on empirical data and the current understanding of light acclimation in this species. The model was used to predict the relative growth rate (RGR) for plants that acclimated to photon flux density (PFD) by changing their leaf type, and for plants that produced only sun or shade leaves regardless of PFD. The predicted RGR was substantially higher for plants with shade leaves than for those with sun leaves at low PFD. However, the predicted RGR was not higher, and in fact was slightly lower, for plants with sun leaves than for those with shade leaves at high PFD. The decreased leaf area ratios (LARs) of the plants with sun leaves counteracted their higher photosynthetic capacities per unit leaf area (Amax). The model was manipulated by changing parameters to examine the sensitivity of RGR to variation in single factors. Overall, RGR was most sensitive to LAR and showed relatively little sensitivity to variation in Amax or maintenance respiration. Similarly, RGR was relatively insensitive to increases in leaf life-span beyond those observed. Respiration affected RGR only at low PFD, whereas Amax was moderately important only at high PFD.  相似文献   

15.
The channel of the glutamate N-methyl-d-aspartate receptor (NMDAR) transports Ca2+ approximately four times more efficiently than that of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPAR). To investigate the basis of this difference in these glutamate receptors (GluRs), we measured the ratio of Cs+ efflux and Ca2+ influx in recombinant NMDAR and Ca2+-permeable AMPAR channels expressed in human embryonic kidney 293 (HEK 293) cells over a wide voltage range. At any one potential, this biionic flux ratio was measured by quantifying the total charge and the charge carried by Ca2+ using whole-cell currents and fluorometric techniques (dye overload) with Cs+ internally and Ca2+ externally (1.8 or 10 mM) as the only permeant ions. In AMPAR channels, composed of either GluR-A(Q) or GluR-B(Q) subunits, the biionic flux ratio had a biionic flux-ratio exponent of 1, consistent with the prediction of the Goldman-Hodgkin-Katz current equation. In contrast, for NMDAR channels composed of NR1 and NR2A subunits, the biionic flux-ratio exponent was ∼2, indicating a deviation from Goldman-Hodgkin-Katz. Consistent with these results, in NMDAR channels under biionic conditions with high external Ca2+ and Cs+ as the reference ions, Ca2+ permeability (PCa/PCs) was concentration dependent, being highest around physiological concentrations (1–1.8 mM; PCa/PCs ≈ 6.1) and reduced at both higher (110 mM; PCa/PCs ≈ 2.6) and lower (0.18 mM; PCa/PCs ≈ 2.2) concentrations. PCa/PCs in AMPAR channels was not concentration dependent, being around 1.65 in 0.3–110 mM Ca2+. In AMPAR and NMDAR channels, the Q/R/N site is a critical determinant of Ca2+ permeability. However, mutant AMPAR channels, which had an asparagine substituted at the Q/R site, also showed a biionic flux-ratio exponent of 1 and concentration-independent permeability ratios, indicating that the difference in Ca2+ transport is not due to the amino acid residue located at the Q/R/N site. We suggest that the difference in Ca2+ transport properties between the glutamate receptor subtypes reflects that the pore of NMDAR channels has multiple sites for Ca2+, whereas that of AMPAR channels only a single site.  相似文献   

16.
To investigate the short-term (30–240 min) interactions among nitrogenase activity, NH4+ assimilation, and plant glycolysis, we measured the concentrations of selected C and N metabolites in alfalfa (Medicago sativa L.) root nodules after detopping and during continuous exposure of the nodulated roots to Ar:O2 (80:20, v/v). Both treatments caused an increase in the ratios of glucose-6-phosphate to fructose-1,6-bisphosphate, fructose-6-phosphate to fructose-1,6-bisphosphate, phosphoenolpyruvate (PEP) to pyruvate, and PEP to malate. This suggested that glycolytic flux was inhibited at the steps catalyzed by phosphofructokinase, pyruvate kinase, and PEP carboxylase. In the Ar:O2-treated plants the apparent inhibition of glycolytic flux was reversible, whereas in the detopped plants it was not. In both groups of plants the apparent inhibition of glycolytic flux was delayed relative to the decline in nitrogenase activity. The decline in nitrogenase activity was followed by a dramatic increase in the nodular glutamate to glutamine ratio. In the detopped plants this was coincident with the apparent inhibition of glycolytic flux, whereas in the Ar:O2-treated plants it preceded the apparent inhibition of glycolytic flux. We propose that the increase in the nodular glutamate to glutamine ratio, which occurs as a result of the decline in nitrogenase activity, may act as a signal to decrease plant glycolytic flux in legume root nodules.  相似文献   

17.
Sodium flux from serosa to mucosa, JsmNa in rabbit ileum in vitro has been studied as a function of applied electrical potential at equal sodium concentrations in the bathing solutions. The results indicate that JsmNa involves two pathways, a diffusional flux through a paracellular shunt pathway and a flux that is independent of applied potential and presumably involves a transcellular pathway. The latter pathway comprises approximately 25 % of JsmNa in Ringer's solution containing 10 mM glucose and 25 mM bicarbonate. It is stimulated significantly by theophylline unaffected by removal of glucose or addition of ouabain but is reduced to negligible values by anoxia, dinitrophenol, and replacement of all chloride and bicarbonate by isethionate. Thus this component of JsmNa has a number of characteristics consistent with involvement in a specific secretory process mediating an electrically neutral secretory transport of sodium plus anion from serosa to mucosa. In addition to stimulating this process, theophylline significantly reduced the permeability of the paracellular shunt pathway to sodium.  相似文献   

18.
Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration1,2. Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (Ψleaf). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance3. Leaf hydraulic conductance (Kleaf = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. Kleaf is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, Kleaf responds strongly to the internal and external leaf environment3. Kleaf can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes4, and Kleaf declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation5-10. Because Kleaf can constrain gs and photosynthetic rate across species in well watered conditions and during drought, and thus limit whole-plant performance they may possibly determine species distributions especially as droughts increase in frequency and severity11-14.We present a simple method for simultaneous determination of Kleaf and gs on excised leaves. A transpiring leaf is connected by its petiole to tubing running to a water source on a balance. The loss of water from the balance is recorded to calculate the flow rate through the leaf. When steady state transpiration (E, mmol • m-2 • s-1) is reached, gs is determined by dividing by vapor pressure deficit, and Kleaf by dividing by the water potential driving force determined using a pressure chamber (Kleaf= E /- Δψleaf, MPa)15.This method can be used to assess Kleaf responses to different irradiances and the vulnerability of Kleaf to dehydration14,16,17.  相似文献   

19.
The permeability of five benzimidazole derivates with potential cannabinoid activity was determined in two models of membranes, parallel artificial membrane permeability assay (PAMPA) and skin, in order to study the relationship of the physicochemical properties of the molecules and characteristics of the membranes with the permeability defined by the Biopharmaceutics Classification System. It was established that the PAMPA intestinal absorption method is a good predictor for classifying these molecules as very permeable, independent of their thermodynamic solubility, if and only if these have a Log P oct value <3.0. In contrast, transdermal permeability is conditioned on the solubility of the molecule so that it can only serve as a model for classifying the permeability of molecules that possess high solubility (class I: high solubility, high permeability; class III: high solubility, low permeability).  相似文献   

20.
Components of Sodium and Chloride Flux Across Toad Bladder   总被引:4,自引:0,他引:4       下载免费PDF全文
The effect of transepithelial potential difference (ψ) on Na and Cl flux across toad bladder was assessed by measuring isotopic flux between identical media at various values of ψ. The contribution of edge damage to ionic permeability was eliminated, resulting in relatively high spontaneous ψ (-97 ±4 mv) and low electrical conductance g. Bidirectional Na fluxes were measured simultaneously. Unidirectional Cl fluxes were measured in paired hemibladders at ψ = 0 mv or -97 mv. Net Na flux JNa, at ψ = 0 mv, was slightly less than short-circuit current (SCC). At ψ = -97 mv, JNa averaged 17% of SCC, and was sometimes zero. ΔJNa/Δψ (= g+) averaged 60% of g between -97 mv and +75 mv; at -150 mv, g+ fell, indicating rectification. Analysis of unidirectional Na fluxes indicates low passive conductance (1.5 μmho/mg wet weight), a bidirectional, electrically neutral flux of approximately 0.13 μa/mg, and relatively large conductance of the active transport path at ψ ≥ -97 mv. The absence of appreciable transstimulation of serosal (S)-to-mucosal (M) Na flux (in response to increasing mucosal Na concentration) indicates that the electrically neutral flux is not exchange diffusion in the usual sense. Analysis of Cl fluxes indicates similar values for passive conductance and neutral flux, suggesting linked neutral flux of Na and Cl. Either the electromotive force of the Na pump E, its conductance ga, or both are strong functions of ψ. The product of these two quantities, Ega, is a measure of the “transport capacity” at any given value of ψ, independent of the direct effect of ψ on JNa through the pump path. Ega varies with ψ. Hence estimation of the net Na flux or current at any one value of ψ, including ψ = 0, fails to reveal the maximal transport capacity of the pump, its resting electromotive force (when JNa = 0 through the pump), or the dependence of transport capacity on potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号