首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha) impairs translation initiation by inhibiting the guanine nucleotide exchange factor for eIF-2, known as eIF-2B. In Saccharomyces cerevisiae, phosphorylation of eIF-2 alpha by the protein kinase GCN2 specifically stimulates translation of GCN4 mRNA in addition to reducing general protein synthesis. We isolated mutations in several unlinked genes that suppress the growth-inhibitory effect of eIF-2 alpha phosphorylation catalyzed by mutationally activated forms of GCN2. These suppressor mutations, affecting eIF-2 alpha and the essential subunits of eIF-2B encoded by GCD7 and GCD2, do not reduce the level of eIF-2 alpha phosphorylation in cells expressing the activated GCN2c kinase. Four GCD7 suppressors were shown to reduce the derepression of GCN4 translation in cells containing wild-type GCN2 under starvation conditions or in GCN2c strains. A fifth GCD7 allele, constructed in vitro by combining two of the GCD7 suppressors mutations, completely impaired the derepression of GCN4 translation, a phenotype characteristic of deletions in GCN1, GCN2, or GCN3. This double GCD7 mutation also completely suppressed the lethal effect of expressing the mammalian eIF-2 alpha kinase dsRNA-PK in yeast cells, showing that the translational machinery had been rendered completely insensitive to phosphorylated eIF-2. None of the GCD7 mutations had any detrimental effect on cell growth under nonstarvation conditions, suggesting that recycling of eIF-2 occurs efficiently in the suppressor strains. We propose that GCD7 and GCD2 play important roles in the regulatory interaction between eIF-2 and eIF-2B and that the suppressor mutations we isolated in these genes decrease the susceptibility of eIF-2B to the inhibitory effects of phosphorylated eIF-2 without impairing the essential catalytic function of eIF-2B in translation initiation.  相似文献   

2.
The role of 2'-ribosylated adenosine 64 in tRNA(iMet) from yeast in initiation/elongation discrimination was investigated. As measured by in vitro translation in rabbit reticulocyte lysate, the specific removal of the 2'-ribosylphosphate at adenosine 64 via periodate oxidation allows tRNA(iMet) to read internal AUG codons of the globine messenger RNA. Yeast Met-tRNA(iMet) lacking the modification of nucleoside 64 forms ternary complexes with GTP and elongation factor Tu from Escherichia coli. The lack of modification at position 64 does not prevent tRNA(iMet) from participating in the initiation process of in vitro protein synthesis. Wheat germ tRNA(iMet) has a 2'-ribosylated guanosine at position 64. Removal of this modification from the wheat germ tRNA(iMet) enables it to read internal AUG codons of globine and tobacco mosaic virus messenger RNA in reticulocyte and wheat germ translation systems, respectively.  相似文献   

3.
GCN2 is a protein kinase that stimulates translation of GCN4 mRNA in amino acid-starved cells by phosphorylating the alpha subunit of translation initiation factor 2 (eIL-2). We isolated multicopy plasmids that overcome the defective derepression of GCN4 and its target genes caused by the leaky mutation gcn2-507. One class of plasmids contained tRNA(His) genes and conferred efficient suppression only when cells were starved for histidine; these plasmids suppressed a gcn2 deletion much less efficiently than they suppressed gcn2-507. This finding indicates that the reduction in GCN4 expression caused by gcn2-507 can be overcome by elevating tRNA(His) expression under conditions in which the excess tRNA cannot be fully aminoacylated. The second class of suppressor plasmids all carried the same gene encoding a mutant form of tRNA(Val) (AAC) with an A-to-G transition at the 3' encoded nucleotide, a mutation shown previously to reduce aminoacylation of tRNA(Val) in vitro. In contrast to the wild-type tRNA(His) genes, the mutant tRNA(Val) gene efficiently suppressed a gcn2 deletion, and this suppression was independent of the phosphorylation site on eIF-2 alpha (Ser-51). Overexpression of the mutant tRNA(Val) did, however, stimulate GCN4 expression at the translational level. We propose that the multicopy mutant tRNA(Val) construct leads to an accumulation of uncharged tRNA(Val) that derepresses GCN4 translation through a pathway that does not involve GCN2 or eIF-2 alpha phosphorylation. This GCN2-independent pathway was also stimulated to a lesser extent by the multicopy tRNA(His) constructs in histidine-deprived cells. Because the mutant tRNA(Val) exacerbated the slow-growth phenotype associated with eIF-2 alpha hyperphosphorylation by an activated GCN2c kinase, we suggest that the GCN2-independent derepression mechanism involves down-regulation of eIF-2 activity.  相似文献   

4.
The conversion of eIF-2.GDP to eIF-2.GTP by eIF-2B requires Met-tRNA(fMet).   总被引:1,自引:0,他引:1  
We have investigated why the recycling of eIF-2.GDP to eIF-2.GTP, mediated by the guanine nucleotide exchange factor eIF-2B, is rapid in rabbit reticulocyte lysate, reconstituted for optimal protein synthesis, but slow in an isolated reaction with purified eIF-2B. We have found that purified eIF-2B dissociates eIF-2.[3H]GDP as efficiently in the presence of GTP as it does in the presence of GDP provided Met-tRNA(fMet) is added. tRNA(fMet) is ineffective, and there is no Met-tRNA(fMet) requirement for exchange with GDP. Exchange of eIF-2 bound GDP for GTP is completely dependent upon Met-tRNA(fMet) in the presence of ATP, suggesting that under physiological conditions efficient recycling of eIF-2.GDP to eIF-2.GTP requires conversion of the latter, a relatively unstable complex, to a more stable Met-tRNA(fMet).eIF-2.GTP complex.  相似文献   

5.
6.
Recent observations have indicated that eukaryotic initiation factor (eIF)-2 and GTP or GDP normally bind to 60 S ribosomal subunits in rabbit reticulocyte lysate and that when eIF-2 alpha is phosphorylated and polypeptide chain initiation is inhibited, eIF-2 X GDP accumulates on 60 S subunits due to impaired dissociation that is normally mediated by the reversing factor (eIF-2B). Current findings now indicate that inhibition due to phosphorylation of eIF-2 alpha is mediated, at least in part, by the inability to dissociate eIF-2 X GDP from the 60 S subunit of complete initiation complexes. At the onset of inhibition, there is an accumulation of Met-tRNA(f) and eIF-2 on the polysomes, despite a marked reduction in Met-tRNA(f) bound to 40 S subunits and Met-peptidyl-tRNA bound to the polysomes. This initial effect is not associated with the formation of "half-mers" (polysomes containing an extra unpaired 40 S subunit), and the 40 S X Met-tRNA(f) complexes, though reduced, still sediment at 43 S. When inhibition is maximal and the polysomes are largely disaggregated, there is an accumulation of 48 S complexes consisting of a 40 S subunit and Met-tRNA(f) bound to globin mRNA as well as small polysomal half-mers, such that residual protein synthesis occurs to about the same degree on "1 1/2"s and "2 1/2"s as on mono-, di-, and triribosomes. Exogenous eIF-2B increases protein synthesis on mono-, di-, and triribosomes and decreases that on half-mers. This is associated with reduced binding of Met-tRNA(f) and eIF-2 to ribosomal particles sedimenting at 80 S and greater and a shift from 48 S to 43 S complexes. These results suggest that eIF-2B must normally promote dissociation of eIF-2 X GDP from the 60 S subunit of complete initiation complexes before they can elongate but cannot when eIF-2 alpha is phosphorylated, resulting in the accumulation of these complexes, some of which dissociate into Met-tRNA(f) X 40 S X mRNA and 60 S X eIF-2 X GDP.  相似文献   

7.
In unfractioned reticulocyte lysate, interaction of eukaryotic initiation factor 2 (eIF-2) with other components regulates the accessibility of phosphatases and kinases to phosphorylation sites on its alpha and beta subunits. Upon addition of eIF-2 phosphorylated on both alpha and beta subunits (eIF-2(alpha 32P, beta 32P) to lysate, the alpha subunit is rapidly dephosphorylated, but the beta subunit is not. In contrast, both sites are rapidly dephosphorylated by the purified phosphatase. The basis of this altered specificity appears to be the association of eIF-2 with other translational components rather than an alteration of the phosphatase. Formation of an eIF-2(alpha 32P,beta 32P) Met-tRNAi X GTP ternary complex prevents dephosphorylation of the beta subunit, but has no effect on the rate of alpha dephosphorylation. eIF-2B, a 280,000-dalton polypeptide complex required for GTP:GDP exchange, also protects the beta subunit phosphorylation site from the purified phosphatase. However, the dephosphorylation of eIF-2(alpha 32P) is inhibited by 75% while complexed with eIF-2B. The altered phosphatase specificity upon association of eIF-2 with eIF-2B also affects the access of protein kinases to these phosphorylation sites. In the eIF-2B X eIF-2 complex, the alpha subunit is phosphorylated at 30% the rate of free eIF-2. Under identical conditions, phosphorylation of eIF-2 beta can not be detected. These results illustrate the importance of substrate conformation and/or functional association with other components in determining the overall phosphorylation state allowed by alterations of kinase and phosphatase activities.  相似文献   

8.
Cytoplasmic initiator tRNAs from plants and fungi possess an unique 2'-phosphoribosyl residue at position 64 of their sequence. In yeast tRNA(iMet), this modified nucleotide located in the T-stem of the tRNA is a 2'-1'-(beta-O-ribofuranosyl-5'-phosphoryl)-adenosine. The phosphoribosyl residue of this modified nucleoside was removed chemically by treatment involving periodate oxidation of tRNA(iMet) and regeneration of the 3'-terminal adenosine with ATP (CTP):tRNA nucleotidyl transferase. The role of phosphoribosylation at position 64 for interaction with elongation factor eEF-1 alpha and initiation factor 2 (eIF-2) was investigated in the homologous yeast system. Whereas the 5'-phosphoribosyl residue prevents the binding of Met-tRNA(iMet) to eEF-1 alpha, it does not influence the interaction with eIF-2. After removal of the ribosyl group, the demodified initiator tRNA showed binding to eEF-1 alpha, but no change was detected with respect to the interaction with the initiation factor eIF-2. This observation is interpreted to mean that a single modification of an eucaryotic initiator tRNA in yeast serves as a negative discriminant for eEF-1 alpha, thus preventing the initiator tRNA(iMet) from entering the elongation cycle of protein biosynthesis.  相似文献   

9.
10.
Eukaryotic translation initiation factor 2 (eIF-2) comprises three non-identical subunits alpha, beta and gamma. In vitro, eIF-2 binds the initiator methionyl-tRNA in a GTP-dependent fashion. Based on similarities between eukaryotic eIF-2gamma proteins and eubacterial EF-Tu proteins, we previously proposed a major role for the gamma-subunit in binding guanine nucleotide and tRNA. We have tested this hypothesis by examining the biochemical activities of yeast eIF-2 purified from wild-type strains and strains harboring mutations in the eIF-2gamma structural gene (GCD11) predicted to alter ligand binding by eIF-2. The alteration of tyrosine 142 in yeast eIF-2gamma, corresponding to histidine 66 in Escherichia coli EF-Tu, dramatically reduced the affinity of eIF-2 for Met-tRNAi(Met) without affecting the k(off) value for guanine nucleotides. In contrast, non-lethal substitutions at a conserved lysine residue (K250) in the putative guanine ring-binding loop increased the off-rate for GDP, thereby mimicking the function of the guanine nucleotide exchange factor eIF-2B, without altering the apparent dissociation constant for Met-tRNAi(Met). For eIF-2[gamma-K250R], the increased off-rate also seen for GTP was masked by the presence of Met-tRNAi(Met) in vitro. In vivo, increasing the dose of the yeast initiator tRNA gene suppressed the slow-growth phenotype and reduced GCN4 expression in gcd11-K250R and gcd11-Y142H strains. These studies indicate that the gamma-subunit of eIF-2 does indeed provide EF-Tu-like function to the eIF-2 complex, and further suggest that the level of Met-tRNAi(Met) is critical for maintaining wild-type rates of initiation in vivo.  相似文献   

11.
Translational control of the GCN4 gene in response to amino acid availability is mediated by four short open reading frames in the GCN4 mRNA leader (uORFs) and by phosphorylation of eukaryotic initiation factor 2 (eIF-2). We have proposed that reducing eIF-2 activity by phosphorylation of its alpha subunit or by a mutation in the eIF-2 recycling factor eIF-2B allows ribosomes which have translated the 5'-proximal uORF1 to bypass uORF2 to uORF4 and reinitiate at GCN4 instead. In this report, we present two lines of evidence that all ribosomes which synthesize GCN4 have previously translated uORF1, resumed scanning, and reinitiated at the GCN4 start site. First, GCN4 expression was abolished when uORF1 was elongated to make it overlap the beginning of the GCN4 coding region. Second, GCN4 expression was reduced as uORF1 was moved progressively closer to GCN4, decreasing to only 5% of the level seen in the absence of all uORFs when only 32 nucleotides separated uORF1 from GCN4. We additionally found that inserting small synthetic uORFs between uORF4 and GCN4 inhibited GCN4 expression under derepressing conditions, confirming the idea that reinitiation at GCN4 under conditions of diminished eIF-2 activity is proportional to the distance of the reinitiation site downstream from uORF1. While uORF4 and GCN4 appear to be equally effective at capturing ribosomes scanning downstream from the 5' cap of mRNA, these two ORFs differ greatly in their ability to capture reinitiating ribosomes scanning from uORF1. When the active form of eIF-2 is present at high levels, reinitiation appears to be much more efficient at uORF4 than at GCN4 when each is located very close to uORF1. Under conditions of reduced recycling of eIF-2, reinitiation at uORF4 is substantially suppressed, which allows ribosomes to reach the GCN4 start site; in contrast, reinitiation at GCN4 in constructs lacking uORF4 is unaffected by decreasing the level of eIF-2 activity. This last finding raises the possibility that time-dependent binding to ribosomes of a second factor besides the eIF-2-GTP-Met-tRNA(iMet) ternary complex is rate limiting for reinitiation at GCN4. Moreover, our results show that the efficiency of translational reinitiation can be strongly influenced by the nature of the downstream cistron as well as the intercistronic distance.  相似文献   

12.
13.
A cornerstone of the antiviral interferon response is phosphorylation of eukaryotic initiation factor (eIF)2alpha. This limits the availability of eIF2.GTP.Met-tRNA(i)(Met) ternary complexes, reduces formation of 43S preinitiation complexes, and blocks viral (and most cellular) mRNA translation. However, many viruses have developed counterstrategies that circumvent this cellular response. Herein, we characterize a novel class of translation initiation inhibitors that block ternary complex formation and prevent the assembly of 43S preinitiation complexes. We find that translation driven by the HCV IRES is refractory to inhibition by these compounds at concentrations that effectively block cap-dependent translation in vitro and in vivo. Analysis of initiation complexes formed on the HCV IRES in the presence of inhibitor indicates that eIF2alpha and Met-tRNA(i)(Met) are present, defining a tactic used by HCV to evade part of the antiviral interferon response.  相似文献   

14.
eIF-2B and the exchange of guanine nucleotides bound to eIF-2   总被引:1,自引:0,他引:1  
Available data for the formation of the ternary complex eIF-2 X GTP X methionyl-tRNAi involved in eukaryotic initiation and of the inhibition of ternary complex formation by GDP have been examined with a view to determining the mechanism by which eIF-2B facilitates nucleotide exchange. Two mechanisms have been considered--first a displacement reaction in which eIF-2B displaces GDP and GTP in a manner analogous to a "ping-pong" enzyme mechanism, and secondly the possibility that binding of eIF-2B to eIF-2 nucleotide complexes enhances the rate of nucleotide exchange without itself inducing nucleotide displacement. Comparison has been made between the properties of eIF-2 and eIF-2B and of the bacterial elongation factors Tu and Ts. It seems most probable that, as previously suggested by others for Ts, eIF-2B effectively catalyses an exchange reaction through a "ping-pong" type mechanism. Possible explanations of data suggesting otherwise are put forward. Both eIF-2 and bacterial Tu are complex allosteric proteins subject to a variety of influences which in the case of eIF-2 include phosphorylation of the alpha subunit. This phosphorylation appears to change the equilibria in the reaction mechanism such that the transferred entity (eIF-2) becomes firmly bound to the catalyst (eIF-2B). Minimum rate constants for the formation of eIF-2 X eIF-2B from eIF-2 X GDP and eIF-2 X GTP and reverse reactions are derived. These values suggest that the initiation factors are likely to have to operate in a restricted environment if rates of protein synthesis seen in vivo are to be sustained.  相似文献   

15.
Eukaryotic initiation factor 2 (eIF-2), purified to at least 98% homogeneity as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and containing no detectable amounts of eukaryotic initiation factor 4B (eIF-4B), is active both in the binding of Met-tRNA and in the binding of globin mRNA. The mRNA-binding activity is completely sensitive to competitive inhibition by Met-tRNA, provided GTP is present, but not by uncharged tRNA. By contrast, binding of mRNA to partially purified eIF-4B is not inhibited by Met-tRNAf. These results establish that the only mRNA-binding component in the eIF-2 preparation is eIF-2 itself, and show that a given molecule of eIF-2 can either bind to a molecule of mRNA, or form a ternary complex with Met-tRNAf and GTP, but cannot do both at once.  相似文献   

16.
17.
GCN2 is a protein kinase that phosphorylates the alpha-subunit of translation initiation factor 2 (eIF-2) and thereby stimulates translation of GCN4 mRNA in amino acid-starved cells. We isolated a null mutation in a previously unidentified gene, GCN20, that suppresses the growth-inhibitory effect of eIF-2 alpha hyperphosphorylation catalyzed by mutationally activated forms of GCN2. The deletion of GCN20 in otherwise wild-type strains impairs derepression of GCN4 translation and reduces the level of eIF-2 alpha phosphorylation in vivo, showing that GCN20 is a positive effector of GCN2 kinase function. In accordance with this conclusion, GCN20 was co-immunoprecipitated from cell extracts with GCN1, another factor required to activate GCN2, and the two proteins interacted in the yeast two-hybrid system. We conclude that GCN1 and GCN20 are components of a protein complex that couples the kinase activity of GCN2 to the availability of amino acids. GCN20 is a member of the ATP binding cassette (ABC) family of proteins and is closely related to ABC proteins identified in Caenorhabditis elegans, rice and humans, suggesting that the function of GCN20 may be conserved among diverse eukaryotic organisms.  相似文献   

18.
Sood R  Porter AC  Olsen DA  Cavener DR  Wek RC 《Genetics》2000,154(2):787-801
A family of protein kinases regulates translation in response to different cellular stresses by phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF-2alpha). In yeast, an eIF-2alpha kinase, GCN2, functions in translational control in response to amino acid starvation. It is thought that uncharged tRNA that accumulates during amino acid limitation binds to sequences in GCN2 homologous to histidyl-tRNA synthetase (HisRS) enzymes, leading to enhanced kinase catalytic activity. Given that starvation for amino acids also stimulates phosphorylation of eIF-2alpha in mammalian cells, we searched for and identified a GCN2 homologue in mice. We cloned three different cDNAs encoding mouse GCN2 isoforms, derived from a single gene, that vary in their amino-terminal sequences. Like their yeast counterpart, the mouse GCN2 isoforms contain HisRS-related sequences juxtaposed to the kinase catalytic domain. While GCN2 mRNA was found in all mouse tissues examined, the isoforms appear to be differentially expressed. Mouse GCN2 expressed in yeast was found to inhibit growth by hyperphosphorylation of eIF-2alpha, requiring both the kinase catalytic domain and the HisRS-related sequences. Additionally, lysates prepared from yeast expressing mGCN2 were found to phosphorylate recombinant eIF-2alpha substrate. Mouse GCN2 activity in both the in vivo and in vitro assays required the presence of serine-51, the known regulatory phosphorylation site in eIF-2alpha. Together, our studies identify a new mammalian eIF-2alpha kinase, GCN2, that can mediate translational control.  相似文献   

19.
The eukaryotic initiation factor (eIF)-5 mediates hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. The eIF-2.GDP formed under these conditions is released from the 40 S ribosomal subunit while initiator Met-tRNA(f) remains bound. The released eIF-2.GDP can participate in an eIF-2B-catalyzed GDP/GTP exchange reaction to reform the Met-tRNA(f).eIF-2.GTP ternary complex. In contrast, when 60 S ribosomal subunits were also present in an eIF-5-catalyzed reaction, the eIF-2.GDP produced remained bound to the 60 S ribosomal subunit of the 80 S initiation complex. When such an 80 S initiation complex, containing bound eIF-2.GDP, was incubated with GTP and eIF-2B, GDP was released. However, eIF-2 still remained bound to the ribosomes and was unable to form a Met-tRNA(f)l.eIF-2.GTP ternary complex. In contrast, when 60 S ribosomal subunits were preincubated with either free eIF-2 or with eIF-2.eIF-2B complex and then added to a reaction containing both the 40 S initiation complex and eIF-5, the eIF-2.GDP produced did not bind to the 60 S ribosomal subunits but was released from the ribosomes. Thus, the 80 S initiation complex formed under these conditions did not contain bound eIF-2.GDP. Under similar experimental conditions, preincubation of 60 S ribosomal subunits with purified eIF-2B (free of eIF-2) failed to cause release of eIF-2.GDP from the ribosomal initiation complex. These results suggest that 60 S ribosome-bound eIF-2.GDP does not act as a direct substrate for eIF-2B-mediated release of eIF-2 from ribosomes. Rather, the affinity of 60 S ribosomal subunits for either eIF-2, or the eIF-2 moiety of the eIF-2.eIF-2B complex, prevents association of 60 S ribosomal subunits with eIF-2.GDP formed in the initiation reaction. This ensures release of eIF-2 from ribosomes following hydrolysis of GTP bound to the 40 S initiation complex.  相似文献   

20.
Eukaryotic translation initiation factor 2 (eIF2) is a G-protein that functions as a central switch in the initiation of protein synthesis. In its GTP-bound state it delivers the methionyl initiator tRNA (Met-tRNA(i)) to the small ribosomal subunit and releases it upon GTP hydrolysis following the recognition of the initiation codon. We have developed a complete thermodynamic framework for the assembly of the Saccharomyces cerevisiae eIF2.GTP.Met-tRNA(i) ternary complex and have determined the effect of the conversion of GTP to GDP on eIF2's affinity for Met-tRNA(i) in solution. In its GTP-bound state the factor forms a positive interaction with the methionine moiety on Met-tRNA(i) that is disrupted when GTP is replaced with GDP, while contacts between the factor and the body of the tRNA remain intact. This positive interaction with the methionine residue on the tRNA may serve to ensure that only charged initiator tRNA enters the initiation pathway. The toggling on and off of the factor's interaction with the methionine residue is likely to play an important role in the mechanism of initiator tRNA release upon initiation codon recognition. In addition, we show that the conserved base-pair A1:U72, which is known to be a critical identity element distinguishing initiator from elongator methionyl tRNA, is required for recognition of the methionine moiety by eIF2. Our data suggest that a role of this base-pair is to orient the methionine moiety on the initiator tRNA in its recognition pocket on eIF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号