首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generation of superoxide radicals (0.01-0.1 microm s(-1)) by radiolysis of aqueous solutions containing S-nitrosoglutathione (45-160 microm, pH 3.8-7.3) resulted in loss of this solute at rates varying with solute concentration, radical generation rate, and pH. The results were quantitatively consistent with the loss being attributed to competition between reaction of superoxide with S-nitrosoglutathione (rate constant 300 +/- 100 m(-1) s(-1)) and the pH-dependent disproportionation of superoxide/hydroperoxyl. This rate constant is much lower than previous estimates and seven orders of magnitude lower than the rate constants between superoxide and superoxide dismutase or superoxide and nitric oxide. This indicates that interaction between superoxide and S-nitrosoglutathione is unlikely to be biologically important, contrary to previous suggestions that reaction could serve to prevent the rapid reaction between superoxide and nitric oxide. Reductive homolysis of S-nitrosoglutathione by the carbon dioxide radical anion, a model for biological reductants such as disulfide radical anions, occurred with a rate constant of 7.4 x 10(8) m(-1) s(-1) and produced nitric oxide stoichiometrically. Thiyl radicals were not produced, indicating the alternative homolysis route to generate nitroxyl did not occur.  相似文献   

2.
Cr(III), which is thought to be relatively non-toxic, was reduced to Cr(II) ion by biological reductants such as L-cysteine and NADH and Cr(II) thus formed could easily react with hydrogen peroxide (H2O2) to yield very reactive active oxygen species, hydroxyl radical (.OH). The formation of hydroxyl radical was detected by water-soluble spin-traps, alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO). This result indicates that non-toxic Cr(III) compounds have the possibility of causing dangerous effects to living organism in the presence of biological reductants.  相似文献   

3.
The reactions of organic free radicals, acting as either reductants or oxidants, have been studied by pulse radiolysis in neutral aqueous solution at room temperature. Manyhydroxyl-substituted aliphatic carbon-centred radicals and one-electron adducts have been shown to be good one-electron reductants, while several oxygen-, sulphur- and nitrogen- (but not carbon-) centred free radicals have been shown to be good one-electron oxidants. Several carbon-centred radicals can be reduced rapidly by hydrogen transfer, from undissociated thiol compounds which can thus act as catalysts facilitating the overall reduction of a carbon-centred radical by an electron-donating molecule. Kinetic considerations influenced by the one-electron redox potentials of the radical-molecule couples involved, determine whether a particular reaction predominates. In this paper examples of such reactions, involving a water-soluble derivative of vitamin E (Trolox C) and the coenzyme NADH, are described, together with studies showing (a) that even in complex multi-solute systems some organic peroxy radicals can inactiviate alcohol dehydrogenase under conditions where the superoxide radical does not, and (b) the superoxide radical can be damaging if urate is also present, and this damage can be reduced by the presence of superoxide dismutase.  相似文献   

4.
Generation and recycling of radicals from phenolic antioxidants   总被引:3,自引:0,他引:3  
Hindered phenols are widely used food preservatives. Their pharmacological properties are usually attributed to high antioxidant activity due to efficient scavenging of free radicals. Butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) also cause tissue damage. Their toxic effects could be due to the production of phenoxyl radicals. If phenoxyl radicals can be recycled by reductants or electron transport, their potentially harmful side reactions would be minimized. A simple and convenient method to follow phenoxyl radical reactions in liposomes and rat liver microsomes based on an enzymatic (lipoxygenase + linolenic acid) oxidation system was used to generate phenoxyl radicals from BHT and its homologues with substitutents in m- and p-positions. Different BHT-homologues display characteristic ESR signals of their radical species. In a few instances the absence of phenoxyl radical ESR signals was found to be due to inhibition of lipoxygenase by BHT-homologues. In liposome or microsome suspensions addition of ascorbyl palmitate resulted in disappearance of the ESR signal of phenoxyl radicals with concomittant appearance of the ascorbyl radical signal. After exhaustion of ascorbate, the phenoxyl radical signal reappears. Comparison of the rates of ascorbyl radical decay in the presence or absence of BHT-homologues showed that temporary elimination of the phenoxyl radical ESR signal was due to their reduction by ascorbate. Similarly, NADPH or NADH caused temporary elimination of ESR signals as a result of reduction of phenoxyl radicals in microsomes. Since ascorbate and NADPH might generate superoxide in the incubation system used, SOD was tested. SOD shortened the period, during which the phenoxyl radicals ESR signal could not be observed. Both ascorbyl palmitate and NADPH exerted sparing effects on the loss of BHT-homologues during oxidation. These effects were partly diminished by SOD. These data indicate that reduction of phenoxyl radicals was partly superoxide-dependent. It is concluded that redox recycling of phenoxyl radicals can occur by intracellular reductants like ascorbate and microsomal electron transport.  相似文献   

5.
Reactions of the inorganic radical anions, Br(2) and (SCN)2, with bovine carbonic anhydrase (carbonate hydrolyase, EC 4.2.1.1) have been studied by pulse radiolysis. Reaction is almost completely inhibited by the binding of Br-, SCN- and ClO4- to an electrophilic site at the active centre of the enzyme. Dissociation constants for anion binding calculated from the reduction in free radical reactivity agree well with inhibition constants for these anions. The anions OCN- and CN-, although potent inhibitors of carbonic anhydrase activity, have relatively little effect on the reactivity of radical anions with the enzyme. Reaction of radical anions occurs mainly with tryptophan and tyrosine residues in the hydrophobic core of the enzyme, through a channel at the active site. This channel is closed by the anions in accord with their position in the lyotropic series.  相似文献   

6.
The first spin-trapping evidence for the formation of thiosulfate (S2O3-.) and sulfide (S-.) radical anions from the reactions of hydrogen peroxide with thiosulphate and sulphide ions, respectively, was presented by electron spin resonance (ESR) spectroscopy using 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS, 1a) as a spin-trap in aqueous solutions. From the facts that the short-lived radical anions, S2O3-. and S-., could be detected during the oxidation with H2O2, it is suggested that these radical anions may become one of the candidates for the toxicity of sulfide ion in the living body.  相似文献   

7.
Free radical intermediates were detected by the electron paramagnetic resonance spin trapping technique upon protonation/deprotonation reactions of carotenoid and beta-ionone radical ions. The hyperfine coupling constants of their spin adducts obtained by spectral simulation indicate that carbon-centered radicals were trapped. The formation of these species was shown to be a result of chemical oxidation of neutral compounds by Fe(3+) or I(2) followed by deprotonation of the corresponding radical cations or addition of nucleophilic agents to them. Bulk electrolysis reduction of beta-ionone and carotenoids also leads to the formation of free radicals via protonation of the radical anions. Two different spin adducts were detected in the reaction of carotenoid polyenes with piperidine in the presence of 2-methyl-2-nitroso-propane (MNP). One is attributable to piperidine radicals (C(5)H(10)N*) trapped by MNP and the other was identified as trapped neutral carotenoid (beta-ionone) radical produced via protonation of the radical anion. Formation of these radical anions was confirmed by ultraviolet-visible spectroscopy. It was found that the ability of carotenoid radical anions/cations to produce neutral radicals via protonation/deprotonation is more pronounced for unsymmetrical carotenoids with terminal electron-withdrawing groups. This effect was confirmed by the radical cation deprotonation energy (H(D)) estimated by semiempirical calculations. The results indicate that the ability of carotenoid radical cations to deprotonate decreases in the sequence: beta-ionone > unsymmetrical carotenoids > symmetrical carotenoids. The minimum H(D) values were obtained for proton abstraction from the C(4) atom and the C(5)-methyl group of the cyclohexene ring. It was assumed that deprotonation reaction occurs preferentially at these positions.  相似文献   

8.
《Free radical research》2013,47(4-6):225-232
Quantifiable redox properties are useful predictors of substrate reactivity in enzyme-catalysed redox reactions of e.g. nitroreductases or peroxidases. Redox properties may also control the rates of electron-transfer reactions between radical products of reduction and oxidation, and endogenous oxidants and reductants respectively. However, in numerous instances prototropic properties of substrate or radical may have profound kinetic consequences, protonation of radicals frequently slowing down electron-transfer reactions. Further, reactions which are thermodynamically extremely unfavourable may still proceed if radical products are removed from the pre-equilibrium efficiently. Thus kinetic considerations often outweigh the purely thermodynamico viewpoint.  相似文献   

9.
Daunorubicin, an anthracycline antitumor antibiotic, was reduced in the presence of reduced (GSH) or oxidized (GSSG) glutathione to evaluate the possibilities of detoxification or of potentiation of the drug by these compounds. The reductants were .COO free radicals produced by γ radiolysis. In both cases, the final product is 7-deoxydaunomycinone, i.e., the same as without glutathione. The reduction yield is also the same as without GSH or GSSG (0.23 μmol·J−1). No glutathione depletion was observed. Limits for the rate constants of some possible nonenzymatic detoxification reactions are given. To evaluate the possible interactions of daunorubicin with sulfur-containing proteins, the reduction of this drug by .COO free radicals was also studied in the presence of a polypeptide containing two disulfide bridge are, respectively, 0.23 μmol·J−1 7-deoxydaunomycinone. The yields of reduction of the drug and of a protein disulfide bridge are, respectively, 0.23 μmol·J−1 and ≤ 6 nmol·J−1. These values indicate thet disulfide radical anions of the protein can reduce the drug, giving back the disulfide bridge, but that the drug transients niether oxidize nor reduce the protein.  相似文献   

10.
Quantifiable redox properties are useful predictors of substrate reactivity in enzyme-catalysed redox reactions of e.g. nitroreductases or peroxidases. Redox properties may also control the rates of electron-transfer reactions between radical products of reduction and oxidation, and endogenous oxidants and reductants respectively. However, in numerous instances prototropic properties of substrate or radical may have profound kinetic consequences, protonation of radicals frequently slowing down electron-transfer reactions. Further, reactions which are thermodynamically extremely unfavourable may still proceed if radical products are removed from the pre-equilibrium efficiently. Thus kinetic considerations often outweigh the purely thermodynamico viewpoint.  相似文献   

11.
12.
The formation of radicals in bovine cytochrome c oxidase (bCcO), during the O(2) redox chemistry and proton translocation, is an unresolved controversial issue. To determine if radicals are formed in the catalytic reaction of bCcO under single turnover conditions, the reaction of O(2) with the enzyme, reduced by either ascorbate or dithionite, was initiated in a custom-built rapid freeze quenching (RFQ) device and the products were trapped at 77K at reaction times ranging from 50μs to 6ms. Additional samples were hand mixed to attain multiple turnover conditions and quenched with a reaction time of minutes. X-band (9GHz) continuous wave electron paramagnetic resonance (CW-EPR) spectra of the reaction products revealed the formation of a narrow radical with both reductants. D-band (130GHz) pulsed EPR spectra allowed for the determination of the g-tensor principal values and revealed that when ascorbate was used as the reductant the dominant radical species was localized on the ascorbyl moiety, and when dithionite was used as the reductant the radical was the SO(2)(-) ion. When the contributions from the reductants are subtracted from the spectra, no evidence for a protein-based radical could be found in the reaction of O(2) with reduced bCcO. As a surrogate for radicals formed on reaction intermediates, the reaction of hydrogen peroxide (H(2)O(2)) with oxidized bCcO was studied at pH 6 and pH 8 by trapping the products at 50μs with the RFQ device to determine the initial reaction events. For comparison, radicals formed after several minutes of incubation were also examined, and X-band and D-band analysis led to the identification of radicals on Tyr-244 and Tyr-129. In the RFQ measurements, a peroxyl (ROO) species was formed, presumably by the reaction between O(2) and an amino acid-based radical. It is postulated that Tyr-129 may play a central role as a proton loading site during proton translocation by ejecting a proton upon formation of the radical species and then becoming reprotonated during its reduction via a chain of three water molecules originating from the region of the propionate groups of heme a(3). This article is part of a Special Issue entitled: "Allosteric cooperativity in respiratory proteins".  相似文献   

13.
The repair of the one electron oxidised form of a xanthine derivative by another xanthine derivative was studied by reacting aqueous binary mixtures of xanthine derivatives with sulphate radical anion (SO(4)( -)) and following the concentration of both compounds as a function of time. The relative behaviour observed enabled the establishment of a qualitative order of antioxidant capacities for the several xanthines studied in acidic and neutral media. The same order was confirmed quantitatively by measuring the reduction potentials of the xanthines by cyclic voltammetry. Theoretical DFT calculations were used to calculate the relative stabilities of the tautomers of each xanthine neutral radical. It was also demonstrated that the deprotonation of a xanthine radical cation never occurs from N1, unless no other possibility is available. At high pH values, it was possible to obtain the ESR spectra of the radical anions derived from 1-methylxanthine, 3-methylxanthine and xanthosine. The theoretical calculations also enabled the assignment of the ESR hyperfine coupling constants of the spectra of these radical anions. The coupling constants calculated are in good agreement with the experimental values.  相似文献   

14.
Myeloperoxidase (MPO)-catalyzed one-electron oxidation of endogenous phenolic constituents (e.g., antioxidants, hydroxylated metabolites) and exogenous compounds (e.g., drugs, environmental chemicals) generates free radical intermediates: phenoxyl radicals. Reduction of these intermediates by endogenous reductants, i.e. recycling, may enhance their antioxidant potential and/or prevent their potential cytotoxic and genotoxic effects. The goal of this work was to determine whether generation and recycling of MPO-catalyzed phenoxyl radicals of a vitamin E homologue, 2,2,5,7,8-pentamethyl-6-hydroxychromane (PMC), by physiologically relevant intracellular reductants such as ascorbate/lipoate could be demonstrated in intact MPO-rich human leukemia HL-60 cells. A model system was developed to show that MPO/H(2)O(2)-catalyzed PMC phenoxyl radicals (PMC*) could be recycled by ascorbate or ascorbate/dihydrolipoic acid (DHLA) to regenerate the parent compound. Absorbance measurements demonstrated that ascorbate prevents net oxidation of PMC by recycling the phenoxyl radical back to the parent compound. The presence of DHLA in the reaction mixture containing ascorbate extended the recycling reaction through regeneration of ascorbate. DHLA alone was unable to prevent PMC oxidation. These conclusions were confirmed by direct detection of PMC* and ascorbate radicals formed during the time course of the reactions by EPR spectroscopy. Based on results in the model system, PMC* and ascorbate radicals were identified by EPR spectroscopy in ascorbate-loaded HL-60 cells after addition of H(2)O(2) and the inhibitor of catalase, 3-aminotriazole (3-AT). The time course of PMC* and ascorbate radicals was found to follow the same reaction sequence as during their recycling in the model system. Recycling of PMC by ascorbate was also confirmed by HPLC assays in HL-60 cells. Pre-loading of HL-60 cells with lipoic acid regenerated ascorbate and thus increased the efficiency of ascorbate in recycling PMC*. Lipoic acid had no effect on PMC oxidation in the absence of ascorbate. Thus PMC phenoxyl radical does not directly oxidize thiols but can be recycled by dihydrolipoate in the presence of ascorbate. The role of phenoxyl radical recycling in maintaining antioxidant defense and protecting against cytotoxic and genotoxic phenolics is discussed.  相似文献   

15.
The relative reduction potentials of a variety of carotenoids have been established by monitoring the reaction of carotenoid radical anion (CAR1(*-)) with another carotenoid (CAR2) in hexane and benzene. This order is consistent with the reactivities of the carotenoid radical anions with porphyrins and oxygen in hexane. In addition, investigation of the reactions of carotenoids with reducing radicals in aqueous 2% Triton-X 100, such as carbon dioxide radical anion (CO2(*-)), acetone ketyl radical (AC(*-)) and the corresponding neutral radical (ACH(*)), reveals that the reduction potentials for beta-carotene and zeaxanthin lie in the range -1950 to -2100 mV and those for astaxanthin, canthaxanthin and beta-apo-8'-carotenal are more positive than -1450 mV. This illustrates that the presence of a carbonyl group causes the reducing ability to decrease. The radical cations have been previously shown to be strong oxidising agents and we now show that the radical anions are very strong reducing agents.  相似文献   

16.
Repair effect on 2'-deoxyadenosine-5'-monophosphate (dAMP) radical anions by phenylpropanoid glycosides (PPGs) and their analogs, isolated from Chinese folk medicinal herb, was studied using pulse radiolysis technique. The radical anion of dAMP was formed by the reaction of hydrated electron with dAMP. On pulse irradiation of nitrogen-saturated dAMP aqueous solution containing 0.2 M t-BuOH and one of PPGs or their analogs, the transient absorption spectrum of the radical anion of dAMP decayed with the formation of that of the radical anion of PPGs or their analogs within several decades of microseconds after electron pulse irradiation. The results indicated that dAMP radical anions can be repaired by PPGs or their analogs. The rate constants of the repair reactions were deduced to be 1.6-4.5 x 10(8) M(-1) s(-1).  相似文献   

17.
The reactions of the carbonate and dichloride radical anions, CO3- and Cl2-, with the extracellular matrix glycosaminoglycan hyaluronan (HA) have been studied using the kinetic technique of pulse radiolysis and also by steady-state irradiation combined with gel permeation chromatography/multiangle laser light scattering(gpc/MALLS) to measure the rates of reaction with HA and the yield of HA chain scission, respectively. For comparison, the same measurements were made for the reactions of the free radicals *OH, Br2*-, and N3*. The carbonate and dichloride radical anions were found to react relatively quickly with HA (7.0 x 10(5) and 6.9 x 10(6) dm3 mol(-1) s(-1), respectively) although they are much less reactive than the hydroxyl radical, *OH. Significant yields (20 and 38%, respectively) of chain scission of HA by these radical anions were also determined from the gpc/MALLS experiments, providing some support for their potential participation in the depolymerization of HA in vivo. These results are compared with data obtained for the other free radicals (hydroxyl, azide radicals, and dibromide radical anions) investigated in this study in order to gain an insight into their mechanism of reaction with HA. Earlier chain scission yields of HA by hydroxyl radicals determined by the authors have also been revised using the gpc/MALLS technique employed in the current study. The yields of 52% (absence of air) and 44% (in air) are much lower than the previous values. In the current study, the effect of oxygen on the yields of HA chain breaks is discussed in terms of the reactivity of HA peroxyl radicals in the presence of superoxide radical anions. The relevance of the results of this study to mechanisms of inflammation is discussed.  相似文献   

18.
Ribonucleotide Reductase (RNR) is an enzyme responsible for the reduction of ribonucleotides to their corresponding Deoxyribonucleotides (DNA), which is a building block for DNA replication and repair mechanisms. The key role of RNR in DNA synthesis and control in cell growth has made this an important target for anticancer therapy. Increased RNR activity has been associated with malignant transformation and tumor cell growth. In recent years, several RNR inhibitors, including Triapine, Gemcitabine and GTI-2040, have entered the clinical trials. Our current work focuses on an attempted to dock this inhibitors Flavin and Phenosafranine to curtail the action of human RNR2. The docked inhibitor Flavin and Phenosafranine binds at the active site with THR176, which are essential for free radical formation. The inhibitor must be a radical scavenger to destroy the tyrosyl radical or iron metal scavenger. The iron or radical site of R2 protein can react with one-electron reductants, whereby the tyrosyl radical is converted to a normal tyrosine residue. However, compounds such as Flavin and Phenosafranine were used in most of the cases to reduce the radical activity. The docking study was performed for the crystal structure of human RNR with the radical scavengers Flavin and Phenosafranine to inhibit the human RNR2. This helps to understand the functional aspects and also aids in the development of novel inhibitors for the human RNR2.  相似文献   

19.
We have studied the one-electron reduction of oxidized Chlamydomonas reinhardtii thioredoxin and compared it to that of hen egg white lysozyme, using CO(2)(*) (-) free radicals as reductants. This comparison shows that the thioredoxin disulfide/thiol redox couple has different properties than that of lysozyme: the disulfide radical pK(a) is much lower (around 5 for small disulfides, 4.62 for lysozyme, <3 for thioredoxin). To get a better understanding of the modulation of the thioredoxin redox properties we have constructed the mutants W35A and D30A. Their reduction by pulse radiolysis indicates that W35 strongly controls both the disulfide radical acidity (the pK(a) in W35A is equal to ca. 4), and the thiol reactivity. Asp30 is also involved in the control of proton transfer to the disulfide free radical. In addition, its removal seems to increase the reduction potential of the thioredoxin thiyl/thiol couple. Overall, the reduction properties of thioredoxin confirm its nature as a unique reductant.  相似文献   

20.
Transformed fibroblasts are specifically eliminated by their nontransformed neighbors through intercellular induction of apoptosis. This process depends on the number of nontransformed effector cells and on the local density of transformed target cells. Intercellular signalling is inhibited by SOD (a scavenger of superoxide anions), taurine (a scavenger of HOCl), 4-aminobenzoyl hydrazide (a mechanism-based inhibitor of peroxidase), DMSO (a hydroxyl radical scavenger), and two inhibitors of NO synthase. Therefore, selective apoptosis induction seems to be based on superoxide anion production by transformed cells, their spontaneous dismutation to hydrogen peroxide, and HOCl generation by a novel effector cell-derived peroxidase. HOCl then interacts with target cell–derived superoxide anions to yield hydroxyl radicals. Due to the short diffusion pathway of superoxide anions, hydroxyl radical generation is confined to the intimate vicinity of transformed cells. In parallel, NO derived from effector cells interacts with superoxide anions of target cells to yield the apoptosis inducer peroxynitrite. Reconstitution experiments using transformed or nontransformed cells in conjunction with myeloperoxidase, HOCl, or an NO donor demonstrated that superoxide anions generated extracellularly by transformed cells participate in intercellular signalling and at the same time determine transformed cells as selective targets for intercellular induction of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号