首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spindle assembly checkpoint (SAC) prevents anaphase onset in response to chromosome attachment defects, and SAC silencing is essential for anaphase onset. Following anaphase onset, activated Cdc14 phosphatase dephosphorylates the substrates of cyclin-dependent kinase to facilitate anaphase progression and mitotic exit. In budding yeast, Cdc14 dephosphorylates Fin1, a regulatory subunit of protein phosphatase 1 (PP1), to enable kinetochore localization of Fin1-PP1. We previously showed that kinetochore-localized Fin1-PP1 promotes the removal of the SAC protein Bub1 from the kinetochore during anaphase. We report here that Fin1-PP1 also promotes kinetochore removal of Bub3, the Bub1 partner, but has no effect on another SAC protein Mad1. Moreover, the kinetochore localization of Bub1-Bub3 during anaphase requires Aurora B/Ipl1 kinase activity. We further showed that Fin1-PP1 facilitates the dephosphorylation of kinetochore protein Ndc80, a known Ipl1 substrate. This dephosphorylation reduces kinetochore association of Bub1-Bub3 during anaphase. In addition, we found that untimely Ndc80 dephosphorylation causes viability loss in response to tensionless chromosome attachments. These results suggest that timely localization of Fin1-PP1 to the kinetochore controls the functional window of SAC and is therefore critical for faithful chromosome segregation.  相似文献   

2.
Dynamic attachment of microtubules to kinetochores during mitosis generates pulling force, or tension, required for the high fidelity of chromosome separation. A lack of tension activates the spindle checkpoint and delays the anaphase onset. A key step in the tension-response pathway involves the phosphorylation of the 3F3/2 epitope by an unknown kinase on untensed kinetochores. Using a rephosphorylation assay in Xenopus laevis extracts, we identified the kinetochore-associated Polo-like kinase Plx1 as the kinase both necessary and sufficient for this phosphorylation. Indeed, Plx1 is the physiological 3F3/2 kinase involved in checkpoint response, as immunodepletion of Plx1 from checkpoint extracts abolished the 3F3/2 signal and blocked association of xMad2, xBubR1, xNdc80, and xNuf2 with kinetochores. Interestingly, the kinetochore localization of Plx1 is under the control of the checkpoint protein xMps1, as immunodepletion of xMps1 prevents binding of Plx1 to kinetochores. Thus, Plx1 couples the tension signal to cellular responses through phosphorylating the 3F3/2 epitope and targeting structural and checkpoint proteins to kinetochores.  相似文献   

3.
Mps1 is a protein kinase that plays essential roles in spindle checkpoint signaling. Unattached kinetochores or lack of tension triggers recruitment of several key spindle checkpoint proteins to the kinetochore, which delays anaphase onset until proper attachment or tension is reestablished. Mps1 acts upstream in the spindle checkpoint signaling cascade, and kinetochore targeting of Mps1 is required for subsequent recruitment of Mad1 and Mad2 to the kinetochore. The mechanisms that govern recruitment of Mps1 or other checkpoint proteins to the kinetochore upon spindle checkpoint activation are incompletely understood. Here, we demonstrate that phosphorylation of Mps1 at T12 and S15 is required for Mps1 recruitment to the kinetochore. Mps1 kinetochore recruitment requires its kinase activity and autophosphorylation at T12 and S15. Mutation of T12 and S15 severely impairs its kinetochore association and markedly reduces recruitment of Mad2 to the kinetochore. Our studies underscore the importance of Mps1 autophosphorylation in kinetochore targeting and spindle checkpoint signaling.  相似文献   

4.
《The Journal of cell biology》1994,127(5):1301-1310
To test the popular but unproven assumption that the metaphase-anaphase transition in vertebrate somatic cells is subject to a checkpoint that monitors chromosome (i.e., kinetochore) attachment to the spindle, we filmed mitosis in 126 PtK1 cells. We found that the time from nuclear envelope breakdown to anaphase onset is linearly related (r2 = 0.85) to the duration the cell has unattached kinetochores, and that even a single unattached kinetochore delays anaphase onset. We also found that anaphase is initiated at a relatively constant 23-min average interval after the last kinetochore attaches, regardless of how long the cell possessed unattached kinetochores. From these results we conclude that vertebrate somatic cells possess a metaphase-anaphase checkpoint control that monitors sister kinetochore attachment to the spindle. We also found that some cells treated with 0.3-0.75 nM Taxol, after the last kinetochore attached to the spindle, entered anaphase and completed normal poleward chromosome motion (anaphase A) up to 3 h after the treatment--well beyond the 9-48-min range exhibited by untreated cells. The fact that spindle bipolarity and the metaphase alignment of kinetochores are maintained in these cells, and that the chromosomes move poleward during anaphase, suggests that the checkpoint monitors more than just the attachment of microtubules at sister kinetochores or the metaphase alignment of chromosomes. Our data are most consistent with the hypothesis that the checkpoint monitors an increase in tension between kinetochores and their associated microtubules as biorientation occurs.  相似文献   

5.
BubR1 is a critical component of the mitotic checkpoint but has also been shown to play an essential role in establishing kinetochore:microtubule attachments. BubR1 is hyperphosphorylated in mitosis and recent studies in human and Xenopus have identified 9 phosphorylation sites. Plk1-dependent phosphorylations (T792, T1008 and S676) were reported to stimulate BubR1 kinase activity, promote kinetochore microtubule attachments, monitor kinetochore tension, as well as the recruitment of Mad2 checkpoint protein to kinetochores. Plk1-independent sites (S435, S543, S670 and S1043) were also identified and some of these were found to be sensitive to the loss of microtubule attachment but not tension. Functional studies showed that phosphorylation of S670 is critical for correcting aberrant attachments. Once end-on attachments are established, dephosphorylation of S670 appeared to be important for generating tension to signal anaphase onset. The collective data when combined with early EM studies that showed BubR1 is present at both the inner and outer kinetochore plates suggest that BubR1 maybe an effector of multiple kinases that specifies its roles in microtubule attachments and checkpoint functions.  相似文献   

6.
《The Journal of cell biology》1995,129(5):1195-1204
The transition from metaphase to anaphase is regulated by a checkpoint system that prevents chromosome segregation in anaphase until all the chromosomes have aligned at the metaphase plate. We provide evidence indicating that a kinetochore phosphoepitope plays a role in this checkpoint pathway. The 3F3/2 monoclonal antibody recognizes a kinetochore phosphoepitope in mammalian cells that is expressed on chromosomes before their congression to the metaphase plate. Once chromosomes are aligned, expression is lost and cells enter anaphase shortly thereafter. When microinjected into prophase cells, the 3F3/2 antibody caused a concentration-dependent delay in the onset of anaphase. Injected antibody inhibited the normal dephosphorylation of the 3F3/2 phosphoepitope at kinetochores. Microinjection of the antibody eliminated the asymmetric expression of the phosphoepitope normally seen on sister kinetochores of chromosomes during their movement to the metaphase plate. Chromosome movement to the metaphase plate appeared unaffected in cells injected with the antibody suggesting that asymmetric expression of the phosphoepitope on sister kinetochores is not required for chromosome congression to the metaphase plate. In antibody-injected cells, the epitope remained expressed at kinetochores throughout the prolonged metaphase, but had disappeared by the onset of anaphase. When normal cells in metaphase, lacking the epitope at kinetochores, were treated with agents that perturb microtubules, the 3F3/2 phosphoepitope quickly reappeared at kinetochores. Immunoelectron microscopy revealed that the 3F3/2 epitope is concentrated in the middle electronlucent layer of the trilaminar kinetochore structure. We propose that the 3F3/2 kinetochore phosphoepitope is involved in detecting stable kinetochore-microtubule attachment or is a signaling component of the checkpoint pathway regulating the metaphase to anaphase transition.  相似文献   

7.
In mitotic cells, an error in chromosome segregation occurs when a chromosome is left near the spindle equator after anaphase onset (lagging chromosome). In PtK1 cells, we found 1.16% of untreated anaphase cells exhibiting lagging chromosomes at the spindle equator, and this percentage was enhanced to 17.55% after a mitotic block with 2 microM nocodazole. A lagging chromosome seen during anaphase in control or nocodazole-treated cells was found by confocal immunofluorescence microscopy to be a single chromatid with its kinetochore attached to kinetochore microtubule bundles extending toward opposite poles. This merotelic orientation was verified by electron microscopy. The single kinetochores of lagging chromosomes in anaphase were stretched laterally (1.2--5.6-fold) in the directions of their kinetochore microtubules, indicating that they were not able to achieve anaphase poleward movement because of pulling forces toward opposite poles. They also had inactivated mitotic spindle checkpoint activities since they did not label with either Mad2 or 3F3/2 antibodies. Thus, for mammalian cultured cells, kinetochore merotelic orientation is a major mechanism of aneuploidy not detected by the mitotic spindle checkpoint. The expanded and curved crescent morphology exhibited by kinetochores during nocodazole treatment may promote the high incidence of kinetochore merotelic orientation that occurs after nocodazole washout.  相似文献   

8.
The metaphase-to-anaphase transition is triggered by the Anaphase-Promoting Complex (APC), an E3 ubiquitin ligase that targets proteins for degradation, leading to sister chromatid separation and mitotic exit. The function of APC is controlled by the spindle checkpoint that delays anaphase onset in the presence of any chromosome that has not established bipolar attachment to the mitotic spindle. In this way, the checkpoint ensures accurate chromosome segregation. The spindle checkpoint is mostly activated from kinetochores that are not attached to microtubules or not under tension that is normally generated from bipolar attachment. These kinetochores recruit several spindle checkpoint proteins to assemble an inhibitory complex composed of checkpoint proteins Mad2, Bub3, and Mad3/BubR1. This complex binds and inhibits Cdc20, an activator and substrate adaptor for APC. In addition, the checkpoint complex promotes Cdc20 degradation, thus lowering Cdc20 protein level upon checkpoint activation. This dual inhibition on Cdc20 likely ensures that the spindle checkpoint is sustained even when the cell contains only a single unattached kinetochore.  相似文献   

9.
During mitosis the spindle assembly checkpoint (SAC) delays the onset of anaphase and mitotic exit until all chromosomes are bipolarly attached to spindle fibers. Both lack of attachment due to spindle/kinetochore defects and lack of tension across kinetochores generate the “wait anaphase” signal transmitted by the SAC, which involves the evolutionarily conserved Mad1, Mad2, Mad3/BubR1, Bub1, Bub3 and Mps1 proteins, and inhibits the activity of the ubiquitin ligase Cdc20/APC, that promotes both sister chromatid dissociation in anaphase and mitotic exit. In particular, Mad3/BubR1 is directly implicated, together with Mad2, in Cdc20 inactivation in both human and yeast cells, suggesting that its activity is likely finely regulated. We show that budding yeast Mad3, like its human orthologue BubR1, is a phosphoprotein that is hyperphosphorylated during mitosis and when SAC activation is triggered by microtubule depolymerizing agents, kinetochore defects or lack of kinetochore tension. In vivo Mad3 phosphorylation depends on the Polo kinase Cdc5 and, to a minor extent, the Aurora B kinase Ipl1. Accordingly, replacing with alanines five serine residues belonging to Polo kinase-dependent putative phosphorylation sites dramatically reduces Mad3 phosphorylation, suggesting that Mad3 is likely an in vivo target of Cdc5.  相似文献   

10.
The spindle checkpoint delays anaphase onset until every chromosome kinetochore has been efficiently captured by the mitotic spindle microtubules. In this study, we report that the human pre–messenger RNA processing 4 (PRP4) protein kinase associates with kinetochores during mitosis. PRP4 depletion by RNA interference induces mitotic acceleration. Moreover, we frequently observe lagging chromatids during anaphase leading to aneuploidy. PRP4-depleted cells do not arrest in mitosis after nocodazole treatment, indicating a spindle assembly checkpoint (SAC) failure. Thus, we find that PRP4 is necessary for recruitment or maintenance of the checkpoint proteins MPS1, MAD1, and MAD2 at the kinetochores. Our data clearly identify PRP4 as a previously unrecognized kinetochore component that is necessary to establish a functional SAC.  相似文献   

11.
The spindle assembly checkpoint (SAC) prevents anaphase onset until all chromosomes accomplish proper bipolar attachments to the mitotic spindle and come under tension, thereby ensuring the fidelity of chromosome segregation. Despite significant advances in our understanding of SAC signalling, a clear link between checkpoint signalling and the molecular mechanisms underlying chromosome attachment to microtubules has not been established so far. However, independent studies from many groups have interestingly found that the bone-a-fide Bub1, BubR1 and Bub3 SAC proteins are themselves required for proper kinetochore-microtubule (K-MT) interactions. Here, we review these findings and discuss the specific contribution of each of these proteins in the regulation of K-MT attachment, taking into consideration their interdependencies for kinetochore localization as well as their relationship with other proteins with a known role in chromosome attachment and congression.  相似文献   

12.
The B chromosome polymorphism in Spanish populations of the grasshopper, Eyprepocnemis plorans (Charpentier) is ancient and widespread. Meiocytes containing B chromosomes were analyzed in our laboratory using the 3F3/2 monoclonal antibody, which binds to a kinetochore phosphoepitope whose degree of phosphorylation is sensitive to tension applied to the kinetochore. Further, the tension created by the spindle at metaphase controls a checkpoint (the metaphase checkpoint) that allows the cell to begin anaphase when all chromosomes are aligned at the metaphase plate. Fluorescence patterns of the 3F3/2 phosphoepitope in cells containing B chromosomes were determined using confocal laser scanning microscopy. The phosphorylation pattern of kinetochores in these cells was shown to be different from that of cells without Bs. This suggests that the metaphase checkpoint has been modified in some way. We propose that B chromosomes in these grasshopper populations may have survived during evolution due to an alteration of the metaphase checkpoint, making it more permissive to the presence of misaligned chromosomes.  相似文献   

13.
During mitosis in Ptk1 cells anaphase is not initiated until, on average, 23 +/- 1 min after the last monooriented chromosome acquires a bipolar attachment to the spindle--an event that may require 3 h (Rieder, C. L., A. Schultz, R. W. Cole, and G. Sluder. 1994. J. Cell Biol. 127:1301-1310). To determine the nature of this cell-cycle checkpoint signal, and its site of production, we followed PtK1 cells by video microscopy prior to and after destroying specific chromosomal regions by laser irradiation. The checkpoint was relieved, and cells entered anaphase, 17 +/- 1 min after the centromere (and both of its associated sister kinetochores) was destroyed on the last monooriented chromosome. Thus, the checkpoint mechanism monitors an inhibitor of anaphase produced in the centromere of monooriented chromosomes. Next, in the presence of one monooriented chromosome, we destroyed one kinetochore on a bioriented chromosome to create a second monooriented chromosome lacking an unattached kinetochore. Under this condition anaphase began in the presence of the experimentally created monooriented chromosome 24 +/- 1.5 min after the nonirradiated monooriented chromosome bioriented. This result reveals that the checkpoint signal is not generated by the attached kinetochore of a monooriented chromosome or throughout the centromere volume. Finally, we selectively destroyed the unattached kinetochore on the last monooriented chromosome. Under this condition cells entered anaphase 20 +/- 2.5 min after the operation, without congressing the irradiated chromosome. Correlative light microscopy/elctron microscopy of these cells in anaphase confirmed the absence of a kinetochore on the unattached chromatid. Together, our data reveal that molecules in or near the unattached kinetochore of a monooriented PtK1 chromosome inhibit the metaphase-anaphase transition.  相似文献   

14.
The mitogen-activated protein (MAP) kinase pathway, which includes extracellular signal–regulated protein kinases 1 and 2 (ERK1, ERK2) and MAP kinase kinases 1 and 2 (MKK1, MKK2), is well-known to be required for cell cycle progression from G1 to S phase, but its role in somatic cell mitosis has not been clearly established. We have examined the regulation of ERK and MKK in mammalian cells during mitosis using antibodies selective for active phosphorylated forms of these enzymes. In NIH 3T3 cells, both ERK and MKK are activated within the nucleus during early prophase; they localize to spindle poles between prophase and anaphase, and to the midbody during cytokinesis. During metaphase, active ERK is localized in the chromosome periphery, in contrast to active MKK, which shows clear chromosome exclusion. Prophase activation and spindle pole localization of active ERK and MKK are also observed in PtK1 cells. Discrete localization of active ERK at kinetochores is apparent by early prophase and during prometaphase with decreased staining on chromosomes aligned at the metaphase plate. The kinetochores of chromosomes displaced from the metaphase plate, or in microtubule-disrupted cells, still react strongly with the active ERK antibody. This pattern resembles that reported for the 3F3/2 monoclonal antibody, which recognizes a phosphoepitope that disappears with kinetochore attachment to the spindles, and has been implicated in the mitotic checkpoint for anaphase onset (Gorbsky and Ricketts, 1993. J. Cell Biol. 122:1311–1321). The 3F3/2 reactivity of kinetochores on isolated chromosomes decreases after dephosphorylation with protein phosphatase, and then increases after subsequent phosphorylation by purified active ERK or active MKK. These results suggest that the MAP kinase pathway has multiple functions during mitosis, helping to promote mitotic entry as well as targeting proteins that mediate mitotic progression in response to kinetochore attachment.  相似文献   

15.
Chromosome bipolar attachment is achieved when sister kinetochores are attached by microtubules emanating from opposite spindle poles, and this process is essential for faithful chromosome segregation during anaphase. A fundamental question in cell biology is how cells ensure that chromosome segregation only occurs after bipolar attachment. It is well documented that unattached kinetochores activate the spindle assembly checkpoint (SAC) to delay chromosome segregation. Therefore, the silencing of the SAC is thought to trigger anaphase onset, but how correct chromosome attachment is coupled with SAC silencing and the subsequent anaphase onset is poorly understood. The establishment of chromosome bipolar attachment not only results in the occupancy of kinetochores by microtubules but also applies tension on sister kinetochores. A long-standing debate is whether the kinetochore attachment (occupancy) or the tension silences the SAC. Recent work in budding yeast reveals the SAC silencing network SSN that prevents SAC silencing prior to tension generation at kinetochores. Therefore, this signaling pathway ensures that SAC silencing and the subsequent anaphase onset occur only after chromosome bipolar attachment applies tension on chromosomes. This review will summarize the recent advances in the understanding of the SAC silencing process.  相似文献   

16.
The Aurora/Ipl1 family of protein kinases plays multiple roles in mitosis and cytokinesis. Here, we describe ZM447439, a novel selective Aurora kinase inhibitor. Cells treated with ZM447439 progress through interphase, enter mitosis normally, and assemble bipolar spindles. However, chromosome alignment, segregation, and cytokinesis all fail. Despite the presence of maloriented chromosomes, ZM447439-treated cells exit mitosis with normal kinetics, indicating that the spindle checkpoint is compromised. Indeed, ZM447439 prevents mitotic arrest after exposure to paclitaxel. RNA interference experiments suggest that these phenotypes are due to inhibition of Aurora B, not Aurora A or some other kinase. In the absence of Aurora B function, kinetochore localization of the spindle checkpoint components BubR1, Mad2, and Cenp-E is diminished. Furthermore, inhibition of Aurora B kinase activity prevents the rebinding of BubR1 to metaphase kinetochores after a reduction in centromeric tension. Aurora B kinase activity is also required for phosphorylation of BubR1 on entry into mitosis. Finally, we show that BubR1 is not only required for spindle checkpoint function, but is also required for chromosome alignment. Together, these results suggest that by targeting checkpoint proteins to kinetochores, Aurora B couples chromosome alignment with anaphase onset.  相似文献   

17.
We have characterized the Drosophila mitotic checkpoint control protein Bub1 and obtained mutations in the bub1 gene. Drosophila Bub1 localizes strongly to the centromere/kinetochore of mitotic and meiotic chromosomes that have not yet reached the metaphase plate. Animals homozygous for P-element-induced, near-null mutations of bub1 die during late larval/pupal stages due to severe mitotic abnormalities indicative of a bypass of checkpoint function. These abnormalities include accelerated exit from metaphase and chromosome missegregation and fragmentation. Chromosome fragmentation possibly leads to the significantly elevated levels of apoptosis seen in mutants.We have also investigated the relationship between Bub1 and other kinetochore components. We show that Bub1 kinase activity is not required for phosphorylation of 3F3/2 epitopes at prophase/prometaphase, but is needed for 3F3/2 dephosphorylation at metaphase. Neither 3F3/2 dephosphorylation nor loss of Bub1 from the kinetochore is a prerequisite for anaphase entry. Bub1's localization to the kinetochore does not depend on the products of the genes zw10, rod, polo, or fizzy, indicating that the kinetochore is constructed from several independent subassemblies.  相似文献   

18.
The conserved Bub1/Bub3 complex is recruited to the kinetochore region of mitotic chromosomes, where it initiates spindle checkpoint signaling and promotes chromosome alignment. Here we show that, in contrast to the expectation for a checkpoint pathway component, the BUB-1/BUB-3 complex promotes timely anaphase onset in Caenorhabditis elegans embryos. This activity of BUB-1/BUB-3 was independent of spindle checkpoint signaling but required kinetochore localization. BUB-1/BUB-3 inhibition equivalently delayed separase activation and other events occurring during mitotic exit. The anaphase promotion function required BUB-1’s kinase domain, but not its kinase activity, and this function was independent of the role of BUB-1/BUB-3 in chromosome alignment. These results reveal an unexpected role for the BUB-1/BUB-3 complex in promoting anaphase onset that is distinct from its well-studied functions in checkpoint signaling and chromosome alignment, and suggest a new mechanism contributing to the coordination of the metaphase-to-anaphase transition.  相似文献   

19.
The spindle checkpoint must detect the presence of unattached or improperly attached kinetochores and must then inhibit progression through the cell cycle until the offending condition is resolved. Detection probably involves attachment-sensitive kinetochore phosphorylation (reviewed in [1,2]). A key player in the checkpoint's response is the Mad2 protein, which prevents activation of the anaphase-promoting complex (APC) by the Cdc20 protein [3-8]. Microinjection of Mad2 antibodies results in premature anaphase onset [9,10], and excess Mad2 protein causes arrest in mitosis [5,11]. We have previously shown that Mad2 localizes to unattached kinetochores in vertebrate cells, and that this localization ceases as kinetochores accumulate microtubules [10,12,13]. But how is Mad2 binding limited to unattached kinetochores? Here, we used lysed PtK1 cells to study kinetochore phosphorylation and Mad2 binding. We found that Mad2 binds to phosphorylated kinetochores, but not to unphosphorylated ones. Our data suggest that it is kinetochore protein phosphorylation that promotes Mad2 binding to unattached kinetochores. Thus, we have identified a probable molecular link between attachment-sensitive kinetochore phosphorylation and the inhibition of anaphase. The complete pathway for error control in mitosis can now be outlined.  相似文献   

20.
《The Journal of cell biology》1993,122(6):1311-1321
A phosphorylated epitope is differentially expressed at the kinetochores of chromosomes in mitotic cells and may be involved in regulating chromosome movement and cell cycle progression. During prophase and early prometaphase, the phosphoepitope is expressed equally among all the kinetochores. In mid-prometaphase, some chromosomes show strong labeling on both kinetochores; others exhibit weak or no labeling; while in other chromosomes, one kinetochore is intensely labeled while its sister kinetochore is unlabeled. Chromosomes moving toward the metaphase plate express the phosphoepitope strongly on the leading kinetochore but weakly on the trailing kinetochore. This is the first demonstration of a biochemical difference between the two kinetochores of a single chromosome. During metaphase and anaphase, the kinetochores are unlabeled. At metaphase, a single misaligned chromosome can inhibit further progression into anaphase. Misaligned chromosomes express the phosphoepitope strongly on both kinetochores, even when all the other chromosomes of a cell are assembled at the metaphase plate and lack expression. This phosphoepitope may be involved in regulating chromosome movement to the metaphase plate during prometaphase and may be part of a cell cycle checkpoint by which the onset of anaphase is inhibited until complete metaphase alignment is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号