首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hearing impairment is the most prevalent sensorial deficit in the general population. Congenital deafness occurs in about 1 in 1000 live births, of which approximately 50% has hereditary cause in development countries. Non-syndromic deafness can be caused by mutations in both nuclear and mitochondrial genes. Mutations in mtDNA have been associated with aminoglycoside-induced and non-syndromic deafness in many families worldwide. However, the nuclear background influences the phenotypic expression of these pathogenic mutations. Indeed, it has been proposed that nuclear modifier genes modulate the phenotypic manifestation of the mitochondrial A1555G mutation in the MTRNR1 gene. The both putative nuclear modifiers genes TRMU and MTO1 encoding a highly conserved mitochondrial related to tRNA modification. It has been hypothesizes that human TRMU and also MTO1 nuclear genes may modulate the phenotypic manifestation of deafness-associated mitochondrial mutations. The aim of this work was to elucidate the contribution of mitochondrial mutations, nuclear modifier genes mutations and aminoglycoside exposure in the deafness phenotype. Our findings suggest that the genetic background of individuals may play an important role in the pathogenesis of deafness-associated with mitochondrial mutation and aminoglycoside-induced.  相似文献   

2.
As Parkinson's disease appears to be a multifactoral disorder, the use of animal models to investigate combined effects of genetic and environmental risk factors are of great importance especially in the context of aging which is the single major risk factor for the disorder. Here, we assessed the combined effects of neonatal iron feeding and environmental paraquat exposure on age-related nigrostriatal degeneration in transgenic mice expressing the A53T familial mutant form of human α-synuclein within these neurons. We report here that A53T α-synuclein mice exhibit greater susceptibility to paraquat. Increased oral intake of iron in the neonatal period leads to a progressive age-related enhancement of dopaminergic neurodegeneration associated with paraquat neurotoxicity. Furthermore, neurodegeneration associated with these combined genetic and environmental risk factors could be attenuated by systemic treatment with the bioavailable antioxidant compound EUK-189. These data suggest that environmental factors previously identified as contributors to neurodegeneration associated with sporadic Parkinson's disease may also be candidates for observed variations in symptoms and disease progression in monogenic forms and that this may mechanistically involve increased levels of oxidatively-induced post-translational nitration of α-synuclein.  相似文献   

3.
4.
This study reports 12 novel mutations of the Wilson disease (WD) gene which have been detected by the molecular analysis of 29 patients of Mediterranean descent carrying uncommon chromosomal haplotypes at the WD locus. These mutations include two nonsense, one splice site and nine missense. The missense mutations lie in regions of the WD gene critical for its function, such as the transmembrane region, the transduction domain and the ATP loop and ATP-binding domain, indicating that they are disease-causing mutations. These new findings improve our knowledge for the role played by functional domains on the ATP7B function. Received: 20 March 1996  相似文献   

5.
Multiple effects of SERCA2b mutations associated with Darier's disease   总被引:6,自引:0,他引:6  
Darier's disease (DD) is an autosomal dominant disorder caused by mutations in the ATP2A2 gene, encoding sarco/endoplasmic reticulum Ca2+-ATPase pump type 2b isoform (SERCA2b). Although >100 mutations in the ATP2A2 gene were identified, no apparent relation between genotype/phenotype emerged. In this work, we analyzed 12 DD-associated mutations from all of the regions of SERCA2b to study the underlying pathologic mechanism of DD and to elucidate the role of dimerization in SERCA2b activity. Most mutations markedly affected protein expression, partially because of enhanced proteasome-mediated degradation. All of the mutants showed lower activity than the wild type pump. Notably, several mutants that cause relatively severe phenotype of DD inhibited the activity of the endogenous and the co-expressed wild type SERCA2b. Importantly, these effects were not attributed to changes in passive Ca2+ leak, inositol 1,4,5-trisphosphate receptor activity, or sensitivity to inositol 1,4,5-trisphosphate. Rather, co-immunoprecipitation experiments showed that SERCA2b monomers interact to influence the activity of each other. These findings reveal multiple molecular mechanisms to account for the plethora of pathologic states observed in DD and provide the first evidence for the importance of SERCA2b dimerization in pump function in vivo.  相似文献   

6.

Introduction

Autoinflammatory diseases are characterized by seemingly unprovoked episodes of inflammation, without high titers of autoantibodies or antigen-specific T cells, and derive from genetic variants of the innate immune system. This study characterized a cohort of patients with similar phenotypes and nucleotide oligomerization domain 2 (NOD2) gene mutations.

Methods

Diagnostically challenging patients with the following clinical and genetic characteristics were prospectively studied between January 2009 and April 2011: periodic fever, dermatitis, polyarthritis, serositis, negative serum autoantibodies and additional positive NOD2 IVS8+158 gene mutation. Genetic testing for gene mutations of NOD2, tumor necrosis factor receptor-associated periodic fever syndrome (TRAPS) and familial Mediterranean fever (FMF) was performed.

Results

All seven patients with the disease were Caucasians, with four being male. The mean age at disease onset was 40.7 years and disease duration was 3.2 years. These patients characteristically presented with periodic fever, dermatitis and inflammatory polyarthritis. There were gastrointestinal symptoms in three patients, granulomas of the skin and gut in two, and recurrent chest pain in two, with one having pleuritis and pericarditis. Three patients had sicca-like symptoms. Five patients had increased acute phase reactants. All seven patients had negative tests for autoantibodies but carried the NOD2 gene mutation IVS8+158 with four having concurrent R702W mutation.

Conclusions

Our cohort may represent a new disease category of autoinflammatory disease with characteristic clinical phenotypes and genotypes. It may somewhat resemble pediatric Blau's syndrome.  相似文献   

7.
Genetic modifiers make an important contribution to neurological disease phenotypes. Significant progress has been made by studying genetic modifiers in model organisms. The ability to study complex genetic interactions in model systems contributes to our understanding of the genetic factors that influence neurological disease. This will lead to the development of novel therapeutic strategies and personalized treatment based on genetic risk.  相似文献   

8.
9.
Cystic fibrosis is a genetic disease that is associated with abnormal sweat electrolytes, sino-pulmonary disease, exocrine pancreatic insufficiency, and male infertility. Insights into genotype/phenotype relations have recently been gained in this disorder. The strongest relationship exists between 'severe' mutations in the gene that encodes the cystic fibrosis transmembrane regulator (CFTR) and pancreatic insufficiency. The relationship between 'mild' mutations, associated with residual CFTR function, and expression of disease is less precise. Atypical 'mild' mutations in the CFTR gene have been linked to late-onset pulmonary disease, congenital bilateral absence of the vas deferens, and idiopathic pancreatitis. Less commonly, sinusitis, allergic bronchopulmonary aspergillosis, and possibly even asthma may also be associated with mutations in the CFTR gene, but those syndromes predominantly reflect non-CFTR gene modifiers and environmental influences.  相似文献   

10.
11.
12.
13.
14.
15.
Zheng J  Ji Y  Guan MX 《Mitochondrion》2012,12(3):406-413
Mitochondrial tRNA mutations are one of the important causes of both syndromic and non-syndromic deafness. Of those, syndromic deafness-associated tRNA mutations such as tRNA(Leu(UUR)) 3243A>G are often present in heteroplasmy, while non-syndromic deafness-associated tRNA mutations including tRNA(Ser(UCN)) 7445A>G often occur in homplasmy or in high levels of heteroplasmy. These tRNA mutations are the primary mutations leading to hearing loss. However, other tRNA mutations such as tRNA(Thr) 15927G>A and tRNA(Ser(UCN)) 7444G>A may act in synergy with the primary mitochondrial DNA mutations, modulating the phenotypic manifestation of the primary mitochondrial DNA mutations. Theses tRNA mutations cause structural and functional alteration. A failure in tRNA metabolism caused by these tRNA mutations impaired mitochondrial translation and respiration, thereby causing mitochondrial dysfunctions responsible for deafness. These data offer valuable information for the early diagnosis, management and treatment of maternally inherited deafness.  相似文献   

16.
Gap junctions and hemichannels comprised of connexins impact many cellular processes. Significant advances in our understanding of the functional role of these channels have been made by the identification of a host of genetic diseases caused by connexin mutations. Prominent features of connexin disorders are the inability of other connexins expressed in the same cell type to compensate for the mutated one, and the ability of connexin mutants to dominantly influence the activity of other wild-type connexins. Functional studies have begun to identify some of the underlying mechanisms whereby connexin channel mutation contributes to the disease state. Detailed mechanistic understanding of these functional differences will help to facilitate new pathophysiology driven therapies for the diverse array of connexin genetic disorders. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.  相似文献   

17.
Fungal endophytes: modifiers of plant disease   总被引:2,自引:0,他引:2  
  相似文献   

18.
Most Alzheimer disease (AD) cases are unexplained. To identify causative agents for AD and to understand this chronic, complex disease process, the pathogenic chromatin modification hypothesis is put forward here, which links pathogenicity with genetic variability, epigenetic modifications and environmental factors. Host chromatin modification by pathogens (disease producers) directly exploiting susceptible genes of their hosts with DNA cleavage, and DNA, histone and other host chromatin protein modifications at defined sites, provide an understanding of the molecular mechanisms for the gene variation associations for AD and the effect of environmental and epigenetic factors. With the pathogenic chromatin modification hypothesis, the erratic success for AD pathogenicity of certain microbes is explained. If a microbe contains the pathogenic chromatin modifiers or their genes, and has the opportunity to infect a host, which has gene variants vulnerable to the pathogenic chromatin modifiers, then the disease process is initiated and promoted. This hypothesis postulates that pathogenic chromatin modifiers contribute to the DNA damage found in AD, and are tied to known risks including the ?4 allele of apolipoprotein E, Down syndrome, the aging process and head injury. Restriction enzymes (REases) and methyltransferases (MTases), previously unrecognized as pathogens in AD or any disease, are a focus with specific suggestions for experiments to elucidate their possible role. The pathogenic chromatin modification hypothesis is relevant to other neurodegenerative disorders including human immunodeficiency virus (HIV) associated dementia and other chronic diseases. This work, integrating a multitude of genetic and environmental factors, presents new targets for therapeutic strategies.  相似文献   

19.
N-acetylglutamate synthase (NAGS) is a mitochondrial enzyme that catalyzes the formation of N-acetylglutamate, an essential allosteric activator of carbamyl phosphate synthetase I, the first enzyme of the urea cycle. Liver NAGS deficiency has previously been found in a small number of patients with hyperammonemia. The mouse and human NAGS genes have recently been cloned and expressed in our laboratory. We searched for mutations in the NAGS gene of two families with presumed NAGS deficiency. The exons and exon/intron boundaries of the NAGS gene were sequenced from genomic DNA obtained from the parents of an infant from the Faroe Islands who died in the neonatal period and from two Hispanic sisters who presented with acute neonatal hyperammonemia. Both parents of the first patient were found to be heterozygous for a null mutation in exon 4 (TGG-->TAG, Trp324Ter). Both sisters from the second family were homozygous for a single base deletion in exon 4 (1025delG) causing a frameshift and premature termination of translation. The finding of deleterious mutations in the NAGS gene confirms the genetic origin of NAGS deficiency. This disorder can now be diagnosed by DNA testing allowing for carrier detection and prenatal diagnosis.  相似文献   

20.
MYH9 has been proposed as a major genetic risk locus for a spectrum of nondiabetic end stage kidney disease (ESKD). We use recently released sequences from the 1000 Genomes Project to identify two western African-specific missense mutations (S342G and I384M) in the neighboring APOL1 gene, and demonstrate that these are more strongly associated with ESKD than previously reported MYH9 variants. The APOL1 gene product, apolipoprotein L-1, has been studied for its roles in trypanosomal lysis, autophagic cell death, lipid metabolism, as well as vascular and other biological activities. We also show that the distribution of these newly identified APOL1 risk variants in African populations is consistent with the pattern of African ancestry ESKD risk previously attributed to MYH9. Mapping by admixture linkage disequilibrium (MALD) localized an interval on chromosome 22, in a region that includes the MYH9 gene, which was shown to contain African ancestry risk variants associated with certain forms of ESKD (Kao et al. 2008; Kopp et al. 2008). MYH9 encodes nonmuscle myosin heavy chain IIa, a major cytoskeletal nanomotor protein expressed in many cell types, including podocyte cells of the renal glomerulus. Moreover, 39 different coding region mutations in MYH9 have been identified in patients with a group of rare syndromes, collectively termed the Giant Platelet Syndromes, with clear autosomal dominant inheritance, and various clinical manifestations, sometimes also including glomerular pathology and chronic kidney disease (Kopp 2010; Sekine et al. 2010). Accordingly, MYH9 was further explored in these studies as the leading candidate gene responsible for the MALD signal. Dense mapping of MYH9 identified individual single nucleotide polymorphisms (SNPs) and sets of such SNPs grouped as haplotypes that were found to be highly associated with a large and important group of ESKD risk phenotypes, which as a consequence were designated as MYH9-associated nephropathies (Bostrom and Freedman 2010). These included HIV-associated nephropathy (HIVAN), primary nonmonogenic forms of focal segmental glomerulosclerosis, and hypertension affiliated chronic kidney disease not attributed to other etiologies (Bostrom and Freedman 2010). The MYH9 SNP and haplotype associations observed with these forms of ESKD yielded the largest odds ratios (OR) reported to date for the association of common variants with common disease risk (Winkler et al. 2010). Two specific MYH9 variants (rs5750250 of S-haplotype and rs11912763 of F-haplotype) were designated as most strongly predictive on the basis of Receiver Operating Characteristic analysis (Nelson et al. 2010). These MYH9 association studies were then also extended to earlier stage and related kidney disease phenotypes and to population groups with varying degrees of recent African ancestry admixture (Behar et al. 2010; Freedman et al. 2009a, b; Nelson et al. 2010), and led to the expectation of finding a functional African ancestry causative variant within MYH9. However, despite intensive efforts including re-sequencing of the MYH9 gene no suggested functional mutation has been identified (Nelson et al. 2010; Winkler et al. 2010). This led us to re-examine the interval surrounding MYH9 and to the detection of novel missense mutations with predicted functional effects in the neighboring APOL1 gene, which are significantly more associated with ESKD than all previously reported SNPs in MYH9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号