首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both novel and multiple ultrastructural studies based on different principles show relationships of cytoplasmic lipid bodies and ribonucleic acid (RNA) of potential importance to RNA metabolism in human mast cells. The methods include general ultrastructural morphological observations, imaging of RNA with an EDTA regressive stain, imaging of the incorporation of radio labeled uridine by ultrastructural autoradiography, postembedding immunogold labeling of uridine, ribosomes and small nuclear ribonuclear proteins and ultrastructural in situ hybridization detection of poly(A)-positive messenger RNA. Altogether these studies implicate human mast cell lipid bodies in RNA metabolism and are analogous to earlier similar studies which showed that human mast cell granules also curtain RNA.  相似文献   

2.
3.
Nitric oxide is an important messenger that regulates mast cell activity by modifications to gene expression and intracellular pathways associated with exocytosis and adhesion. Integrin interactions with extracellular matrix components modulate an array of cell activities, including mediator production and secretion. To investigate the molecular mechanisms underlying NO regulation of mast cell function, we studied its effects on adhesion of a human mast cell line (HMC-1) to fibronectin (FN). The NO donors S-nitrosoglutathione and S-nitroso-N-acetylpenicillamine strongly down-regulated the adhesion of HMC-1 to FN. Inhibitors of soluble guanylate cyclase and protein kinase G did not alter the response of cells to NO. A peroxynitrite scavenger did not affect modulation of adhesion by NO, nor could the effect of NO be mimicked by the peroxynitrite-producing compound 3-morpholinosydnonimine. NO donors inhibited the cysteine protease, calpain, while calpain inhibitors mimicked the effect of NO and led to a decrease in the ability of HMC-1 cells to adhere to FN. Thus, NO is an effective down-regulator of human mast cell adhesion. The mechanism for this action does not involve peroxynitrite or activation of soluble guanylate cyclase. Instead, a portion of NO-induced down-regulation of adhesion may be attributed to inhibition of the cysteine protease, calpain, an enzyme that has been associated with control of integrin activation in other cell types. The inhibition of calpain is most likely mediated via nitrosylation of its active site thiol group. Calpain may represent a novel therapeutic target for the regulation of mast cell activity in inflammatory disorders.  相似文献   

4.
In rat frontal cortex, extracellular levels of glutamate are raised by the anti-psychotic drug clozapine. We have recently shown that a significant reduction in the levels of the glutamate transporter GLT-1 may be one of the mechanisms responsible for this elevation. Here we studied whether GLT-1 down-regulation induced by chronic clozapine treatment is associated with changes in the expression of synaptophysin, synaptosome-associated protein of 25 kDa (SNAP-25) and vesicular glutamate transporter 1 (VGLUT1), three major presynaptic proteins involved in neurotransmitter release. Quantitative high-resolution confocal microscopy studies in vivo showed that GLT-1 down-regulation is closely associated with a significant increase in synaptophysin, but not SNAP-25 and VGLUT1, expression. This was confirmed in vitro studies, and in western blotting studies of synaptophysin, SNAP-25 and VGLUT1. In addition, our results show that, following clozapine treatment, synaptophysin expression increases in the very cortical regions in which GLT-1 expression is down-regulated. These findings suggest that part of the effects of clozapine may be exerted via an action on the presynaptic machinery involved in neurotransmitter release.  相似文献   

5.
Endothelial cells (ECs) are quiescent in normal blood vessels, but undergo rapid bursts of proliferation after vascular injury, hypoxia or induced by powerful angiogenic cytokines like fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). Deregulated proliferation of ECs facilitates angiogenic processes and promotes tumor growth. In dividing cells, cell cycle-associated protein kinases, which are referred as cyclin-dependent kinases (cdks), regulate proliferation, differentiation, senescence, and apoptosis. Cyclin-dependent kinase-5 (cdk5) is expressed in neuronal cells and plays an important role in neurite outgrowth, of neuronal migration and neurogenesis, its functions in non-neuronal cells are unclear. Here, we show for the first time that the cdk5 is expressed at high levels in proliferating bovine aortic endothelial (BAE) cells, by contrast insignificant low levels of cdk5 expression in quiescent BAE cells. In addition, bFGF up-regulates cdk5 expression in a dose-dependent fashion. Interestingly, temporal expression data suggests that cdk5 expression is very low between 24-48 h, but high level of cdk5 expression was detected during 60-72 h. This later time corresponds to the time of completion of one cell cycle (doubling of cell population) of BAE cell culture. Angiostatin (AS), a powerful inhibitor of angiogenesis inhibits ECs proliferation in dose-dependent manner with concomitant down-regulation of cdk5 expression. The role of cdk5 in ECs, proliferation and apoptosis was confirmed by selective inhibition of cdk5 expression by the purine derivative roscovitine, which inhibits bFGF-stimulated BAE cells proliferation and induces apoptosis in dose-specific manner. By contrast, the roscovitine analog olomoucine, which is a specific inhibitor of cdk4, but not of cdk5 failed to affect ECs proliferation and apoptosis. These data suggest for the first time that neuron specific protein cdk5 may have significant role in the regulation of ECs proliferation, apoptosis, and angiogenesis and extends beyond its role in neurogenesis.  相似文献   

6.
NK cells are important for the clearance of tumors, parasites, and virus-infected cells. Thus, factors that control NK cell numbers and function are critical for the innate immune response. A subset of NK cells express the inhibitory killer cell lectin-like receptor G1 (KLRG1). In this study, we identify that KLRG1 expression is acquired during periods of NK cell division such as development and homeostatic proliferation. KLRG1(+) NK cells are mature in phenotype, and we show for the first time that these cells have a slower in vivo turnover rate, reduced proliferative response to IL-15, and poorer homeostatic expansion potential compared with mature NK cells lacking KLRG1. Transfer into lymphopenic recipients indicate that KLRG1(-) NK cells are precursors of KLRG1(+) NK cells and KLRG1 expression accumulates following cell division. Furthermore, KLRG1(+) NK cells represent a significantly greater proportion of NK cells in mice with enhanced NK cell numbers such as Cd45(-/-) mice. These data indicate that NK cells acquire KLRG1 on their surface during development, and this expression correlates with functional distinctions from other peripheral NK cells in vivo.  相似文献   

7.

Background

The response of lung microvascular endothelial cells (ECs) to lipopolysaccharide (LPS) is central to the pathogenesis of lung injury. It is dual in nature, with one facet that is pro-inflammatory and another that is cyto-protective. In previous work, overexpression of the anti-apoptotic Bcl-XL rescued ECs from apoptosis triggered by siRNA knockdown of intersectin-1s (ITSN-1s), a pro-survival protein crucial for ECs function. Here we further characterized the cyto-protective EC response to LPS and pro-inflammatory dysfunction.

Methods and Results

Electron microscopy (EM) analyses of LPS-exposed ECs revealed an activated/dysfunctional phenotype, while a biotin assay for caveolae internalization followed by biochemical quantification indicated that LPS causes a 40% inhibition in biotin uptake compared to controls. Quantitative PCR and Western blotting were used to evaluate the mRNA and protein expression, respectively, for several regulatory proteins of intrinsic apoptosis, including ITSN-1s. The decrease in ITSN-1s mRNA and protein expression were countered by Bcl-XL and survivin upregulation, as well as Bim downregulation, events thought to protect ECs from impending apoptosis. Absence of apoptosis was confirmed by TUNEL and lack of cytochrome c (cyt c) efflux from mitochondria. Moreover, LPS exposure caused induction and activation of inducible nitric oxide synthase (iNOS) and a mitochondrial variant (mtNOS), as well as augmented mitochondrial NO production as measured by an oxidation oxyhemoglobin (oxyHb) assay applied on mitochondrial-enriched fractions prepared from LPS-exposed ECs. Interestingly, expression of myc-ITSN-1s rescued caveolae endocytosis and reversed induction of iNOS expression.

Conclusion

Our results suggest that ITSN-1s deficiency is relevant for the pro-inflammatory ECs dysfunction induced by LPS.  相似文献   

8.
Lung cancer is the leading cause of death among all cancers. Non-small cell lung cancer accounts for 80% of lung cancer with a 5-year survival rate of 16%. Notch pathway, especially Notch-1 is up-regulated in a subgroup of non-small cell lung cancer patients. Since Notch-1 signaling plays an important role in cell proliferation, differentiation, and apoptosis, down-regulation of Notch-1 may exert anti-tumor effects. The objective of this study was to investigate whether delta-tocotrienol, a naturally occurring isoform of Vitamin E, inhibits non-small cell lung cancer cell growth via Notch signaling. Treatment with delta-tocotrienol resulted in a dose and time dependent inhibition of cell growth, cell migration, tumor cell invasiveness, and induction of apoptosis. Real-time RT-PCR and western blot analysis showed that antitumor activity by delta-tocotrienol was associated with a decrease in Notch-1, Hes-1, Survivin, MMP-9, VEGF, and Bcl-XL expression. In addition, there was a decrease in NF-κB-DNA binding activity. These results suggest that down-regulation of Notch-1, via inhibition of NF-κB signaling pathways by delta-tocotrienol, could provide a potential novel approach for prevention of tumor progression in non-small cell lung cancer.  相似文献   

9.
Wei Y  Cao X  Ou Y  Lu J  Xing C  Zheng R 《Mutation research》2001,490(2):113-121
An immortal human hepatic cell line HL-7702 and human hepatoma cell line SMMC-7721 were treated with 3-30 microM SeO(2). SeO(2) at 30 microM markedly inhibited cell proliferation and viability, and prompted apoptosis of both normal hepatic and hepatoma cells after 48h treatment. SeO(2) could also down-regulate the Bcl-2 level, greatly in HL-7702 and slightly in SMMC-7721 cells, but up-regulate wild type P53 level a little in HL-7702 and significantly in SMMC-7721 cells. The Bcl-2/P53 value was closely correlated with the apoptotic rate as well as SeO(2) concentrations.  相似文献   

10.
Mast cells play an important role in both allergy and innate immunity. Recently, we demonstrated an active interaction between human mast cells and Pseudomonas aeruginosa leading to the production of multiple cytokines. Here, we show that both primary cultured human cord blood-derived mast cells and the human mast cell line HMC-1 undergo apoptosis as determined by single-stranded DNA (ssDNA) formation after stimulation with P. aeruginosa exotoxin A (ETA), a major toxin produced by this bacterium. ETA-induced ssDNA formation was completely inhibited by Z-VAD (where Z is benzyloxycarbonyl), which blocks multiple caspases, suggesting a role for caspases in this process. Active caspase-3 formation in mast cells after an ETA challenge was detected by both Western blotting and flow cytometry analysis. ETA-induced caspase-3 activity in human mast cells was demonstrated by the detection of a characteristic 23 kDa product of D4-GDI (where GDI is guanine nucleotide dissociation inhibitor), an endogenous caspase-3 substrate. Interestingly, a specific caspase-8 inhibitor, Z-IETD-fmk (where fmk is fluoromethyl ketone), blocked ETA-induced cleavage of D4-GDI, but a caspase-9 inhibitor (Z-LEHD-fmk) did not. Treatment of mast cells with caspase-3 inhibitor Z-DEVD-fmk or caspase-8 inhibitor Z-IETD-fmk reduced the generation of ssDNA induced by ETA, suggesting a role for caspase-8 and -3 in ETA-induced mast cell apoptosis. Furthermore, treatment of mast cells with ETA induced decreases of the short form and a long form (p43) of Fas-associated death domain protein (FADD)-like interleukin-1beta-converting enzyme (FLICE) (caspase-8)-inhibitory proteins (FLIPs), which are endogenous caspase-8 inhibitors. Taken together, these results suggest that ETA-induced mast cell apoptosis involves down-regulation of antiapoptotic proteins, FLIPs, and activation of caspase-8 and -3 pathways.  相似文献   

11.
An immortal human hepatic cell line HL-7702 and human hepatoma cell line SMMC-7721 were treated with 3–30 μM SeO2. SeO2 at 30 μM markedly inhibited cell proliferation and viability, and prompted apoptosis of both normal hepatic and hepatoma cells after 48 h treatment. SeO2 could also down-regulate the Bcl-2 level, greatly in HL-7702 and slightly in SMMC-7721 cells, but up-regulate wild type P53 level a little in HL-7702 and significantly in SMMC-7721 cells. The Bcl-2/P53 value was closely correlated with the apoptotic rate as well as SeO2 concentrations.  相似文献   

12.
13.
Pulmonary infection with Pseudomonas aeruginosa is characterized by massive airway inflammation, which comprises significant cytokine production. Although mast cells are abundant in the lung and are potent sources of various cytokines, a role of mast cells in P. aeruginosa infection remains undefined, and P. aeruginosa-induced signaling mechanisms in mast cells have not been studied previously. Here we demonstrate that human cord blood-derived mast cells, mouse bone marrow-derived mast cells, and the mouse mast cell line MC/9 produce significant amounts of interleukin 6 (IL-6) in response to P. aeruginosa. This response was accompanied by a stimulation of protein kinase Calpha (PKCalpha) phosphorylation and PKC activity and was significantly blocked by the PKC inhibitors Ro 31-8220 and PKCalpha pseudosubstrate. Interestingly, mast cells treated with P. aeruginosa had reduced protein levels of phosphatase 2A catalytic unit (PP2Ac), which prompted us to determine whether a direct association between PKCalpha and PP2A occurs in mast cells. In mouse bone marrow-derived mast cells and MC/9 cells, as well as in the human mast cell line HMC-1, PP2A coimmunoprecipitated with PKCalpha either using PKCalpha- or PP2Ac-specific antibodies, suggesting that PKCalpha and PP2Ac are physically associated in mast cells. The PP2A inhibitor okadaic acid induced P. aeruginosa-like responses in mast cells including increased PKCalpha phosphorylation, stimulated PKC activity, and augmented IL-6 production, the last being blocked by the PKC inhibitor Ro 31-8220. Finally, okadaic acid potentiated the P. aeruginosa-induced IL-6 production. Collectively, these data provide, to our knowledge, the first evidence of both a direct physical association of PP2A and PKCalpha in mammalian cells and their coinvolvement in regulating mast cell activation in response to P. aeruginosa.  相似文献   

14.
15.
Epidermal growth factor (EGF) is a potent mitogen for normal mouse mammary epithelial cells grown in primary culture. EGF activation of the EGF-receptor (EGF-R) induces intrinsic tyrosine kinase activity which results in EGF-R autophosphorylation and tyrosine phosphorylation of other intracellular substrates involved in EGF-R signal transduction. Genistein and erbstatin are anticancer agents which have been shown to be potent tyrosine kinase inhibitors. However, the effects of these compounds in modulating EGF-dependent normal mammary epithelial cell proliferation is presently unknown. Therefore, studies were conducted to determine the effects of genistein and erbstatin on EGF-dependent proliferation, and EGF-R levels and autophosphorylation in normal mouse mammary epithelial cells grown in primary culture and maintained in serum-free media. Chronic treatment with 6.25–100 μM genistein or 1–16 μM erbstatin significantly decreased EGF-dependent mammary epithelial cell proliferation in a dose-responsive manner. However, the highest doses of genistein (100 μM ) and erbstatin (16 μM ) were found to be cytotoxic. Additional studies showed that acute treatment with 6.25–400 μM genistein did not affect EGF-R levels or EGF-induced EGF-R autophosphorylation, while acute treatment with 1–64 μM erbstatin caused a slight reduction in EGF-R levels, but had no effect on EGF-dependent EGF-R autophosphorylation in these cells. In contrast, chronic treatment with similar doses of genistein or erbstatin resulted in a large dose-responsive decrease in EGF-R levels, and a corresponding decrease in total cellular EGF-R autophosphorylation intensity. These results demonstrate that the inhibitory effects of chronic genistein and erbstatin treatment on EGF-dependent mammary epithelial cell proliferation is not due to a direct inhibition of EGF-R tyrosine kinase activity, but results primarily from a down-regulation in EGF-R levels and subsequent decrease in mammary epithelial cell mitogenic-responsiveness to EGF stimulation.  相似文献   

16.
17.
STAT family members have been implicated in regulating the balance between B cell lymphoma (BCL)6 and B lymphocyte induced maturation protein (BLIMP)1 to control plasma cell differentiation. We previously showed that STAT5 induces BCL6 to block plasma cell differentiation and extend the life span of human B cells. The heterogeneity in STAT activation by cytokines and their effects on B cell differentiation prompted us to investigate the effect of STAT3 activation in plasma cell differentiation. First stimulation with IL-21, which promotes plasma cell differentiation, induced robust and prolonged STAT3 activation in primary human B cells. We then investigated effects of direct STAT3 activation on regulation of plasma cell genes, cellular phenotype, and Ig production. Activation of a tamoxifen-regulated STAT3-estrogen receptor fusion protein triggered BLIMP1 mRNA and protein up-regulation, plasma cell phenotypic features, and Ig secretion. When STAT3 was activated by IL-21 in B cells ectopically expressing BCL6, BLIMP1 was up-regulated, but only partial plasma cell differentiation was achieved. Lastly, through coexpression of BCL6 and STAT3-ER, we verified that STAT3 activation functionally mimicked IL-21 treatment and that STAT3-mediated BLIMP1 up-regulation occurred despite high BCL6 expression levels indicating that BCL6 is not the dominant repressor of BLIMP1. Thus, up-regulation of BLIMP1 alone is not sufficient for differentiation of primary human B cells into plasma cells; concomitant down-regulation of BCL6 is absolutely required for completion of the plasma cell differentiation program.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号