首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acyl carrier proteins (ACPs) of fatty acid synthesis are functional only when modified by attachment of the prosthetic group, 4'-phosphopantetheine (4'-PP), which is transferred from CoA to the hydroxyl group of a specific serine residue. Almost 40 years ago Vagelos and Larrabee reported an enzyme from Escherichia coli that removed the prosthetic group. We report that this enzyme, called ACP hydrolyase or ACP phosphodiesterase, is encoded by a gene (yajB) of previously unknown function that we have renamed acpH. A mutant E. coli strain having a total deletion of the acpH gene has been constructed that grows normally, showing that phosphodiesterase activity is not essential for growth, although it is required for turnover of the ACP prosthetic group in vivo. ACP phosphodiesterase (AcpH) has been purified to homogeneity for the first time and is a soluble protein that very readily aggregates upon overexpression in vivo or concentration in vitro. The purified enzyme has been shown to cleave acyl-ACP species with acyl chains of 6-16 carbon atoms and is active on some, but not all, non-native ACP species tested. Possible physiological roles for AcpH are discussed.  相似文献   

2.
Acyl carrier protein (ACP) interacts with many different enzymes during the synthesis of fatty acids, phospholipids, and other specialized products in bacteria. To examine the structural and functional roles of amino acids previously implicated in interactions between the ACP polypeptide and fatty acids attached to the phosphopantetheine prosthetic group, recombinant Vibrio harveyi ACP and mutant derivatives of conserved residues Phe-50, Ile-54, Ala-59, and Tyr-71 were prepared from glutathione S-transferase fusion proteins. Circular dichroism revealed that, unlike Escherichia coli ACP, V. harveyi-derived ACPs are unfolded at neutral pH in the absence of divalent cations; all except F50A and I54A recovered native conformation upon addition of MgCl(2). Mutant I54A was not processed to the holo form by ACP synthase. Some mutations significantly decreased catalytic efficiency of ACP fatty acylation by V. harveyi acyl-ACP synthetase relative to recombinant ACP, e.g. F50A (4%), I54L (20%), and I54V (31%), whereas others (V12G, Y71A, and A59G) had less effect. By contrast, all myristoylated ACPs examined were effective substrates for the luminescence-specific V. harveyi myristoyl-ACP thioesterase. Conformationally sensitive gel electrophoresis at pH 9 indicated that fatty acid attachment stabilizes mutant ACPs in a chain length-dependent manner, although stabilization was decreased for mutants F50A and A59G. Our results indicate that (i) residues Ile-54 and Phe-50 are important in maintaining native ACP conformation, (ii) residue Ala-59 may be directly involved in stabilization of ACP structure by acyl chain binding, and (iii) acyl-ACP synthetase requires native ACP conformation and involves interaction with fatty acid binding pocket residues, whereas myristoyl-ACP thioesterase is insensitive to acyl donor structure.  相似文献   

3.
The nodulation protein NodF of Rhizobium shows 25% identity to acyl carrier protein (ACP) from Escherichia coli (encoded by the gene acpP). However, NodF cannot be functionally replaced by AcpP. We have investigated whether NodF is a substrate for various E. coli enzymes which are involved in the synthesis of fatty acids. NodF is a substrate for the addition of the 4′-phosphopantetheine prosthetic group by holo-ACP synthase. The Km value for NodF is 61?μM, as compared to 2?μM for AcpP. The resulting holo-NodF serves as a substrate for coupling of malonate by malonyl-CoA:ACP transacylase (MCAT) and for coupling of palmitic acid by acyl-ACP synthetase. NodF is not a substrate for β-keto-acyl ACP synthase III (KASIII), which catalyses the initial condensation reaction in fatty acid biosynthesis. A chimeric gene was constructed comprising part of the E.coliacpP gene and part of the nodF gene. Circular dichroism studies of the chimeric AcpP-NodF (residues 1–33 of AcpP fused to amino acids 43–93 of NodF) protein encoded by this gene indicate a similar folding pattern to that of the parental proteins. Enzymatic analysis shows that AcpP-NodF is a substrate for the enzymes holo-ACP synthase, MCAT and acyl-ACP synthetase. Biological complementation studies show that the chimeric AcpP-NodF gene is able functionally to replace NodF in the root nodulation process in Vicia sativa. We therefore conclude that NodF is a specialized acyl carrier protein whose specific features are encoded in the C-terminal region of the protein. The ability to exchange domains between such distantly related proteins without affecting conformation opens exciting possibilities for further mapping of the functional domains of acyl carrier proteins (i. e., their recognition sites for many enzymes).  相似文献   

4.
The acyl carrier protein (ACP), an essential protein cofactor for fatty acid synthesis, has been isolated from two cyanobacteria: the filamentous, heterocystous, Anabaena variabilis (ATCC 29211) and the unicellular Synechocystis 6803 (ATCC 27184). Both ACPs have been purified to homogeneity utilizing a three-column procedure. Synechocystis 6803 ACP was purified 1800-fold with 67% yield, while A. variabilis ACP was purified 1040-fold with 50% yield. Yields of 13.0 micrograms ACP/g Synechocystis 6803 and 9.0 micrograms ACP/g A. variabilis were achieved. Amino acid analysis indicated that these ACPs were highly charged acidic proteins similar to other known ACPs. Sequence analysis revealed that both cyanobacterial ACPs were highly conserved with both spinach and Escherichia coli ACP at the phosphopantetheine prosthetic group region. Examining the probability of alpha-helix and beta-turn regions in various ACPs, showed that cyanobacterial ACPs were more closely related to E. coli ACP than spinach ACP I. Immunoblot analysis and a competitive binding assay for ACP illustrated that both ACPs bound poorly to spinach ACP I antibody. SDS/PAGE and native PAGE of Synechocystis 6803 ACP and A. variabilis ACP showed that cyanobacteria ACPs co-migrated with E. coli ACP and had relative molecular masses of 18,100 and 17,900 respectively. Both native and urea gel analysis of acyl-ACP products from fatty acid synthase reactions demonstrated that bacterial ACPs and plant ACP gave essentially the same metabolic products when assayed using either bacterial or plant fatty acid synthase. A. variabilis and Synechocystis 6803 ACP could be acylated using E. coli acyl ACP synthetase.  相似文献   

5.
A simple two-step purification of Vibrio harveyi fatty acyl-acyl carrier protein (acyl-ACP) synthetase, which is useful for the quantitative preparation and analysis of fatty-acylated derivatives of ACP, is described. Acyl-ACP synthetase can be partially purified from extracts of this bioluminescent bacterium by Cibacron blue chromatography and Sephacryl S-300 gel filtration and is stable for months at -20 degrees C in the presence of glycerol. Incubation of ACP from Escherichia coli with ATP and radiolabeled fatty acids (6 to 16 carbons in length) in the presence of the enzyme resulted in quantitative conversion to biologically active acylated derivatives. The enzyme reaction can be monitored by a filter disk assay to quantitate levels of ACP or by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography to detect ACP in cell extracts. With its broad fatty acid chain length specificity and optimal activity in mild nondenaturing buffers, the soluble V. harveyi acyl-ACP synthetase provides an attractive alternative to current chemical and enzymatic methods of acyl-ACP preparation and analysis.  相似文献   

6.
Acyl carrier protein (ACP) is an essential co-factor protein in fatty acid biosynthesis that shuttles covalently bound fatty acyl intermediates in its hydrophobic pocket to various enzyme partners. To characterize acyl chain-ACP interactions and their influence on enzyme interactions, we performed 19 molecular dynamics (MD) simulations of Escherichia coli apo-, holo-, and acyl-ACPs. The simulations were started with the acyl chain in either a solvent-exposed or a buried conformation. All four short-chain (< or = C10) and one long-chain (C16) unbiased acyl-ACP MD simulation show the transition of the solvent-exposed acyl chain into the hydrophobic pocket of ACP, revealing its pathway of acyl chain binding. Although the acyl chain resides inside the pocket, Thr-39 and Glu-60 at the entrance stabilize the phosphopantetheine linker through hydrogen bonding. Comparisons of the different ACP forms indicate that the loop region between helices II and III and the prosthetic linker may aid in substrate recognition by enzymes of fatty acid synthase systems. The MD simulations consistently show that the hydrophobic binding pocket of ACP is best suited to accommodate an octanoyl group and is capable of adjusting in size to accommodate chain lengths as long as decanoic acid. The simulations also reveal a second, novel binding mode of the acyl chains inside the hydrophobic binding pocket directed toward helix I. This study provides a detailed dynamic picture of acyl-ACPs that is in excellent agreement with available experimental data and, thereby, provides a new understanding of enzyme-ACP interactions.  相似文献   

7.
The nodulation protein NodF of Rhizobium shows 25% identity to acyl carrier protein (ACP) from Escherichia coli (encoded by the gene acpP). However, NodF cannot be functionally replaced by AcpP. We have investigated whether NodF is a substrate for various E. coli enzymes which are involved in the synthesis of fatty acids. NodF is a substrate for the addition of the 4′-phosphopantetheine prosthetic group by holo-ACP synthase. The Km value for NodF is 61 μM, as compared to 2 μM for AcpP. The resulting holo-NodF serves as a substrate for coupling of malonate by malonyl-CoA:ACP transacylase (MCAT) and for coupling of palmitic acid by acyl-ACP synthetase. NodF is not a substrate for β-keto-acyl ACP synthase III (KASIII), which catalyses the initial condensation reaction in fatty acid biosynthesis. A chimeric gene was constructed comprising part of the E.coliacpP gene and part of the nodF gene. Circular dichroism studies of the chimeric AcpP-NodF (residues 1–33 of AcpP fused to amino acids 43–93 of NodF) protein encoded by this gene indicate a similar folding pattern to that of the parental proteins. Enzymatic analysis shows that AcpP-NodF is a substrate for the enzymes holo-ACP synthase, MCAT and acyl-ACP synthetase. Biological complementation studies show that the chimeric AcpP-NodF gene is able functionally to replace NodF in the root nodulation process in Vicia sativa. We therefore conclude that NodF is a specialized acyl carrier protein whose specific features are encoded in the C-terminal region of the protein. The ability to exchange domains between such distantly related proteins without affecting conformation opens exciting possibilities for further mapping of the functional domains of acyl carrier proteins (i. e., their recognition sites for many enzymes). Received: 22 September 1997 / Accepted: 31 October 1997  相似文献   

8.
Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Delta9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [(14)C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium x hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Delta9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction.  相似文献   

9.
Bacterial acyl carrier protein (ACP) is a small, acidic, and highly conserved protein that supplies acyl groups for biosynthesis of a variety of lipid products. Recent modelling studies predict that residues primarily in helix II of Escherichia coli ACP (Glu-41, Ala-45) are involved in its interaction with the condensing enzyme FabH of fatty acid synthase. Using recombinant Vibrio harveyi ACP as a template for site-directed mutagenesis, we have shown that an acidic residue at position 41 is essential for V. harveyi fatty acid synthase (but not acyl-ACP synthetase) activity. In contrast, various replacements of Ala-45 were tolerated by both enzymes. None of the mutations introduced dramatic structural changes based on circular dichroism and native gel electrophoresis. These results confirm that Glu-41 of ACP is a critical residue for fatty acid synthase, but not for all enzymes that utilize ACP as a substrate.  相似文献   

10.
Expression of plant acyl carrier protein (ACP) in Escherichia coli at levels above that of constitutive E. coli ACP does not appear to substantially alter bacterial growth or fatty acid metabolism. The plant ACP expressed in E. coli contains pantetheine and approximately 50% is present in vivo as acyl-ACP. We have purified and characterized the recombinant spinach ACP-I. NH2-terminal amino acid sequencing indicated identity to authentic spinach ACP-I, and there was no evidence for terminal methionine or formylmethionine. Recombinant ACP-I was found to completely cross-react immunologically with polyclonal antibody raised to spinach ACP-I. Recombinant ACP-I was a poor substrate for E. coli fatty acid synthesis. In contrast, Brassica napus fatty acid synthetase gave similar reaction rates with both recombinant and E. coli ACP. Similarly, malonyl-coenzyme A:acyl carrier protein transacylase isolated from E. coli was only poorly able to utilize the recombinant ACP-I while the same enzyme from B. napus reacted equally well with either E. coli ACP or recombinant ACP-I. E. coli acyl-ACP synthetase showed a higher reaction rate for recombinant ACP-I than for E. coli ACP. Expression of spinach ACP-I in E. coli provides, for the first time, plant ACP in large quantities and should aid in both structural analysis of this protein and in investigations of the many ACP-dependent reactions of plant lipid metabolism.  相似文献   

11.
Zornetzer GA  Fox BG  Markley JL 《Biochemistry》2006,45(16):5217-5227
Acyl carrier protein (ACP) is a cofactor in a variety of biosynthetic pathways, including fatty acid metabolism. Thus, it is of interest to determine structures of physiologically relevant ACP-fatty acid complexes. We report here the NMR solution structures of spinach ACP with decanoate (10:0-ACP) and stearate (18:0-ACP) attached to the 4'-phosphopantetheine prosthetic group. The protein in the fatty acid complexes adopts a single conformer, unlike apo- and holo-ACP, which interconvert in solution between two major conformers. The protein component of both 10:0- and 18:0-ACP adopts the four-helix bundle topology characteristic of ACP, and a fatty acid binding cavity was identified in both structures. Portions of the protein close in space to the fatty acid and the 4'-phosphopantetheine were identified using filtered/edited NOESY experiments. A docking protocol was used to generate protein structures containing bound fatty acid for 10:0- and 18:0-ACP. In both cases, the predominant structure contained fatty acid bound down the center of the helical bundle, in agreement with the location of the fatty acid binding pockets. These structures demonstrate the conformational flexibility of spinach ACP and suggest how the protein changes to accommodate its myriad binding partners.  相似文献   

12.
Acyl carrier protein (ACP) is responsible for carrying the growing fatty acid chain from one enzyme active site to the next during fatty acid biosynthesis. Here we report the identification, purification, immunocytochemical localization, and cloning of ACP from the oleaginous yeast, Rhodotorula glutinis. The soluble fraction of this organism can synthesize triacylglycerol and is able to accept the acyl group from acyl-ACP for the synthesis. The ACP, cloned from the system, showed a significant similarity with ribosomal protein P2. Expression and characterization of the recombinant protein showed that the ACP was acylated in vitro. The recombinant protein was post-translationally modified, since it was observed in [14C]beta-alanine labeling and matrix-assisted laser desorption mass spectroscopic analysis. Site-directed mutants were generated to identify a serine residue responsible for phosphopantetheinylation and found that mutation of serine 59 to alanine abrogated the fatty acylation ability of the protein. These results demonstrate that a novel modification of ribosomal protein P2 allows it to act as an acyl carrier protein and participate in acylation reactions.  相似文献   

13.
Two enzymatic activities, 2-acylglycerolphosphoethanolamine (2-acyl-GPE) acyltransferase and acyl-acyl carrier protein (acyl-ACP) synthetase, were solubilized and purified from Escherichia coli membranes. Electrophoretic analysis of the final product of the purification procedure revealed a single protein species with an apparent molecular mass of 27 kilodaltons. The ratio of acyltransferase to synthetase activities remained the same throughout the purification scheme indicating that both activities were catalyzed by the same enzyme. 2-Acyl-GPE acyltransferase exhibited an apparent ACP Km of 64 nM under standard assay conditions that increased to 10 microM when the assay was conducted in the presence of 0.4 M LiCl. Acyl-ACP synthetase activity was not detected in the absence of 0.4 M LiCl, and the apparent ACP Km for this reaction was 16 microM. Direct evidence that ACP was a subunit of the acyltransferase/synthetase was obtained by the adsorption of both catalytic activities to an ACP-Sepharose affinity column and by the binding of [3H]ACP to the purified enzyme preparation. The apparent Km for acyl-ACP was 13 microM, and the rate of acyl transfer from this acyl donor was enhanced by the addition of 0.4 M LiCl indicating that the exchange of enzyme-bound ACP for acyl-ACP was a determinant factor in the rate of phosphatidylethanolamine formation from acyl-ACP. These data indicate that the 2-acyl-GPE acyltransferase and acyl-ACP synthetase reactions are catalyzed by the same membrane protein that possesses a high affinity binding site for soluble ACP.  相似文献   

14.
Acyl carrier protein (ACP), a small protein essential for bacterial growth and pathogenesis, interacts with diverse enzymes during the biosynthesis of fatty acids, phospholipids, and other specialized products such as lipid A. NMR and hydrodynamic studies have previously shown that divalent cations stabilize native helical ACP conformation by binding to conserved acidic residues at two sites (A and B) at either end of the "recognition" helix II. To examine the roles of these amino acids in ACP structure and function, site-directed mutagenesis was used to replace individual site A (Asp-30, Asp-35, Asp-38) and site B (Glu-47, Glu-53, Asp-56) residues in recombinant Vibrio harveyi ACP with the corresponding amides, along with combined mutations at each site (SA, SB) or both sites (SA/SB). Like native V. harveyi ACP, all individual mutants were unfolded at neutral pH but adopted a helical conformation in the presence of millimolar Mg(2+) or upon fatty acylation. Mg(2+) binding to sites A or B independently stabilized native ACP conformation, whereas mutant SA/SB was folded in the absence of Mg(2+), suggesting that charge neutralization is largely responsible for ACP stabilization by divalent cations. Asp-35 in site A was critical for holo-ACP synthase activity, while acyl-ACP synthetase and UDP-N-acetylglucosamine acyltransferase (LpxA) activities were more affected by mutations in site B. Both sites were required for fatty acid synthase activity. Overall, our results indicate that divalent cation binding site mutations have predicted effects on ACP conformation but unpredicted and variable consequences on ACP function with different enzymes.  相似文献   

15.
The erythromycin A-producing polyketide synthase from the gram-positive bacterium Saccharopolyspora erythraea (formerly Streptomyces erythraeus) has evident structural similarity to fatty acid synthases, particularly to the multifunctional fatty acid synthases found in eukaryotic cells. Fatty acid synthesis in S. erythraea has previously been proposed to involve a discrete acyl carrier protein (ACP), as in most prokaryotic fatty acid synthases. We have cloned and sequenced the structural gene for this ACP and find that it does encode a discrete small protein. The gene lies immediately adjacent to an open reading frame whose gene product shows sequence homology to known beta-ketoacyl-ACP synthases. A convenient expression system for the S. erythraea ACP was obtained by placing the gene in the expression vector pT7-7 in Escherichia coli. In this system the ACP was efficiently expressed at levels 10 to 20% of total cell protein. The recombinant ACP was active in promoting the synthesis of branched-chain acyl-ACP species by extracts of S. erythraea. Electrospray mass spectrometry is shown to be an excellent method for monitoring the efficiency of in vivo posttranslational modification of ACPs.  相似文献   

16.
We have used a yeast two-hybrid approach to detect direct protein interactions between fatty acid synthase components. Enoyl-acyl carrier protein (ACP) reductase was found to interact with stearoyl-ACP desaturase and acyl-ACP thioesterase, but none of these proteins interacted with ACP in the yeast nucleus.  相似文献   

17.
The first condensation reaction in the fatty acid biosynthetic pathway in Escherichia coli was rate-limiting as judged by analysis of the relative pool sizes of acyl carrier protein (ACP) thioester intermediates in vivo. Comparable concentrations of acetyl-ACP, malonyl-ACP, and nonesterified ACP were present during logarithmic growth, whereas long-chain acyl-ACP comprised a minor fraction of the total ACP pool. The antibiotic cerulenin was used to irreversibly inhibit both beta-ketoacyl-ACP synthases I and II. However, acyl-ACP formation in vivo was not blocked by this antibiotic, and short-chain (4-8-carbon) acyl-ACPs increased to 60% of the total ACP pool in cerulenin-treated cells. These data suggested that existence of a cerulenin-resistant condensing enzyme that was capable of catalyzing the initial steps in chain elongation. A unique enzymatic activity, acetoacetyl-ACP synthase, that specifically catalyzed the condensation of malonyl-ACP and acetyl-ACP was detected in E. coli cell extracts. Acetoacetyl-ACP synthase activity was not inhibited by cerulenin and was present in extracts prepared from a double mutant harboring genetic lesions in beta-ketoacyl-ACP synthases I and II (fabB20 fabF3). These data point to the condensation of malonyl-ACP and acetyl-ACP as the rate-controlling reaction in fatty acid biosynthesis and implicate acetoacetyl-ACP synthase as the pacemaker of fatty acid production in organisms and organelles that possess dissociated (Type II) fatty acid synthase systems.  相似文献   

18.
BACKGROUND: Acyl carrier protein (ACP) is a fundamental component of fatty acid biosynthesis in which the fatty acid chain is elongated by the fatty acid synthetase system while attached to the 4'-phosphopantetheine prosthetic group (4'-PP) of ACP. Activation of ACP is mediated by holo-acyl carrier protein synthase (ACPS) when ACPS transfers the 4'-PP moiety from coenzyme A (CoA) to Ser36 of apo-ACP. Both ACP and ACPS have been identified as essential for E. coli viability and potential targets for development of antibiotics. RESULTS: The solution structure of B. subtilis ACP (9 kDa) has been determined using two-dimensional and three-dimensional heteronuclear NMR spectroscopy. A total of 22 structures were calculated by means of hybrid distance geometry-simulated annealing using a total of 1,050 experimental NMR restraints. The atomic rmsd about the mean coordinate positions for the 22 structures is 0.45 +/- 0.08 A for the backbone atoms and 0.93 +/- 0.07 A for all atoms. The overall ACP structure consists of a four alpha-helical bundle in which 4'-PP is attached to the conserved Ser36 that is located in alpha helix II. CONCLUSIONS: Structural data were collected for both the apo and holo forms of ACP that suggest that the two forms of ACP are essentially identical. Comparison of the published structures for E. coli ACP and actinorhodin polyketide synthase acyl carrier protein (act apo-ACP) from Streptomyces coelicolor A3(2) with B. subtilis ACP indicates similar secondary structure elements but an extremely large rmsd between the three ACP structures (>4.3 A). The structural difference between B. subtilis ACP and both E. coli and act apo-ACP is not attributed to an inherent difference in the proteins, but is probably a result of a limitation in the methodology available for the analysis for E. coli and act apo-ACP. Comparison of the structure of free ACP with the bound form of ACP in the ACP-ACPS complex reveals a displacement of helix II in the vicinity of Ser36. The induced perturbation of ACP by ACPS positions Ser36 proximal to coenzyme A and aligns the dipole of helix II to initiate transfer of 4'-PP to ACP.  相似文献   

19.
Acyl Carrier Protein (ACP) is a small acidic protein which interacts with the various enzymes implicated in the biosynthesis of fatty acids in E. coli. It also interacts with the inner membrane proteins implicated in the biosynthesis of phospholipids. Samples of radioactive ACP were prepared with high specific activities and bearing photoactivable aryl azide derivatives. Two photoactivable reagents were used: para azido phenacyl bromide (pAPA) which reacts with the SH of the ACP prosthetic group and the N-hydroxysuccinimide ester of 4-azido salicylic acid (NHS-ASA) which reacts with the amino groups of the protein. Various methods were used to demonstrate that ACP could be cross-linked specifically to an inner membrane protein of E. coli, most probably to the glycerol-3-phosphate acyl transferase (GPAT). This covalent link should provide a powerful tool for further analysis of the structure of GPAT and its role in phospholipid biosynthesis. These photoactivable aryl azide derivatives of ACP could also be very useful for studying the interaction of ACP with the soluble enzymes implicated in fatty acid biosynthesis.  相似文献   

20.
To study the involvement of acyl carrier protein (ACP) in the metabolism of exogenous fatty acids in Vibrio harveyi, cultures were incubated in minimal medium with [9,10-3H]myristic acid, and labeled proteins were analyzed by gel electrophoresis. Labeled acyl-ACP was positively identified by immunoprecipitation with anti-V. harveyi ACP serum and comigration with acyl-ACP standards and [3H]beta-alanine-labeled bands on both sodium dodecyl sulfate- and urea-polyacrylamide gels. Surprisingly, most of the acyl-ACP label corresponded to fatty acid chain lengths of less than 14 carbons: C14, C12, C10, and C8 represented 33, 40, 14, and 8% of total [3H]14:0-derived acyl-ACPs, respectively, in a dark mutant (M17) of V. harveyi which lacks myristoyl-ACP esterase activity; however, labeled 14:0-ACP was absent in the wild-type strain. 14:0- and 12:0-ACP were also the predominant species labeled in complex medium. In contrast, short-chain acyl-ACPs (< or = C6) were the major labeled derivatives when V. harveyi was incubated with [3H]acetate, indicating that acyl-ACP labeling with [3H]14:0 in vivo is not due to the total degradation of [3H]14:0 to [3H]acetyl coenzyme A followed by resynthesis. Cerulenin increased the mass of medium- to long-chain acyl-ACPs (> or = C8) labeled with [3H]beta-alanine fivefold, while total incorporation of [3H]14:0 was not affected, although a shift to shorter chain lengths was noted. Additional bands which comigrated with acyl-ACP on sodium dodecyl sulfate gels were identified as lipopolysaccharide by acid hydrolysis and thin-layer chromatography. The levels of incorporation of [3H] 14:0 into acyl-ACP and lipopolysaccharide were 2 and 15%, respectively, of that into phospholipid by 10 min. Our results indicate that in contrast to the situation in Escherichia coli, exogenous fatty acids can be activated to acyl-ACP intermediates after partial degradation in V. harveyi and can effectively label products (i.e., lipid A) that require ACP as an acyl donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号