首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When mice from different inbred strains are injected intraperitoneally with 3-methylcholanthrene (MC), the activity of aryl hydrocarbon hydroxylase (AHH) rapidly increases in livers of some strains but not others. AHH plays a role in the metabolism of polycyclic hydrocarbons. Alleles at a small number of loci account for most of the variation in inducibility of hepatic AHH among mice, when MC is used as the inducing agent. Cigarette smoke is a common source of carcinogenic polycyclic hydrocarbons in the environment. Since some of the hydrocarbons in cigarette smoke are metabolized by AHH, the activity of AHH in tissues may affect the carcinogenicity of smoke in those tissues. The purpose of these experiments was to see whether induction of AHH in lung in response to cigarette smoke is regulated by the same genes that regulate induction of AHH in liver in response to MC. Mouse strains AKR/J and C57L/J and six recombinant inbred (RI) lines derived from them were tested for the response of AHH in lung and liver to parenteral MC or inhalation of cigarette smoke. Inducibility (the ratio of MC-induced AHH activities to basal AHH activities) in liver from MC-treated RI lines is bimodal and compatible with Mendelian segregation of genes at a small number of loci. Increased activities of AHH in MC-treated liver are associated with increased ability to metabolize BP and whole smoke condensates to mutagens detected by Salmonella typhimurium TA1538. Inducibility of AHH in lung in response to MC is not bimodal, and no definite conclusion about the number of loci can be made. When actual levels of AHH activity are considered, following the administration of MC as inducing agent, there is a correlation (r=0.89, p<0.01) between AHH levels in liver and lung, suggesting that some genes affecting liver also affect lung. Basal and MC-induced AHH levels in lung are also correlated (r=0.86, p<0.01). Mice with high basal activities have two to threefold higher levels of AHH after MC treatment than do mice with low basal activities. Induction of AHH in pulmonary tissues occurs in all mice after either parenteral MC or smoke inhalation. In contrast to MC treatment, AHH activities in lungs following smoke inhalation are not correlated with AHH levels in liver after MC (r=0.49) and are only weakly correlated with basal (r=0.66, 0.05相似文献   

2.
To study the transplacental acquisition of tobacco smoke products and the effects on fetal tissue enzymes, pregnant rats, guinea pigs, and hamsters were exposed to freshly generated cigarette smoke via a nose-only inhalation system on a daily basis through the latter one-third (guinea pigs) or latter half (rats, hamsters) of the gestational period. Following euthanasia on the day of parturition, microsomal aryl hydrocarbon hydroxylase (AHH) activities were determined in the lungs, livers, and kidneys of both dams and fetuses. The possible acquisition of tobacco smoke products via the milk was studied by exposing lactating dams to cigarette smoke daily for either 4 or 14 days (rats), 4 or 7 days (guinea pigs), or 10 days (hamsters), with analysis of tissues from the euthanized pups for AHH. Pups were also exposed directly (nose only) to cigarette smoke. In the treated pregnant and lactating rat, maternal pulmonary, hepatic, and renal AHH was significantly increased but only fetal lung and the liver of 14-day-old pups showed a marked induction of AHH activity. In the pregnant and lactating guinea pig, only the pulmonary and renal AHH activities were increased following exposure, whereas in the fetuses and nursing pups, none of the tissue AHH activities was significantly altered by exposure. In the pregnant and lactating hamster, only the pulmonary AHH was increased following exposure to cigarette smoke, whereas the activity in fetal and pup tissues remained unchanged from the levels observed in control animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Among the several thousand components of cigarette smoke is a substance or substances capable of inhibiting pulmonary metabolism of nicotine and altering the metabolite profile of procarcinogens such as benzo[a]pyrene (BP). This substance(s) inhibits BP metabolism in the lung in amounts present in a few puffs of cigarette smoke. By a series of extractions and chromatographic methods an active subfraction containing only 1% of the total cigarette smoke condensate (CSC), was isolated. This fraction demonstrated the same inhibition of BP metabolism in the isolate perfused lung (IPL) as the whole smoke. The inhibitor(s) present in this fraction possess amphoteric characteristics. The acidic function is believed to be a phenolic one.  相似文献   

4.
There are significant differences between mice and hamsters in polycyclic hydrocarbon and nitrosamine metabolism. Homogenates of liver, lung and intestinal mucosa from 6 strains of Syrian golden hamster were compared for their ability to metabolize benzo[alpha]pyrene (BP) and dimethylnitrosamine (DMN) to mutagens. Females of strains MHA/SSLak, LSH/SlLak, CB/SsLak, PD4/Lak LHC/Lak and Lak:LVG (SYR) were either untreated or received phenobarbital (PB), 3-methylcholanthrene (MC) or polychlorinated biphenyls (AR) to induce drug-metabolizing enzymes. Salmonella typhimurium TA92 and TA98 were used as indicators of the formation of mutagans. Dimethylnitrosamine demethylase (DMND) was assayed using 1 mM DMN as substrate. Aryl hydrocarbon hydroxylase (AHH) was measured using benzo[alpha]pyrene as substrate. MC does not induced AHH activity in hamster liver, but is an excellent inducer of enzymes converting BP to mutagens. This lack of correlation between increased AHH activity and increased metabolism of BP to mutagen in liver is in marked contrast to correlations seen in mice. MC induces AHH in hamster lung and intestinal mucosa. AR induces AHH in liver, lung and intestinal mucosa. Activity of DMND in liver is not affected by treatment of hamsters with BP or AR, but is repressed approx. 30% by treatment with MC. Activity of DMND and conversion of DMN to mutagen are correlated (r = 0.59) in hamster liver. Microsomes of hamster liver are more effective than those from mouse in converting DMN to mutagen, despite similar DMND activities in livers from the two species.  相似文献   

5.
Homogenates of liver, lung, kidney, stomach, small intestine and colon from 8 strains of mice were compared for their ability to metabolize benzo[a]pyrene (BP) and dimethylnitrosamine (DMN) to mutagens. Females of strains CF1, AKR/J, AU/SsJ, DBA/2J, SWR/J, A/J, C3H/HeJ, and C57BL/6J were either untreated or received phenobarbital (PB), 3-methylcholanthrene (MC) or polychlorinated biphenyls (AR) to induce drug-metabolizing enzymes. The effects of these drugs on organ weight and on the amounts of DNA, S-10 protein, and microsomal protein per unit weight of tissue are reported. Salmonella typhimurium TA92 and TA98 were used as indicators of the formation of mutagens. For each organ there was an optimal balance between amount of tissue homogenate and concentration of test compound for maximal yield of revertants. A sensitive radiometric assay of DMN demethylase (DMND) is described which permits measurement of the enzyme in liver, lung and kidney. DMN at 1 mM is used as substrate. Aryl hydrocarbon hydroxylase (AHH) was measured in all tissue using BP as substrate. AR and MC are very good inducers of AHH activity in livers of mice classified as aromatic hydrocarbon responsive, but not in those classified as hydrocarbon nonresponsive. Responsiveness is strain-specific and genetically regulated. Metabolism of BP to mutagens by liver homogenates was correlated with extent of AHH induction. This dimorphism of response of AHH to inducers was present, but less pronounced, in non-hepatic tissues. Basal activities of AHH and DMND were correlated in livers and lungs from untreated mice. DMND activities were increased less than 2-fold by PB, MC or AR treatments. Metabolism of DMN to mutagens was not closely correlated with DMND activities. Strain of mouse, type of tissue and test substance are important variables in assessing the potential effect of microsomal enzyme-inducing agents on the metabolism of mutagenic substances.  相似文献   

6.
The effect of alleles of the Ah locus on the induction of sister-chromatid exchanges (SCE) was studied in C57Bl/6 and in DBA/2 mice treated twice intragastrically with benzo[a]pyrene (BP, 100 or 10 mg/kg b.w.). To measure the changes in the frequency of SCE, 2 protocols were used: in vivo in bone marrow cells after implantation of 5-bromodeoxyuridine (BrdU) tablets and in vivo/in vitro in spleen lymphocytes cultured with BrdU. On day 5 mice were killed and SCEs estimated in bone marrow cells. BP-DNA adducts in bone marrow and spleen were analyzed on day 5 after the same exposure to BP. In the spleen lymphocytes SCE frequencies were analyzed after an additional 48 h of culture. We found that at both doses of BP, the number of SCEs and BP-DNA adducts in bone marrow and in spleen cells was significantly higher in aryl hydrocarbon hydroxylase (AHH)-non-inducible (DBA/2) mice than in AHH-inducible (C57BL/6) mice. Only marginal induction of SCE was noted after the high dose of BP in C57BL/6 mice in bone marrow in vivo, whereas a highly significant increase in the frequency of SCEs was found in splenocytes in the in vivo/in vitro test. The spleen cells contained larger amounts of BP-DNA adducts and demonstrated higher absolute levels of SCEs than bone marrow cells. The sensitivity of both the in vivo/in vitro and the in vivo SCE test is high enough for assessment of Ah locus-linked differences in BP genotoxicity in mice at the prolonged time between treatment and cell preparation. The present data confirm the influence of inducibility of AHH in the intestine on the genotoxicity of BP to distal tissues after oral exposure to BP.  相似文献   

7.
Influenza virus is a common respiratory tract viral infection. Although influenza can be fatal in patients with chronic pulmonary diseases such as chronic obstructive pulmonary disease, its pathogenesis is not fully understood. The Nrf2-mediated antioxidant system is essential to protect the lungs from oxidative injury and inflammation. In the present study, we investigated the role of Nrf2 in protection against influenza virus-induced pulmonary inflammation after cigarette smoke exposure with both in vitro and in vivo approaches. For in vitro analyses, peritoneal macrophages isolated from wild-type and Nrf2-deficient mice were treated with poly(I:C) and/or cigarette smoke extract. For in vivo analysis, these mice were infected with influenza A virus with or without exposure to cigarette smoke. In Nrf2-deficient macrophages, NF-κB activation and the induction of its target inflammatory genes were enhanced after costimulation with cigarette smoke extract and poly(I:C) compared with wild-type macrophages. The induction of antioxidant genes was observed for the lungs of wild-type mice but not those of Nrf2-deficient mice after cigarette smoke exposure. Cigarette smoke-exposed Nrf2-deficient mice showed higher rates of mortality than did wild-type mice after influenza virus infection, with enhanced peribronchial inflammation, lung permeability damage, and mucus hypersecretion. Lung oxidant levels and NF-κB-mediated inflammatory gene expression in the lungs were also enhanced in Nrf2-deficient mice. Our data indicate that the antioxidant pathway controlled by Nrf2 is pivotal for protection against the development of influenza virus-induced pulmonary inflammation and injury under oxidative conditions.  相似文献   

8.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine, induces lung adenomas in A/J mice following a single intraperitoneal (i.p.) injection. However, inhalation of mainstream cigarette smoke does not induce or promote NNK-induced lung tumors in this mouse strain purported to be sensitive to chemically-induced lung tumorigenesis. The critical events for NNK-induced lung tumorigenesis in A/J mice is thought to involve O(6)-methylguanine (O(6)MeG) adduct formation, GC-->AT transitional mispairing, and activation of the K-ras proto-oncogene. The objective of this study was to test the hypothesis that a smoke-induced shift in NNK metabolism led to the observed decrease in O(6)MeG adducts in the lung and liver of A/J mice co-administered NNK with a concomitant 2-h exposure to cigarette smoke as observed in previous studies. Following 2 h nose-only exposure to mainstream cigarette smoke (600 mg total suspended particulates/m(3) of air), mice (n=12) were administered 7.5 micromol NNK (10 microCi [5-3H]NNK) by i.p. injection. A control group of 12 mice was sham-exposed to HEPA-filtered air for 2 h prior to i.p. administration of 7.5 micromol NNK (10 microCi [5-3H]NNK). Exposure to mainstream cigarette smoke had no effect on total excretion of NNK metabolites in 24 h urine; however, the metabolite pattern was significantly changed. Mice exposed to mainstream cigarette smoke excreted 25% more 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) than control mice, a statistically significant increase (P<0.0001). Cigarette smoke exposure significantly reduced alpha-hydroxylation of NNK to potential methylating species; this is based on the 15% reduction in excretion of the 4-(3-pyridyl)-4-hydroxybutanoic acid and 42% reduction in excretion of 4-(3-pyridyl)-4-oxobutanoic acid versus control. Detoxication of NNK and NNAL by pyridine-N-oxidation, and glucuronidation of NNAL were not significantly different in the two groups of mice. The observed reduction in alpha-hydroxylation of NNK to potential methylating species in mainstream cigarette smoke-exposed A/J mice provides further mechanistic support for earlier studies demonstrating that concurrent inhalation of mainstream cigarette smoke results in a significant reduction of NNK-induced O(6)MeG adduct formation in lung and liver of A/J mice compared to mice treated only with NNK.  相似文献   

9.
The involvement of cytochrome P-450 isozymes in the activation of benzo[a]pyrene (BP) by human placental and liver microsomes was studied in vitro using monoclonal antibodies (Mab) toward the major 3-methylcholanthrene (MC)-inducible and phenobarbital-inductible rat liver P-450 isozymes (Mab 1-7-1 and Mab 2-66-3, respectively). Microsomes from human placenta and liver and rat liver were incubated with BP and DNA, and BP-diolepoxide-DNA (BPDE-DNA) adducts were measured by synchronous fluorescence spectrophotometry (SFS). The only BP metabolite giving the same fluorescence peak as chemically modified BPDE-DNA was BP-7,8-dihydrodiol. Five (smokers) out of 29 human placentas (smokers and nonsmokers), and five out of nine human livers were able to metabolically activate BP to BPDE-DNA adducts in this system. The Mab 1-7-1 totally inhibited the formation of BPDE-DNA adducts in placental microsomal incubations. Inhibition using rat or human liver microsomes was 50-60% and about 90%, respectively. The Mab 2-66-3 had no effect in any of the microsome types. Adduct formation was inhibited more strongly and at lower concentrations of Mab 1-7-1 compared with the inhibition of AHH activity. This study is a clear indication of the major role of P-450IA1 (P-450c) in human placenta and probably P-450IA2 (P-450d) in human liver in BP activation, while other isozymes also take part in the activation in rat liver. Furthermore, this clearly indicates that AHH activity and BP activation are not necessarily associated.  相似文献   

10.
Cigarette smokers have been reported to void urine which is more mutagenic than that voided by non-smokers, but the specific urinary mutagen(s) have not been identified. Since mechanistic studies are best performed in animal models, the objective of this study was to determine if a model to study the role of cigarette smoke and its components in urinary mutagenicity could be developed in rats. XAD-2 resin was used to concentrate the urine and the microsuspension modification of the Ames test used to quantify mutagenicity. Nicotine administered by intraperitoneal injection at 0.8 mg/kg (the maximum tolerated dose) or inhalation of carbon monoxide for 14 days at the maximum tolerated dose (1800 ppm, resulting in 68% carboxyhemoglobin) did not increase urinary mutagenicity. Cigarette smoke condensate (CSC) prepared by electrostatic precipitation of mainstream smoke increased urinary mutagenicity at doses of 100 and 200 mg/kg when administered acutely by either i.p. injection or gavage, verifying that the assay system was capable of detecting cigarette smoke-related mutagens in the urine. However, cigarette smoke administered by the appropriate route of exposure, nose-only inhalation, for 1, 7, 14 or 90 days (1 h per day) did not increase urinary mutagenicity. The smoke concentration administered was at or near the maximum tolerated dose as evidenced by carboxyhemoglobin concentrations of approximately 50%, and of 10% or more weight loss in exposed animals. Thus, although cigarette smoke condensate is mutagenic in vitro and mutagenic urine was observed when rats were given high doses of CSC by inappropriate routes of administration, acute or subchronic inhalation exposure to the maximum tolerated dose of whole cigarette smoke did not increase urinary mutagenicity in rats. These results indicate that the rat may be an inappropriate model to study urinary mutagenicity following the inhalation of tobacco smoke.  相似文献   

11.
Indole-3-carbinol (I3C) is a dietary modulator of carcinogenesis that can reduce the level of carcinogen binding to DNA. I3C-derived products are potent inducers of certain cytochrome P-450(CYP)-dependent enzyme activities. To investigate whether the protective effects of I3C against carcinogen damage to DNA are associated with increased activities of CYP1A1 enzymes, we examined the relationship of I3C-mediated organ-specific CYP enzyme induction with total levels of benzo[a]pyrene (BP) binding to hepatic and pulmonary DNA of rats. Oral intubation (PO) of I3C (500 mumol/kg body wt.) in 10% DMSO in corn oil produced after 20 h, increases in ethoxyresorufin O-deethylase (EROD) activities (associated with CYP1A1 isozyme) of 700-fold, 245-fold and 36-fold in small intestine, lungs and liver, respectively, compared with activities in untreated controls. Hepatic aryl hydrocarbon hydroxylase (AHH) activity was increased 4-fold under these conditions. Pentoxyresorufin O-depentylase (PROD) activity (associated with CYP2B isoenzyme) was increased 6-fold in the liver but was unaffected in lung and small intestine. Intraperitoneal injection (IP) of I3C (500 mumol/kg body wt.) produced no significant change in EROD or PROD activities in lung, liver, or small intestine. PO administration of the acid reaction mixture (RXM) of I3C increased hepatic AHH activity (5-fold) and EROD activities in small intestine (650-fold), lung (100-fold) and liver (18-fold). IP administration of RXM (equivalent to 500 mumol I3C/kg body wt.) significantly increased only EROD activity in lung and liver, but did not affect EROD activity in small intestine, AHH activity in liver, or PROD activity in any of the organs examined. Twenty hours after inducer treatment, half of the rats were treated PO with 0.2 mumol [3H]BP in corn oil. Analysis of tissues 5 h after BP administration indicated that compared with untreated controls, administration of I3C and RXM by either route reduced by 30-50% the level of BP binding to hepatic DNA, an effect that was not correlated to CYP1A1 enzyme induction in any of the organs examined. However, PO administration of I3C and RXM produced a 50-70% decrease in carcinogen binding to pulmonary DNA, while IP administration of inducers had no effect on DNA binding in this organ. These results with the lung are consistent with an increased presystemic clearance of BP in the intestine and are discussed in terms of the role of induction of intestinal CYP1A1 activity in the decreased lymphatic and venous transport of unmetabolized BP to the lung.  相似文献   

12.
Formation of pulmonary tertiary immune structures is a characteristic feature of advanced COPD. In the current study, we investigated the mechanisms of tertiary lymphoid tissue (TLT) formation in the lungs of cigarette smoke-exposed mice. We found that cigarette smoke exposure led to TLT formation that persisted following smoking cessation. TLTs consisted predominantly of IgM positive B cells, while plasma cells in close proximity to TLTs expressed IgM, IgG, and IgA. The presence of TLT formation was associated with anti-nuclear autoantibody (ANA) production that also persisted following smoking cessation. ANAs were observed in the lungs, but not the circulation of cigarette smoke-exposed mice. Similarly, we observed ANA in the sputum of COPD patients where levels correlated with disease severity and were refractory to steroid treatment. Both ANA production and TLT formation were dependent on interleukin-1 receptor 1 (IL-1R1) expression. Contrary to TLT and ANA, lung neutrophilia resolved following smoking cessation. These data suggest a differential regulation of innate and B cell-related immune inflammatory processes associated with cigarette smoke exposure. Moreover, our study further emphasizes the importance of interleukin-1 (IL-1) signaling pathways in cigarette smoke-related pulmonary pathogenesis.  相似文献   

13.
OBJECTIVES: Generation of different metabolites and DNA-adduct(s) of metabolites of benzo[alpha]pyrene (B[alpha]P) in vitro by placental tissues (microsomes) of mothers who actively smoked cigarettes (tobacco) and those who did not smoke were analyzed to determine the variability in metabolism of the B[alpha]P substrate among individual placental samples. METHODS: Overall B[alpha]P metabolism was assayed by alkaline aqueous extraction of metabolites, and reactive metabolites by DNA adducts of B[alpha]P-metabolites produced by salmon sperm DNA added to the incubation mixtures of the substrate and microsomes of exposed- and unexposed-placentas to maternal cigarette smoke. Array of B[alpha]P-metabolites produced by the same incubations were identified by high pressure liquid chromatography of the aqueous extracts. RESULTS: Subsets of smoke-exposed placentas assessed by cluster analysis had augmented metabolic activity, others did not respond to smoke exposure. CYP1A1 expression in trophoblast cells analyzed by immunohistochemistry did not correlate with smoke exposure. The DNA-adducts generated was variable, regardless of verbally reported levels of maternal exposure. The amounts of different B[alpha]P-metabolites produced by individual samples matched for similar levels of exposure during pregnancy by self-reported smoking (1 pack/day) were also not comparable. Metabolism of B[alpha]P into different metabolites, and production of toxic DNA adducts from metabolites in vitro by human placenta were variable and unrelated to the extent of smoke exposure. CONCLUSIONS: The metabolic characteristic of human placenta for xenobiotic exposure substrates is based on the expression and function of diverse enzymes, and such metabolism exhibited inter-individual variation for toxic metabolite production or detoxification of the substrates in response to maternal smoke exposure.  相似文献   

14.
Inhalation of cigarette smoke into the lower airway via a tracheostomy evokes immediate apnea, bradycardia, and systemic hypotension in dogs. These responses can still be evoked when conduction in myelinated vagal fibers is blocked preferentially by cooling but are abolished by vagotomy, suggesting that they are mediated by afferent vagal C-fibers. To examine this possibility, we recorded impulses in pulmonary C-fibers in anesthetized, open-chest dogs and delivered 120 ml cigarette smoke to the lungs in a single ventilatory cycle. Pulmonary C-fibers were stimulated within 1 or 2 s of the delivery of smoke generated by high-nicotine cigarettes, activity increasing from 0.3 +/- 0.1 to a peak of 12.6 +/- 1.3 (SE) impulses/s, (n = 60); the evoked discharge usually lasted 3-5 s. Smoke generated by low-nicotine cigarettes evoked a milder stimulation in 33% of pulmonary C-fibers but did not significantly affect the overall firing frequency (peak activity = 2.2 +/- 1.1 impulses/s, n = 36). Hexamethonium (0.7-1.2 mg/kg iv) prevented C-fiber stimulation by high-nicotine cigarette smoke (n = 12) but not stimulation by right atrial injection of capsaicin. We conclude that pulmonary C-fibers are stimulated by a single breath of cigarette smoke and that nicotine is the constituent responsible.  相似文献   

15.
To study effects of cigarette smoke on the cytoplasmic motility (CM) of alveolar macrophages (AM), we measured remanent field strength (RFS) in dogs in vivo. Four days after instillation of ferrimagnetic particles (Fe3O4, 3 mg/kg) into the right lower lobe bronchus, RFS was measured at the body surface immediately after magnetization of the Fe3O4 particles by an externally applied magnetic field. RFS decreased with time due to particle rotation (relaxation), which is thought to be inversely related to CM of AM (J. Appl. Physiol. 55: 1196-1202, 1983). The initial relaxation curve was fitted to an exponential function. The relaxation rate (lambda 0) increased during cigarette smoke inhalation and returned to base-line values within 15 min. With the inhalation of the smoke of up to five cigarettes, peak lambda 0 was increased; with a further increase in the number of cigarettes, the effect of cigarette smoke decreased or disappeared. Nicotine injection and acetylcholine inhalation increased respiratory resistance to a degree similar to that observed with cigarette smoke but did not change lambda 0. However, either substance P (SP) or capsaicin injection increased lambda 0 in a fashion similar to that noted with cigarette smoke inhalation. Repeated administration of SP produced a significant tachyphylaxis of the effect, and capsaicin did not increase lambda 0 after the cigarette smoke-induced tachyphylaxis of the effect. Colchicine inhibited the cigarette smoke-induced increase in lambda 0. These results suggest that cigarette smoke increases CM of AM, probably through the release of tachykinins including SP from sensory nerves in the lung.  相似文献   

16.
The interstitial collagenase matrix metalloprotein-ase-1 (MMP-1) is up-regulated in the lung during pulmonary emphysema. The mechanisms underlying this aberrant expression are poorly understood. Although cigarette smoking is the predominant cause of emphysema, only 15-20% of smokers develop the disease. To define the signaling pathways activated by smoke and to identify molecules responsible for emphysema-associated MMP-1 expression, we performed several in vitro and in vivo experiments. In this study, we showed that cigarette smoke directly induced MMP-1 mRNA and protein expression and increased the collagenolytic activity of human airway cells. Treatment with various chemical kinase inhibitors revealed that this response was dependent on the extracellular regulated kinase-1/2 (ERK) mitogen activated protein kinase pathway. Cigarette smoke increased phosphorylation of residues Thr-202 and Tyr-204 of ERK in airway lining cells and alveolar macrophages in mice at 10 days and 6 months of exposure. Moreover, analysis of lung tissues from emphysema patients revealed significantly increased ERK activity compared with lungs of control subjects. This ERK activity was evident in airway lining and alveolar cells. The identification of active ERK in the lungs of emphysema patients and the finding that induction of MMP-1 by cigarette smoke in pulmonary epithelial cells is ERK-dependent reveal a molecular mechanism and potential therapeutic target for excessive matrix remodeling in smokers who develop emphysema.  相似文献   

17.
The effect of whole cigarette smoke exposure on bone-marrow sister-chromatid exchanges (SCEs) was studied in B6C3F1 mice. Animals were exposed nose-only to 10% (v/v) cigarette smoke 5 days/week for 2 weeks. Four dose levels of cigarette smoke (1, 4, 9 and 18 exposures/day) were studied using 2 cigarette types, Kentucky reference 3A1 (3A1) and American Blend (AB). A single exposure represented approximately 1 cigarette. A dose-dependent increase in SCEs was observed for both the 3A1 and AB cigarettes at dose levels which had no effect on bone-marrow cell-replication kinetics. These findings represent the first demonstration of a dose-responsive increase in cigarette smoke-induced SCEs in a rodent model system.  相似文献   

18.
Because smoking increases a woman's risk of contracting bacterial vaginosis (BV), which is manifested by a reduction of vaginal lactobacilli and an overgrowth of anaerobic bacteria, chemicals contained in cigarette smoke were analyzed in vitro to determine their role in reducing lactobacilli. The result showed that trace amounts of benzo[a]pyrene diol epoxide (BPDE), which can be found in vaginal secretion of women who smoke, significantly increased phage induction in lactobacilli. This finding implies that smoking may reduce vaginal lactobacilli by promoting phage induction.  相似文献   

19.
Ellagic acid, a common plant phenol, was shown to be a potent inhibitor of epidermal microsomal aryl hydrocarbon hydroxylase (AHH) activity in vitro, and of benzo[a]pyrene (BP)-binding to both calf thymus DNA in vitro and to epidermal DNA in vivo. The in vitro addition of ellagic acid (0.25-2.0 microM) resulted in a dose-dependent inhibition of AHH activity in epidermal microsomes prepared from control or carcinogen-treated animals. The I50 of ellagic acid for epidermal AHH was 1.0 microM making it the most potent inhibitor of epidermal AHH yet identified. In vitro addition of ellagic acid to microsomal suspensions prepared from control or coal tar-treated animals resulted in 90% inhibition of BP-binding to calf thymus DNA. Application of ellagic acid to the skin (0.5-10.0 mumol/10 gm body wt) caused a dose-dependent inhibition of BP-binding to epidermal DNA. Our results suggest that phenolic compounds such as ellagic acid may prove useful in modulating the risk of cutaneous cancer from environmental chemicals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号